LOW-ENERGY QCD with STRANGE QUARKS

- from antikaon-nuclear interactions to hyperons in neutron stars -

Wolfram Weise

ECT* Trento and Technische Universität München

- Symmetry breaking scenarios in Low-Energy QCD : Chiral SU(3) Effective Field Theory
- Near-threshold strong interaction physics :
kaons and antikaons interacting with nucleons \& nuclei
- Hyperon-nucleon interactions - new developments:

Chiral SU(3) EFT and Lattice QCD

- Strangeness in dense baryonic matter :
new constraints from neutron stars

Hierarchy of QUARK MASSES in QCD
 - separation of scales -

Basic principles of LOW-ENERGY QCD :

Confinement of quarks \& gluons in hadrons

Chiral Symmetry

spontaneously broken (QCD dynamics)
explicitly broken by non-zero quark masses
special role of STRANGE QUARKS

Spontaneously Broken

CHIRAL $\operatorname{SU}(3)_{\mathbf{L}} \times \mathbf{S U}(3)_{\mathbf{R}}$ SYMMETRY

- NAMBU - GOLDSTONE BOSONS:

Pseudoscalar SU(3) meson octet

$$
\left\{\phi_{a}\right\}=\left\{\pi, \mathbf{K}, \overline{\mathbf{K}}, \eta_{8}\right\}
$$

DECAY CONSTANTS:

$$
\langle 0| \mathbf{A}_{a}^{\mu}(0)\left|\phi_{b}(p)\right\rangle=i \delta_{a b} p^{\mu} \mathbf{f}_{b}
$$

Chiral limit: $\mathrm{f}=86.2 \mathrm{MeV}$ (order parameter)

$$
\begin{aligned}
\mathrm{f}_{\pi} & =92.4 \pm 0.3 \mathrm{MeV} \\
\mathrm{f}_{\mathrm{K}} & =110.0 \pm 0.9 \mathrm{MeV}
\end{aligned}
$$

- Gell-Mann, Oakes, Renner relations

$$
\begin{aligned}
& \mathbf{m}_{\pi}^{2} \mathbf{f}_{\pi}^{\mathbf{2}}=-\frac{\mathbf{m}_{\mathbf{u}}+\mathbf{m}_{\mathbf{d}}}{\mathbf{2}}\langle\overline{\mathbf{u}} \mathbf{u}+\overline{\mathbf{d}} \mathbf{d}\rangle \\
& \mathbf{m}_{\mathbf{K}}^{\mathbf{2}} \mathbf{f}_{\mathbf{K}}^{\mathbf{2}}=-\frac{\mathbf{m}_{\mathbf{u}}+\mathbf{m}_{\mathbf{s}}}{\mathbf{2}}\langle\overline{\mathbf{u}} \mathbf{u}+\overline{\mathbf{s}} \mathbf{s}\rangle
\end{aligned}+\begin{aligned}
& \text { higher order } \\
& \text { corrections }
\end{aligned}
$$

CHIRAL SU(3) EFFECTIVE FIELD THEORY ordered hierarchy of driving interactions

- Leading-order terms (Weinberg \& Tomozawa)

- Examples: $\overline{\mathbf{K}} \mathbf{N}(\mathrm{S}=-\mathrm{I})$ and $\mathbf{K N}(\mathrm{S}=+\mathrm{I})$ threshold (s wave) amplitudes :

$$
\begin{gathered}
\mathbf{T}\left(\mathbf{K}^{+} \mathbf{p}\right)_{\mathrm{thr}}=2 \mathbf{T}\left(\mathbf{K}^{+} \mathbf{n}\right)_{\mathrm{thr}}=-\frac{\mathbf{m}_{\mathrm{K}}}{\mathbf{f}^{2}} \quad \text { repulsive } \\
\mathbf{T}\left(\mathrm{K}^{-} \mathbf{p}\right)_{\mathrm{thr}}=2 \mathbf{T}\left(\mathrm{~K}^{-} \mathbf{n}\right)_{\mathrm{thr}}=\frac{\mathbf{m}_{\mathrm{K}}}{\mathbf{f}^{2}} \xrightarrow[\text { attractive }]{\text { order parameter of }} \begin{array}{c}
\text { explicit } \\
\text { spontaneous } \\
\text { chiral symmetry breaking }
\end{array}
\end{gathered}+
$$

$$
\begin{aligned}
& \text { next-to-leading order (NLO) } \mathcal{O}\left(p^{2}\right) \\
& \text { input: several low-energy constants }
\end{aligned}
$$

Low-Energy $\overline{\mathbf{K}} \mathbf{N}$ Interactions

- Framework: Chiral SU(3) Effective Field Theory ... but :

Chiral Perturbation Theory NOT applicable: Λ (1405) resonance 27 MeV below $\mathbf{K}^{-} \mathbf{p}$ threshold
N. Kaiser, P. Siegel, W.W. (1995)
E. Oset, A. Ramos (1998)

Non-perturbative Coupled Channels approach based on Chiral SU(3) Dynamics

Leading s-wave I = 0 meson-baryon interactions (Weinberg-Tomozawa)

Recent Review:
T. Hyodo, D. Jido

Prog. Part. Nucl. Phys. 67 (2012) 55

channel coupling

CONSTRAINTS from SIDDHARTA

- Kaonic hydrogen precision data

M. Bazzi et al. (SIDDHARTA)

Phys. Lett. B 704 (201I) II3

- Strong interaction

Is energy shift and width

$$
\begin{gathered}
\Delta \mathbf{E}=\mathbf{2 8 3} \pm \mathbf{3 6}(\text { stat }) \pm \mathbf{6}(\text { syst }) \\
\mathbf{e V} \\
\boldsymbol{\Gamma}=\mathbf{5 4 1} \pm \mathbf{8 9}(\text { stat }) \pm \mathbf{2 2}(\text { syst })
\end{gathered} \mathbf{e V} .
$$

$\mathbf{K}^{-} \mathrm{p}$ SCATTERING AMPLITUDE from CHIRAL SU(3) COUPLED CHANNELS DYNAMICS

$$
\mathbf{f}\left(\mathbf{K}^{-} \mathbf{p}\right)=\frac{1}{2}\left[\mathbf{f}_{\overline{\mathbf{K}} \mathbf{N}}(\mathbf{I}=\mathbf{0})+\mathbf{f}_{\overline{\mathbf{K}} \mathbf{N}}(\mathbf{I}=\mathbf{1})\right]
$$

Y. Ikeda, T. Hyodo, W.W. PLB 706 (20II) 63 NPA88I (2012) 98
$\boldsymbol{\Lambda}(\mathbf{1 4 0 5}): \overline{\mathbf{K}} \mathbf{N}(\mathbf{I}=\mathbf{0})$ quasibound state embedded in the $\pi \boldsymbol{\Sigma}$ continuum Prototype example for emergence of resonant structure close to a threshold

Complex scattering length (including Coulomb corrections)

$$
\operatorname{Re~a}\left(K^{-} \mathbf{p}\right)=-0.65 \pm 0.10 \mathrm{fm}
$$

$$
\operatorname{Im} \mathbf{a}\left(\mathbf{K}^{-} \mathbf{p}\right)=0.81 \pm 0.15 \mathrm{fm}
$$

New developments:

Structure of $\Lambda(1405)$ from Lattice $\mathbf{Q C D}$

- $\quad\left|\boldsymbol{\Lambda}^{*}\right\rangle=\mathbf{a}|\mathbf{u d s}\rangle+\mathbf{b}|(\mathbf{u d u})(\overline{\mathbf{u}} \mathbf{s})\rangle+\ldots$

- Note: qualitative structural change depending on quark mass (interplay of spontaneous \& explicit chiral symmetry breaking)

The TWO POLES scenario

- Characteristic feature of Chiral SU(3) Dynamics :

Coupled channels with energy dependent driving interactions
T. Hyodo, D. Jido

Prog. Part. Nucl. Phys. 67 (2012) 55

- Pole positions from chiral $\mathbf{S U}(3)$ coupled-channels calculation using SIDDHARTA K ${ }^{-} \mathbf{p}$ threshold constraints:

$$
\begin{array}{ll}
\mathrm{E}_{1}=1424 \pm 15 \mathrm{MeV} & \mathrm{E}_{2}=1381 \pm 15 \mathrm{MeV} \\
\Gamma_{1}=52 \pm 10 \mathrm{MeV} & \Gamma_{2}=162 \pm 15 \mathrm{MeV}
\end{array}
$$

- Dynamics explored and tested in several experiments at J-PARC, JLab, GSI-HADES

Missing information : the $I=1 \quad \overline{\mathbf{K}} N$ system

- Predicted antikaon-neutron amplitudes at and below threshold
Y. Ikeda et al: Phys.Lett. B 706 (201I) 63 , Nucl. Phys. A 88 I (2012) 98

... plus many other theory activities

$$
\mathrm{a}\left(\mathrm{~K}^{-} \mathbf{n}\right)=0.57_{-0.21}^{+0.04}+\mathrm{i} 0.72_{-0.41}^{+0.26} \mathrm{fm}
$$

- Needed: accurate constraints from antikaon-deuteron threshold measurements
complete information for both isospin $I=0$ and $I=1 \quad \bar{K} N$ channels plus potentially important information about K-NN absorption

ANTIKAON - DEUTERON SCATTERING LENGTH

- Recent calculations using SIDDHARTA - constrained input

- Sources of (15-20\%) uncertainties:
"Fixed scatterer" approximation $\quad \mathbf{K}^{-} \mathbf{n}$ amplitude $\quad \mathbf{K}^{-} \mathbf{d} \rightarrow \mathbf{Y N}$ absorption

KAONIC DEUTERIUM STRONG INTERACTION ENERGY SHIFT \& WIDTH

- Recent result constrained by SIDDHARTA $\mathbf{K}^{-} \mathbf{p}$ input:

$$
\left.\mathbf{a}\left(\mathbf{K}^{-} \mathbf{d}\right)=(-\mathbf{1 . 5 5}+\mathbf{i} 1.66) \mathbf{f m} \quad(\pm \mathbf{2 0} \%)\right) \text { s. Ohnishi et al. (2014) }
$$

- Estimate of kaonic deuterium energy shift and width using improved Deser formula (U.-G. MeiBner, U. Raha, A. Rusetsky : Eur. Phys.J.C 35 (2004) 349)

$$
\Delta \mathbf{E}-\frac{\mathbf{i}}{\mathbf{2}} \boldsymbol{\Gamma}=-\frac{\mathbf{2} \mu^{2} \alpha^{\mathbf{3}} \mathbf{a}\left(\mathbf{K}^{-} \mathbf{d}\right)}{\mathbf{1 - 2 \mu \alpha (1 - \operatorname { l n } \alpha) \mathbf { a } (\mathbf { K } ^ { - } \mathbf { d })}}
$$

using $\mathbf{K}^{-} \mathbf{d}$ scattering length based on chiral $\mathrm{SU}(3)$ dynamics

$$
\Delta \mathrm{E}=0.87 \mathrm{keV} \quad \Gamma=1.19 \mathrm{keV}
$$

with $\sim 20 \%$ uncertainty.

- Intense theoretical activities (e.g. Faddeev calculations), but so far no measurement

New

developments:

Chiral SU(3) Effective Field Theory and Hyperon-Nucleon Interactions
J. Haidenbauer et al.: Nucl. Phys. A 915 (2013) 24

Interaction terms involving baryon and pseudoscalar meson octets ...

$$
\begin{gathered}
P=\left(\begin{array}{ccc}
\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta}{\sqrt{6}} & \pi^{+} & K^{+} \\
\pi^{-} & -\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta}{\sqrt{6}} & K^{0} \\
K^{-} & \bar{K}^{0} & -\frac{2 \eta}{\sqrt{6}}
\end{array}\right) \quad B=\left(\begin{array}{ccc}
\frac{\Sigma^{0}}{\sqrt{2}}+\frac{\Lambda}{\sqrt{6}} & \Sigma^{+} & p \\
\Sigma^{-} & -\frac{\Sigma^{0}}{\sqrt{2}}+\frac{\Lambda}{\sqrt{6}} & n \\
-\Xi^{-} & \Xi^{0} & -\frac{2 \Lambda}{\sqrt{6}}
\end{array}\right) . \\
\mathcal{L}_{1}=-\frac{\sqrt{2}}{2 f_{0}} \operatorname{tr}\left(D \bar{B} \gamma^{\mu} \gamma_{5}\left\{\partial_{\mu} P, B\right\}+F \bar{B} \gamma^{\mu} \gamma_{5}\left[\partial_{\mu} P, B\right]\right) \\
\mathcal{L}_{2}=\frac{1}{4 f_{0}^{2}} \operatorname{tr}\left(\mathrm{i} \bar{B} \gamma^{\mu}\left[\left[P, \partial_{\mu} P\right], B\right]\right)
\end{gathered}
$$

...generate Nambu-Goldstone boson exchange processes

New
developments:

Chiral SU(3) Effective Field Theory and Hyperon-Nucleon Interactions
J. Haidenbauer et al.: Nucl. Phys. A 915 (2013) 24

- Interaction terms involving baryon and pseudoscalar meson octets ...

$$
\begin{gathered}
P=\left(\begin{array}{ccc}
\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta}{\sqrt{6}} & \pi^{+} & K^{+} \\
\pi^{-} & -\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta}{\sqrt{6}} & K^{0} \\
K^{-} & \bar{K}^{0} & -\frac{2 \eta}{\sqrt{6}}
\end{array}\right) \quad B=\left(\begin{array}{ccc}
\frac{\Sigma^{0}}{\sqrt{2}}+\frac{\Lambda}{\sqrt{6}} & \Sigma^{+} & p \\
\Sigma^{-} & -\frac{\Sigma^{0}}{\sqrt{2}}+\frac{\Lambda}{\sqrt{6}} & n \\
-\Xi^{-} & \Xi^{0} & -\frac{2 \Lambda}{\sqrt{6}}
\end{array}\right) \\
\mathcal{L}_{1}=-\frac{\sqrt{2}}{2 f_{0}} \operatorname{tr}\left(D \bar{B} \gamma^{\mu} \gamma_{5}\left\{\partial_{\mu} P, B\right\}+F \bar{B} \gamma^{\mu} \gamma_{5}\left[\partial_{\mu} P, B\right]\right) \\
\mathcal{L}_{2}=\frac{1}{4 f_{0}^{2}} \operatorname{tr}\left(\mathrm{i} \bar{B} \gamma^{\mu}\left[\left[P, \partial_{\mu} P\right], B\right]\right)
\end{gathered}
$$

...generate Nambu-Goldstone boson exchange processes

Hyperon - Nucleon Interaction (contd.)

- note:
moderate attraction at low momenta strong repulsion at higher momenta
- ... but missing: accurate data base of YN scattering
J. Haidenbauer, S. Petschauer, N. Kaiser, U.-G. Meißner, A. Nogga, W.W.

Nucl. Phys. A 915 (2013) 24
phase shift $\Lambda p^{1} S_{0}$

Hyperon - Nucleon Interactions from Lattice QCD

$$
\boldsymbol{\Lambda} \mathbf{N}\left({ }^{\mathbf{1}} \mathbf{S}_{\mathbf{0}}\right)=\frac{9}{10}[\mathbf{2 7}]+\frac{1}{10}\left[\mathbf{8}_{\mathbf{s}}\right]
$$

 $\mathrm{m}_{\mathrm{ps}}=0.47 \mathrm{GeV}$
T. Inoue et al. (HAL QCD)
PTP I24 (2010) 59I
Nucl. Phys.
A88I (2012) 28

towards physical quark masses

- note: strong short-distance repulsive interaction

New constraints from 2-solar-mass NEUTRON STARS

- sufficiently stiff equation of state required:
exotic scenarios (quark matter, kaon condensation etc.) unlikely

NEUTRON STAR MATTER

Equation of State

- conventional (hadronic) equation of state seems to work
- quark-nuclear
coexistence occurs (if at all) only at baryon densities

$$
\begin{gathered}
\rho>5 \rho_{0} \\
\left(\rho_{0}=0.16 \mathrm{fm}^{-3}\right)
\end{gathered}
$$

see also:
K. Masuda,T. Hatsuda,T.Takatsuka PTEP (2013) 7,073D0I

NEUTRON STAR MATTER including HYPERONS

with inclusion of hyperons: EoS too soft to support 2-solar-mass star unless strong short-range repulsion in YN and / or YNN interactions

Chiral SU(3) Effective Field Theory and Hyperon-Nucleon Interactions

Density dependence of

Λ single particle potential in nuclear and neutron matter

Brueckner calculation using Chiral SU(3) (coupled channels) hyperon-nucleon interaction

Haidenbauer et al. (preliminary)

SUMMARY

Chiral SU(3) Effective Field Theory: approved concept \& tool

- realization of low-energy QCD; special role of strangeness well organized coupled-channels framework for both antikaon- and hyperon-nuclear systems
- Systems with strangeness $\mathbf{S}=-\mathbf{I}$ and baryon no. $\mathbf{B}=\mathbf{I}, \mathbf{2}$:
- progress in understanding the unusual structure of the $\Lambda(1405)$ (quasi-molecular $\overline{\mathbf{K}} \mathbf{N}$ state imbedded in strongly coupled $\pi \boldsymbol{\Sigma}$ continuum)
$\overline{\mathbf{K}} \mathbf{N}$ and $\overline{\mathbf{K}} \mathbf{N N}$ threshold and subthreshold physics
required: high-precision kaonic deuterium \rightarrow SIDDHARTA-2
- Role of strangeness in dense baryonic matter new constraints from two-solar-mass neutron stars: very stiff equation-of-state new conditions for hyperon-nuclear two- and three-body interactions: quest for strong short-/intermediate-distance repulsion
required: much improved hyperon-nucleon data base + hypernuclei

