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Initially 
Gaussian 

fluctuation 
field 

becomes 
very non-
Gaussian 



 But wait …  
We should be doing 
this in the INITIAL 
fluctuation field! 
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The excursion set approach 

Major merger 

Time 
evolution of 
barrier  
depends on 
cosmology 

Mapping between s2 
and M depends on  P(k) 

s2(M) 



Simplification because… 

• Everything local 

• Evolution determined by cosmology (competition 
between gravity and expansion) 

• Statistics determined by initial fluctuation field:  for 
Gaussian, specified by initial power-spectrum P(k) 

• Nearly universal in scaled units:  dc(z)/s(m)       where 
s2(m) = <dm

2> = ∫dk/k  k3P(k)/2p2 W2(kRm)   m  Rm
3 

• Fact that only very fat cows are spherical is a detail 
(crucial for precision cosmology); in excursion set 
approach, mass-dependent barrier height increases 
with distance along walk 



(Almost) 
universal 
mass 
function 
and halo 
bias 
 
See Paranjape 
et al (2013) for 
recent progress 
in modeling this 
from first 
principles 
 
See Castorina et 
al. (2014) for n’s Sheth-Tormen 1999 

Mass → Mass → 



For WDM … 
• At small enough m, s(m) is flat 

• Fraction of walks which didn’t cross 
barrier prior to this s = non-negligible 
smooth component which was never 
bound to anything 

• fsmooth should be larger at high z 

• Fewer halos (progenitors) at high z 
mean less concentrated halos at low z  

• fsmooth should be larger in voids = 
voids are ‘emptier’ (even more so if 
dc(m) larger at small m) 

m 

s 

CDM 

WDM 



Spherical evolution mapping … 

     (Rinitial/R)3 =  Mass/(rcomVolume) =  

        1 + d ≈ (1 – d0/dsc)
−dsc 

                … can be inverted: 

       (d0/dsc) ≈ 1 – (M/rcomV) −1/dsc 
 

  N.B.  For any V, there is a curve d0(M|V). 



dcrit 
 
d0(M/V)  
 
 
Linear 
theory 
over- 
density 

MASS 

Halo of mass 
m<M within 
this patch 
(M,v) 

This patch 
of volume 
v contains 
mass M 

Moving barriers:   
The Nonlinear PDF 

V v 



Critical  
 
 
initial 
over- 
density 

MASS 

Easier to get here 
from over-dense 
environment 

This  
patch  
forms  
halo of  
mass M 

Correlations with environment 

over-dense  

under-dense 

‘Top-heavy’ 
mass function in 
dense regions 
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n(m|d0) = n(m)(1 + b(m)d0) 
                ≠ n(m)(1+d0) 



Critical  
 
 
over- 
density 

MASS 

At fixed mass, 
formation history  
~ independent of 
future/environment 
(only approximately!)  

This  
patch  
forms  
halo of  
mass M 

Correlations with environment 

PAST 

FUTURE 

over-dense  

under-dense 



Large scale clustering/bias 
 (from the peak-background split) 

   1 + dh(n|d0,S0) = f(n|d0,S0) /f(n)  

                           = 1 + b1(n)d0 + … 

• b(n) directly from (derivatives of) f(n) means 
halo abundances predict halo clustering 

• b(n) increases with n 

    → top-heavy mass function in dense regions: 

    n(m|d0) = n(m)(1 + b(m)d0 + …) ≠ n(m)(1+d0) 

    → massive halos (i.e. larger n) more clustered: 

                   <dhd0> = b1(n) <d0
2> + …  

 



(Almost) 
universal 
mass 
function 
and halo 
bias 
 
See Paranjape 
et al (2013) for 
recent progress 
in modeling this 
from first 
principles 
 
See Castorina et 
al. (2014) for n’s Sheth-Tormen 1999 



• Structure at a 
given time, and, 
more importantly,  
growth of 
structure,  
provides sharp 
constraints on 
models  



Hierarchical clustering in GR  

 = the persistence of memory 





Zehavi et al. 2010 (SDSS) 

Luminous Not luminous 



Zehavi et al. 2010 (SDSS) 

blue red 



Complication:  Light is a biased tracer 

Not all galaxies are fair tracers of dark matter; 
To use galaxies as probes of underlying dark matter 
distribution, must understand ‘bias’  



You can observe a lot 
just by watching 



How to describe different point 
processes which are all built from 
the same underlying density field? 

THE HALO MODEL 
Review in Physics Reports (Cooray & Sheth 2002) 



Center-satellite process requires knowledge of how   
1) halo abundance;        2) halo  clustering;        3) halo profiles;  
4) number of galaxies per halo;       all depend on halo mass (+ ...)   
(Revived, then discarded in 1970s by Peebles, McClelland & Silk)  



(Almost) 
universal 
mass function 
 
(m/r) (dn/dlnn) =   
 nf(n) = A [1 + (qn)-p]    
             sqrt(qn/2p)  
             exp(-qn/2) 
where all n = (dc/s)2 
and A ensures 
integral over all n is 
unity 

 

and halo bias   
 
b(n) = 1 + dlnf/ddc 

Sheth-Tormen 1999 



Universal 
Halo 

Profiles 

r(r) = 4rs/(r/rs)/(1+ r/rs)
2 

 
•Not quite isothermal  
•Depend on halo mass, 
formation time 
•Massive halos less 
concentrated (partially 
built-in from GRF initial 
conditions) 
• Distribution of shapes 
(axis-ratios) known (Jing & 
Suto 2001) 

Navarro, Frenk 
& White (1996) 



Baryonic effects on the profile:  
Adiabatic contraction 



Adiabatic contraction … 
                 r [Mg(<r) + Mdm(<r)] = ri Mg+dm(<ri) 
• Dark matter initially within ri and now within r is                     

                            Mdm(<r) = (1 - fg) Mtot(<ri) 
• Circular velocity from  
                   Vcirc

2(r) = GM(<r)/r = (ri /r)2 GMg+dm(<ri)/ri  

                               Vcirc(r)  = (ri /r)  Vcirc(ri) 
• In general, solve numerically.  But, for (realistic) Hernquist 

galaxy Mg(<r) = Mg (r/sg)
2/(1+r/sg)

2 result is analytic: 
                     fg r

3 + (r+sg)
2 [(1-fg) r - ri] mg+dm(ri) = 0 

     where fg = Mg/Mtot.  Get r by solving the cubic (Keeton 2001). 
 

                … increases circular velocities. 



Madau et al. 2014 

Inclusion of star 
formation  feedback 
related effects can 
heat (expand) the 
gas, thus the dark 
matter as well: 
remove the cusp 
 
Binding energy is  
M(GM/R) ~ M5/3 

so removal of cusp 
easier at low mass 
 
What remains has 
smaller Vcirc, thus 
resolving the too-
big-to-fail problem 
with no new physics 

Fewer stars 
formed , 
so less 
feedback,  
so cusp 
remains 



The halo-model of clustering 
• Two types of pairs:  both particles in same halo, or  

particles in different halos  

 

 

 

 

 

• 1+ξ(r) = 1+ξ1h(r) + 1+ξ2h(r)  

• All physics can be decomposed similarly:  ‘nonlinear’ 
effects from within halo, ‘linear’ from outside 



The dark-matter correlation function 

                   ξdm(r) = ξ1h(r) + ξ2h(r)  

• ξ1h(r) ~ ∫dm n(m) m2 ξdm(r|m)/r2 

• n(m): comoving number density of m-halos 

• Comoving mass density: r  = ∫dm n(m) m 

• ξdm(r|m):  fraction of total pairs, m2, in an m-
halo which have separation r; depends on 
(convolution of) density profile within m-halos  

• This term only matters on scales smaller than 
the virial radius of a typical M* halo (~ Mpc) 
– Need not know spatial distribution of halos!   



ξdm(r) = ξ1h(r) + ξ2h(r) 

• ξ2h(r) ≈ ∫dm1 m1n(m1) ∫dm2 m2n(m2) ξ2h(r|m1,m2) 

                              
r 

                 
r

   

• Two-halo term dominates on large scales, where 
peak-background split estimate of halo 
clustering should be accurate: dh ~ b(m)ddm  

• ξ2h(r|m1,m2) ~ ‹dh
2› ~ b(m1)b(m2) ‹ddm

2›  

• ξ2h(r) ≈ [∫dm mn(m) b(m)/r]2 ξdm(r)   

• On large scales, linear theory is accurate:              
ξdm(r) ≈ ξLin(r)   so  ξ2h(r) ≈ beff

2 ξLin(r)  



Dark matter power spectrum 

• Convolutions in real space are products in k-space, 
so P(k) is easier than ξ1h(r)  

                    P(k) = P1h(k) + P2h(k)  

• P1h(k) = ∫dm n(m) m2 |udm(k|m)|2/r2 

• P2h(k)  [∫dm n(m) b(m) m udm(k|m)/r]2 Pdm(k) 



The halo-model of galaxy clustering 
• Two types of particles:  central + ‘satellite’  

• Two types of pairs:  both particles in same halo, or  
particles in different halos  

 

 

 

 

 

 

• 1+ξobs(r) = 1+ξ1h(r) + 1+ξ2h(r)  

                       1+ξ1h(r) = 1+ξcs(r) + 1+ξss(r)  



The halo-model of galaxy clustering 
• Write as sum of two components: 

–  1+ξ1gal(r) = ∫dm n(m) g2(m) ξdm(m|r)/rgal
2  

–  ξ2gal(r) ≈ [∫dm n(m) g1(m) b(m)/rgal]
2 ξdm(r)  

–  rgal = ∫dm n(m) g1(m):     number density of galaxies 
– ξdm(m|r):     fraction of pairs in m-halos at separation r 

 

• Think of mean number of galaxies, g1(m), as a weight 
applied to each dark matter halo 
– Galaxies ‘biased’ if g1(m) not proportional to m, …, gn(m) not 

proportional to mn  (Jing, Mo & Boerner 1998; Benson et al. 2000;                
Peacock & Smith 2000; Seljak 2000; Scoccimarro et al. 2001) 

– Central + Poisson satellites model works well   

• Similarly, YSZ or TX are just a weight applied to halos, so 
same formalism can model cluster clustering  



The halo-model of galaxy clustering 

• Write as sum of two components: 
–  1+ξ1gal(r) = ∫dm n(m) g2(m) ξdm(m|r)/rgal

2  

–  ξ2gal(r) ≈ [∫dm n(m) g1(m) b(m)/rgal]
2 ξdm(r)  

–  rgal = ∫dm n(m) g1(m):     number density of galaxies 

– ξdm(m|r):     fraction of pairs in m-halos at separation r 

 

• Handle ‘assembly bias’ easily by treating m as vector 
(m, c, spin, …) 
– See Musso et al. (2012, 2014), Dalal et al. (2008) 

– Statements that halo model cannot treat this bias are based 
on common but NOT essential assumption that m = halo 
mass only 



Power spectrum 

• Convolutions in real space are products in k-space, 
so P(k) is easier than ξ(r):  

                    P(k) = P1h(k) + P2h(k)  
• P1h(k) = ∫dm n(m) g2(m) |udm(k|m)|2/r2 

• P2h(k)  [∫dm n(m) b(m) g1(m) udm(k|m)/r]2 Pdm(k) 

 



Bells and whistles                           
(which matter for CDM→WDM) 

• Mass-concentration and scatter 
– Different profiles for red vs blue 

• Distribution of halo shapes 
– Correlation of shapes with surrounding large 

scale structure 

– Projection effects matter for conc-m relation!  

• Substructure = galaxies?  Correlations with 
concentration/formation, time/environment 
– Correlation of substructure with large scale 

structure 



Halo Model:  HOD, CLF, SHAM 
• Goal is to infer p(N|m) from measurements of abundance 

and clustering 
– Abundance constrains <N|m> = g1(m) 
– 1-halo term of n-pt clustering constrains gn(m) 

• HOD uses abundance and 2pt statistics to constrain 
p(N|m) from different samples (Zehavi et al. 2011; Skibba et al. 
2014) 

• CLF now does too, to constrain f(L|m)  (Lu et al. 2014) 
• Since <N(>L)|m> = f(>L|m),  HOD~CLF but with different 

systematics 
• SHAM uses abundance only, but gets 2pt stats quite well 

anyway (Moster et al. 2013) 
– Problematic for color selected samples 



Zehavi et al. 2011 
 SDSS 

<Ngal|m> = fcen(m) [1 + <Nsat|m>] 

Luminosity dependence of clustering 
F

(>L|M
) 





Moster et al. 2013 
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Knowing <M*|Mh> at each z yields estimates of 
SFR(Mh,z) for the population (i.e., not object by object) 

From f(L|M) or f(M*|M) can determine <M*|M >; i.e. 
star formation efficiency as function of halo mass 

Low star formation 
efficiency at small 
Mh suggests dwarfs 
DM dominated 



• Knowing M*-Mh at 
each z yields M*(z) 
given M*(0) and 
Mh(0)  

• Since Mh(z) also 
known, can 
compare growth in 
situ vs mergers 

• Hence, can deduce 
SFR(Mh,z) for the 
population (but 
not object by 
object) 

• Clustering also 
predicted - OK 
 

Moster et al. 2013 



This is a very active field: 
 
 

 
 
 



This is a very active field: 
 
 

 
 

Nobody goes there anymore – 
it’s too crowded 



The other half of phase-space:  
Velocities 

 
Just as statistics can be split into 

two regimes, so too can the 
physics:  linear + nonlinear 



‘Infall’ velocities  
from spherical model 

        (Rinitial/Rt )
3 =  Mass/(rcomVolume)  

          = 1 + d ≈ (1 – dt/dsc)
−dsc 

  R(t)/Rinitial ≈ (1 – D(t) dinitial/dsc)
dsc/3 

Now use   v(t) = dR(t)/dt   so 

 v(t)/HR = (dlnR/dt)/(dlna/dt) 

                      ≈ (dlnD/dlna) D(t)dinitial/3 

          ≈ W0.56 D(t)dinitial/3 



Non-Maxwellian Velocities? 

• v = vvir + vhalo 

• Maxwellian/Gaussian velocity within halo 
(dispersion depends on parent halo mass)       
+ Gaussian velocity of parent halo (from linear 
theory ≈ independent of m) 

• Hence, at fixed m, distribution of v is 
convolution of two Gaussians, i.e.,  

   p(v|m) is Gaussian, with dispersion 

   svir
2(m) + sLin

2 = (m/m*)2/3svir
2(m*) + sLin

2  

 



Two contributions to velocities 

• Virial motions 
(i.e., nonlinear 
theory terms)  
dominate for 
particles in 
massive halos 

•  Halo motions 
(linear theory) 
dominate for 
particles in low 
mass halos  

Growth rate of halo motions ~ consistent with linear theory 

~ mass1/3 



Exponential tails are generic 

• p(v) = ∫dm mn(m) G(v|m) 

   F(t) = ∫dv eivt p(v) = ∫dm n(m)m e-t2svir
2(m)/2 e-t2sLin

2/2 

• For P(k) ~ k−1, mass function n(m) ~ power-law times  
exp[−(m/m*)2/3/2], so integral is:  

   F(t) = e-t2sLin
2/2 [1 + t2svir

2(m*)]−1/2 

• Fourier transform is product of Gaussian and FT of K0 
Bessel function, so p(v) is convolution of G(v) with 
K0(v) 

• Since svir(m*)~ sLin, p(v) ~ Gaussian at |v|<sLin but 
exponential-like tails extend to large v   



Comparison with simulations 

   Gaussian core with exponential tails as expected 

Sheth & Diaferio 2001 



Baryon Oscillations in the Galaxy 
Distribution 



Structures in galaxy maps look very similar to the ones 
found in models in which dark matter is WIMPs 



Redshift 
space 

distortions:  
peculiar 

velocities 
driven by 

gravity 

czobs = Hd + vpec 



Halos and Fingers-of-God 
• Virial equilibrium:     

• V2 = GM/r = GM/(3M/4p200r)1/3 

• Since halos have same density, massive halos have 
larger random internal velocities: V2 ~ M2/3 

• V2 = GM/r = (G/H2) (M/r3) (Hr)2  

        = (8pG/3H2) (3M/4pr3) (Hr)2/2 

        = 200 r/rc (Hr)2/2 = W (10 Hr)2  

• Halos should appear ~ten times longer along line 
of sight than perpendicular to it:  ‘Fingers-of-God’ 

• Think of V2 as Temperature; then Pressure ~ V2r 



Redshift space distortions 



Cosmology from  
Gravitational Lensing 

Volume as function of redshift  
Growth of fluctuations with time 



•Focal length strong function of cluster-centric 
distance; highly distorted images possible  
•Strong lensing if source lies close to lens-observer 
axis; weaker effects if impact parameter large 
•Strong lensing:  Cosmology from distribution of 
image separations, magnification ratios, time delays; 
but these are rare events, so require large dataset 
•Weak lensing:  Cosmology from correlations (shapes 
or magnifications); small signal requires large dataset 



Lensing provides a measure of dark matter along line of sight 



Weak lensing: 
Image 
distortions 
correlated with 
dark matter 
distribution 
 
E.g., lensed 
image 
ellipticities 
aligned parallel 
to filaments, 
tangential to 
knots (clusters) 
 



The shear power of lensing 

             stronger                weaker 

Cosmology from measurements of correlated shapes; better 
constraints if finer bins in source or lens positions possible  





Halo Model is simplistic … 

• Nonlinear physics on small scales from virial 
theorem 

• Linear perturbation theory on scales larger 
than virial radius (exploits 20 years of hard 
work between 1970-1990) 

• Halo mass is more efficient language (than 
e.g., dark matter density) for describing 
nonlinear field 

…but quite accurate!  



Halo-
model 

 
 

Circles in 
circles 



Cosmology from  
Large Scale Structure Sky Surveys  

• Baryon Acoustic Oscillations 

• Cluster counts and clustering 

• Redshift space distortions 

• Weak gravitational lensing 

• Supernovae IA 

• Your name here! 


