Recent results on light hadron spectroscopy at BES

Xiaobin Ji (for the BESIII Collaboration) ^a

^aInstitute of High Energy Physcis, Chinese Academy of Sciences, P.O. Box 918-1, 100049, Beijing, China

Several recent BES results are presented, which include the charged κ found in BESII data, confirmation of $p\bar{p}$ mass threshold enhancement and X(1835) at BESIII, the measurement of $a_0(980)$ and $f_0(980)$ mixing at BESIII. All results except $p\bar{p}$ mass threshold enhancement are preliminary.

1. Introduction

BEPCII/BESIII[1] is a major upgrade of the BESII[2] experiment at the BEPC accelerator for studies of hadron spectroscopy and τ -charm physics. The results here are based on the 58 M J/ψ events at BESII and 106 M ψ' and about 226 M J/ψ events at BESIII.

2. Charged κ at BESII

 σ and κ were first found in the analysis of $\pi\pi$ and πK scattering data, which can not be filled into any nonets of ordinary $q\bar{q}$ meson. Evidences for the neutral κ have been reported by E791[3] and FOCUS[4] experiment. In 2006, BE-SII reported the neutral κ found in the decay $J/\psi \to \bar{K}^*(892)^0 K^+\pi^-[6]$. The existence of a neutral κ motivates the search for a charged partner. In this proceeding, we present the search for a charged κ in $J/\psi \to K^\pm K_S \pi^\mp \pi^0$ at BESII.[5]

Points with error bar in Figure 1 shows the combined invariant mass distribution of $K^{\pm}\pi^{0}$ and $K_{S}\pi^{\mp}$ of the selected $J/\psi \rightarrow K^{\pm}K_{S}\pi^{\mp}\pi^{0}$ events. The partial wave analysis shows that besides strong contributions from $K^{\star}(892)$, $K^{\star}(1410)$, and $K^{\star}(1430)$, a significant $J^{P}=0^{+}$ low mass component is needed to describe the data. If we use a Breit-Winger function of constant width to parametrize the κ , its pole position is $(849\pm77^{+18}_{-14})-i(256\pm40^{+46}_{-22})$ MeV/ c^{2} . Three different parametrization are tried to fit the κ , the mass and width obtained by different parametrization are quite different, but their

poles are almost the same.

Figure 1. Final fit on $K\pi$ spectrum. Error bar is data, the light shaded histogram is the final global fit, and the dark shaded histogram is the contribution of the κ .

This result is in agreement with a recent CLEO analysis of the resonance structure in $D^0 \to K^+K^-\pi^0$ decays[7], which suggests a κ^\pm component with parameters $m=(855\pm15)~{\rm MeV}/c^2$ and $\Gamma=(251\pm48)~{\rm MeV}/c^2$. Moreover the results are in reasonable agreement with the properties of the neutral κ .

3. Confirmation of $p\bar{p}$ mass threshold enhancement at BESIII

An anomalously strong $p\bar{p}$ threshold enhancement (X(1860)) was observed by the BESII experiment in the radiative decay process $J/\psi \to \gamma p\bar{p}[8]$. An interesting feature of this enhancement is that the corresponding structure is not observed in either $p\bar{p}$ cross section measurements or in B-meson decays[10]. The CLEO Collaboration published results on the radiative decay of the $\Upsilon(1S)$ to the $p\bar{p}$ system[11], where no $p\bar{p}$ threshold enhancement is observed. This enhancement is not observed in BESII $\psi(2S) \to \gamma p\bar{p}[12]$ or $J/\psi \to \omega p\bar{p}[13]$ data.

This surprising experimental observation has stimulated a number of theoretical interpretations. Some have suggested that it is a $p\bar{p}$ bound state (baryonium). And someone thinks it is primarily due to final state interactions (FSI) between the proton and anti-proton.

Using 106 M $\psi(2S)$ collected by the BESIII detector, the $p\bar{p}$ threshold enhancement is confirmed in the process $\psi(2S) \to \pi^+\pi^-J/\psi$, $J/\psi \to \gamma p\bar{p}[9]$ (Upper plot in Figure 2). A fit with Swave Breit-Wigner function yields the mass is $1861^{+6}_{-13-26}^{+7}$ MeV/ c^2 and the width is smaller than $38~{\rm MeV}/c^2$ at the 90% C.L. The result is consistent with BESII. $\psi(2S) \to \gamma p\bar{p}$ is also studied and no such an enhancement observed (lower plot in Figure. 2), which indicated pure FSI interpretation of the narrow and strong $p\bar{p}$ threshold enhancement in J/ψ radiative decay is disfavored.

CLEOc also observes a $p\bar{p}$ threshold enhancement in $\psi(2S) \to \pi^+\pi^- J/\psi$, $J/\psi \to \gamma p\bar{p}$ and obtains a consistent fitted mass.[18]

4. Confirmation of X(1835) at BESIII

X(1835) was observed in the $\pi^+\pi^-\eta'$ invariant mass spectrum with a statistical significance of 7.7σ at BESII.[14] A fit with a Breit-Wigner function yields a mass $1833.7 \pm 6.1 \pm 2.7$ MeV/ c^2 , a width $67.7 \pm 20.3 \pm 7.7$ MeV/ c^2 , and a production branching fraction $B(J/\psi \to \gamma X) \times B(X \to \pi^+\pi^-\eta') = (2.2 \pm 0.4 \pm 0.4) \times 10^{-4}$. The mass and width of X(1835) are not compatible with any known meson resonance.

Figure 2. Upper: The fitting of the $p\bar{p}$ mass spectrum in the threshold region in the decay $\psi(2S) \to \pi^+\pi^- J/\psi$, $J/\psi \to \gamma p\bar{p}$. The solid curve is the fit result, the dashed curve shows the fitted background function, and the dot-dash line shows the efficiency curve. Lower: The $p\bar{p}$ invariant mass spectrum in the threshold region for the selected $\psi(2S) \to \gamma p\bar{p}$ candidate events.

Figure 3. Fitting the invariant mass spectrum of $\pi^+\pi^-\eta'$ in $J/\psi \to \gamma\pi^+\pi^-\eta'$ at BESIII. Upperleft: $\eta' \to \gamma\rho$; Upper-right: $\eta' \to \pi^+\pi^-\eta$; Lower: The combined invariant mass spectrum of $\eta' \to \gamma\rho$ and $\eta' \to \pi^+\pi^-\eta$. The mass spectrum is fitted with a resonance plus polynomial background shape.

With about 226 M J/ψ events collected at BE-SIII, $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta' \ (\eta' \rightarrow \gamma \rho, \ \eta \pi^+ \pi^-)$ is studied to verify the BESII observation. The upper-left plot in Figure 3 shows the invariant mass spectrum of $\pi^+\pi^-\eta'$ for $J/\psi \to \pi^+\pi^-\eta'$ $(\eta' \rightarrow \gamma \rho)$. A significant peak at $M \sim 1835$ MeV/c^2 is observed. If it is fitted with one resonance plus a polynomial background shape, the statistical significance of the resonance is about 18σ . The upper-right plot in Figure 3 is the result of the another decay mode $\eta' \to \gamma \pi^+ \pi^-$. There is also a significant peak around 1835 MeV/c^2 . The fitting shows the statistical significance is about 9σ . Extensive studies of potential background processes using both data and MC is made, none can produce a peak around $1835 \text{ MeV}/c^2$ in the $\pi^+\pi^-\eta'$ mass spectrum. The lower plot of Figure 3 shows the $\pi^+\pi^-\eta'$ invariant mass spectrum for the combined channels. The mass and width obtained from the Breit-Wigner fit are $M=1842.4\pm 2.8(stat.)~{\rm MeV}/c^2$ and $\Gamma = 99.2 \pm 9.2 (stat) \,\mathrm{MeV}/c^2$ with a statistical significance of 21σ . These values are consistent with the published BESII results. More studies will be performed on the high $\pi^+\pi^-\eta'$ mass region of $2.1 \sim 2.5 \text{ GeV}/c^2$.

5. $a_0(980) - f_0(980)$ mixing

The $f_0(980)$ and $a_0(980)$ are controversial particles. They have been described as $q\bar{q}$ or $q\bar{q}q\bar{q}$ states, $K\bar{K}$ molecules, or $q\bar{q}G$ hybrid states. Mixing was first suggested by Achasov[15], and mixing measurements may be important to clarify the nature of these particles. There have been suggestion[16] for BESIII to search for mixing signals in $J/\psi \to \phi f_0 \to \phi a_0 \to \phi \eta \pi^0$, where the f_0 mixes to a_0 , and in the process[17] $\chi_{c1} \to \pi^0 a_0 \to$ $\pi^0 f_0 \to \pi^+ \pi^- \pi^0$, where a_0 mixes to f_0 . The signal for the former case is shown in the upperleft plot in Figure 4, and the upper-right plot in Figure 4 shows the latter case.. The expected mixing signal is very narrow (8 MeV/ c^2) between the K^+K^- and K_SK_S thresholds (987 – 995) MeV/c^2). Backgrounds are sideband and a wide a_0 from $J/\psi \to \gamma^*/K^*K \to \phi a_0$. Fitting to signal plus backgrounds determines 24.7±8.6 mixing events or < 36.7 at the 90% confidence level. This gives a mixing intensity $\xi_{fa} = (0.6 \pm 0.2 \pm 0.2)\%$ or < 1.1% at the 90% C.L. For the latter mixing case, we determine $\xi_{af} = (0.32 \pm 0.16 \pm 0.12)\%$ or < 0.91% at the 90% C.L. The lower plot in Figure 4 shows our results and upper limits compared to models $(q\bar{q}, q^2\bar{q}^2, K\bar{K}, \text{ and } q\bar{q}q)$ and calculated values (SND, KLOE, BNL, and CB) based on f_0 and a_0 parameters. Ours are the first direct measurements.

6. Summary

Charged κ is observed at BESII with $J/\psi \to K^{\pm}K_S\pi^{\mp}\pi^0$. Partial wave analysis on it gives the consistent parameters with neutral κ . With 106 M $\psi(2S)$ and about 226 M J/ψ data samples collected by BESIII, the $p\bar{p}$ threshold enhancement found at BESII in $J/\psi \to \gamma p\bar{p}$ is confirmed using the decay process $\psi(2S) \to \pi^+\pi^-J/\psi$, $J/\psi \to \gamma p\bar{p}$, and X(1835) found in $J/\psi \to \pi^+\pi^-\eta'$ is also confirmed with much higher statistical. And the direct measurement of a_0 and f_0 mixing is per-

Figure 4. Upper-left: Invariant mass of $\eta\pi^0$ in $J/\psi \to \phi f_0 \to \phi a_0 \to \phi \eta\pi^0$; Upper-right: Invariant mass of $\pi^+\pi^-$ in $\chi_{c1} \to \pi^0 a_0 \to \pi^0 f_0 \to \pi^+\pi^-\pi^0$. The mixing signal is very narrow ($_1$ 8 MeV/ $_2$). Lower: Mixing intensity ξ_{fa} versus ξ_{af} for various models and calculations and our results (shaded square) and upper limits (lines).

formed firstly. We expect that more BESIII results will be published soon.

REFERENCES

- M. Ablikim et al. [BESIII Collaboration], Nucl. Instrum. Meth. A 614 (2010) 345
- J. Z. Bai et al. [BES Collaboration], Nucl. Instrum. Meth. A 458 (2001) 627.
- E. M. Aitala et al. [E791 Collaboration], Phys. Rev. Lett. 89 (2002) 121801
- J. M. Link *et al.* [FOCUS Collaboration], Phys. Lett. B **535**, 43 (2002)
- 5. M. Ablikim and f. t. B. collaboration, Phys. Lett. B $\mathbf{693}$ (2010) 88
- 6. M. Ablikim *et al.* [BES Collaboration], Phys. Lett. B **633** (2006) 681
- 7. C. Cawlfield *et al.* [CLEO Collaboration], Phys. Rev. D **74** (2006) 031108
- J. Z. Bai et al. [BES Collaboration], Phys. Rev. Lett. 91 (2003) 022001
- 9. M. Ablikim *et al.* [BESIII Collaboration], Chin. Phys. C **34** (2010) 421
- 10. S. Jin, Int. J. Mod. Phys. A **20** (2005) 5145.
- S. B. Athar *et al.* [CLEO Collaboration], Phys. Rev. D **73** (2006) 032001
- 12. M. Ablikim et~al. [BES Collaboration], Phys. Rev. Lett. $\bf 99~(2007)~011802$
- M. Ablikim *et al.* [BES Collaboration], Eur. Phys. J. C **53** (2008) 15
- M. Ablikim *et al.* [BES Collaboration], Phys. Rev. Lett. **95** (2005) 262001
- N. N. Achasov, S. A. Devyanin and G. N. Shestakov, Phys. Lett. B 88 (1979) 367.
- J. J. Wu, Q. Zhao and B. S. Zou, Phys. Rev. D 75 (2007) 114012
- J. J. Wu and B. S. Zou, Phys. Rev. D 78 (2008) 074017
- 18. J. P. Alexander et al. [CLEO Collaboration],