Turbulent strings in AdS/CFT

Takaaki Ishii (University of Crete)

arXiv:1504.02190 with Keiju Murata

14 Apr 2015, HoloGrav 2015@GGI

Plan

Perturb holographic quark-antiquark potential

Motivations

- AdS turbulence
- Turbulent instability on D7 [Hashimoto-Kinoshita-Oka-Murata]

We solve nonlinear time evolution

c.f.) Cosmic strings in flat space

Contents

- 1. Introduction
- 2. Review of the static solution
- 3. Numerical setup
- 4. Results
- 5. Summary

Time-like holographic Wilson loop

[Maldacena, Rey-Yee]

0.5 0.4 0.3 0.2 0.1

0

0.1 0.2 0.3

0.4 0.5 0.6 0.7 0.8 0.9

z/L

2 -0.1 -0.2 -0.3 -0.4 -0.5

In AdS₅xS⁵
$$ds^2 = \frac{\ell^2}{z^2} \left(-dt^2 + dz^2 + dx^2 \right) + \ell^2 d\Omega_5^2$$

Static gauge: $(\tau,\sigma)=(t,z)$ Target space embedding: $x_1=X_1(z)$

Solution for separation L

$$X_{1}(z) = \pm z_{0} \int_{z/z_{0}}^{1} dw \frac{w^{2}}{\sqrt{1 - w^{4}}}$$

= $\pm z_{0} [\Gamma_{0} + F(z/z_{0}; i) - E(z/z_{0}; i)]$
 $\sum_{z_{0}: \text{ string tip}} \frac{L}{2} = z_{0}\Gamma_{0}$

A convenient parametrization

Polar-like coordinates (r, ϕ) in which the static solution is $r=z_0$

We prepare eigenvalues/functions in linearized perturbations

[Callan-Guijosa, Klebanov-Maldacena-Thorn]

= const.

 $z^{\,{\scriptscriptstyle 2.5}}$

1.5

e const.

Contents

- 1. Introduction
- 2. Review of the static solution
- 3. Numerical setup
- 4. Results
- 5. Summary

Perturb the string endpoints

Quench profile: a compact C[∞] function

$$\alpha(t) = \exp\left[2\left(\frac{\Delta t}{t - \Delta t} - \frac{\Delta t}{t} + 4\right)\right] \quad (0 < t < \Delta t)$$

Worldsheet double null coordinates

Induced metric $ds_{F1}^2 = -2\gamma_{uv}dudv$

Worldsheet: u,v Target space: T(u,v), Z(u,v), X_{1,2,3}(u,v)

$$\gamma_{uv} = \frac{\ell^2}{Z^2} (-T_{,u} T_{,v} + Z_{,u} Z_{,v} + X_{,u} \cdot X_{,v})$$

Equations of motion

Constraints

$$T_{,uv} = \frac{1}{Z} (T_{,u}Z_{,v} + Z_{,u}T_{,v})$$
$$Z_{,uv} = \frac{1}{Z} (T_{,u}T_{,v} + Z_{,u}Z_{,v} - \boldsymbol{X}_{,u} \cdot \boldsymbol{X}_{,v})$$
$$\boldsymbol{X}_{,uv} = \frac{1}{Z} (\boldsymbol{X}_{,u}Z_{,v} + Z_{,u}\boldsymbol{X}_{,v})$$

$$\gamma_{uu} = \frac{\ell^2}{Z^2} (-T_{,u}^2 + Z_{,u}^2 + X_{,u}^2) = 0$$

$$\gamma_{vv} = \frac{\ell^2}{Z^2} (-T_{,v}^2 + Z_{,v}^2 + X_{,v}^2) = 0$$

Discretization

To solve EoMs, we use O(h²) central finite differential

$$\begin{split} \Psi_{,uv}|_{C} &= \frac{\Psi_{N} - \Psi_{E} - \Psi_{W} + \Psi_{S}}{h^{2}} \\ \Psi_{,u}|_{C} &= \frac{\Psi_{N} - \Psi_{E} + \Psi_{W} - \Psi_{S}}{2h} \\ \Psi_{,v}|_{C} &= \frac{\Psi_{N} + \Psi_{E} - \Psi_{W} - \Psi_{S}}{2h} \\ \Psi|_{C} &= \frac{\Psi_{E} + \Psi_{W}}{2} \end{split}$$

Compute N by using EWS data

Initial data (v=0): static solution

Contents

- 1. Introduction
- 2. Review of the static solution
- 3. Numerical setup
- 4. Results
- 5. Summary

Longitudinal one-sided quench

Cusp formation

- Cusps are seen in target space (x,z)-coordinates
- Fields on worldsheet (u,v)-coordinates are regular
- Cusps are created in a pair (around t/L~5)

Cusp detection

The conditions satisfied at a cusp:

$$J_z \equiv T_{,u}Z_{,v} - T_{,v}Z_{,u} = 0$$
$$J_i \equiv T_{,u}X_{i,v} - T_{,v}X_{i,u} = 0$$

Energy spectrum (Log-log plot)

Decompose nonlinear solutions in linear eigenmodes en

$$\chi_1 = \sum_{n=1}^{\infty} c_n(t) e_n(\phi) \qquad \qquad \varepsilon_n(t) = \frac{\sqrt{\lambda} z_0}{4\pi} \left(\dot{c}_n^2 + \omega_n^2 c_n^2 \right)$$

***Dashed lines are in the linearized theory

Energy cascade

Cusp formation: direct energy cascade → power law No cusp: no power law

Forces on the endpoints

$$\langle \boldsymbol{F}(t) \rangle = rac{\delta S_{\text{on-shell}}}{\delta \boldsymbol{x}_q}$$

Force diverges when a cusp reaches the boundary

***Red: x=L/2, green: x=-L/2

Z₂-symmetric quench

Z₂-symmetric quench

- More discretized formation times because of wave collisions
- First cusps by such collisions (red •). The cusps are pair-created and annihilated.
- Traveling cusps can be formed first (green ▲)

Transverse linear quench

ε=0.03, Δt/L=2

***Green arrows: forces

String oscillates in 1+3 dim (t,z,x1,x2)

Transverse linear quench

- Cusps are formed at T~14.45
- The energy spectrum shows a direct cascade

Transverse circular quench

String oscillates in all 1+4 dim (t,z,x1,x2,x3)

Energy spectrum (Log-log plot)

No cusp: no sustainable power law

Transverse circular quench

Cuspy, but not real cusps

Summary

We computed nonlinear dynamics of the quarkantiquark fundamental string in AdS

- Cusps and turbulent behavior in \leq 1+3 dim
- No cusp and an inverse cascade in 1+4 dim

Future works

- Large amplitude/finite temperature
- Non-conformal backgrounds
- and more

This research has been co-financed by the European Union (European Social Fund, ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF), under the grants schemes "Funding of proposals that have received a positive evaluation in the 3rd and 4th Call of ERC Grant Schemes" and the program "Thales".