Fermions, Wigs and Attractors

Lorenzo G.C. Gentile

Università di Padova \& INFN

28 maggio 2014

Based on arXiv: 1309.8021-1403.5097
In collaboration with P.A. Grassi, A. Marrani, A. Mezzalira and W. Sabra

Contents

(9) Motivations a.k.a. "What is it good for?"

- AdS/CFT Correspondence
- The Attractor Mechanism
- Example
- Killing Spinor
- Special Kähler Geometry
- Axion-Dilaton Model for DE-Black Holes

Contents

(9) Motivations a.k.a. "What is it good for?"

- AdS/CFT Correspondence
- The Attractor Mechanism - Example
(2) The wig
- Killing Spinor
- Special Kähler Geometry
- Axion-Dilaton Model for DE-Black Holes
- Universal result for BPS Black Holes

Contents

(9) Motivations a.k.a. "What is it good for?"

- AdS/CFT Correspondence
- The Attractor Mechanism
- Example
(2) The wig
- Killing Spinor
(3) $\mathcal{N}=2, D=4$ Minimally Coupled MESGT
- Special Kähler Geometry
- Axion-Dilaton Model for DE-Black Holes
- Universal result for BPS Black Holes

Contents

(9) Motivations a.k.a. "What is it good for?"

- AdS/CFT Correspondence
- The Attractor Mechanism
- Example
(2) The wig
- Killing Spinor
(3) $\mathcal{N}=2, D=4$ Minimally Coupled MESGT
- Special Kähler Geometry
- Axion-Dilaton Model for DE-Black Holes

4 $\mathcal{N}=2 D=5$ Minimally Coupled MESGT

- Universal result for BPS Black Holes

Contents

(9) Motivations a.k.a. "What is it good for?"

- AdS/CFT Correspondence
- The Attractor Mechanism
- Example
(2) The wig
- Killing Spinor
(3) $\mathcal{N}=2, D=4$ Minimally Coupled MESGT
- Special Kähler Geometry
- Axion-Dilaton Model for DE-Black Holes
(4) $\mathcal{N}=2 D=5$ Minimally Coupled MESGT
- Universal result for BPS Black Holes
(5) Results and Open Issues

AdS/CFT Correspondence

A particular sector of AdS/CFT correspondence relates Einstein equations in d-dimensions to Navier-Stokes equations in ($d-1$)-dimensions .

Fluid-Gravity Corresponcence

AdS/CFT Correspondence

A particular sector of AdS/CFT correspondence relates Einstein equations in d-dimensions to Navier-Stokes equations in ($d-1$)-dimensions .

Fluid-Gravity Corresponcence

- In general, AdS/CFT works for supergravity i.e. for a theory with fermionic dofs.

AdS/CFT Correspondence

A particular sector of AdS/CFT correspondence relates Einstein equations in d-dimensions to Navier-Stokes equations in ($d-1$)-dimensions .

Fluid-Gravity Corresponcence

- In general, AdS/CFT works for supergravity i.e. for a theory with fermionic dofs.

Extend Fluid-Gravity correspondence to fermionic sector
Nem internal (Grascmannian) dofs for the fluid

AdS/CFT Correspondence

A particular sector of AdS/CFT correspondence relates Einstein equations in d-dimensions to Navier-Stokes equations in ($d-1$)-dimensions .

Fluid-Gravity Corresponcence

- In general, AdS/CFT works for supergravity i.e. for a theory with fermionic dofs.

> Aim: Extend Fluid-Gravity correspondence to fermionic sector

AdS/CFT Correspondence

A particular sector of AdS/CFT correspondence relates Einstein equations in d-dimensions to Navier-Stokes equations in ($d-1$)-dimensions .

Fluid-Gravity Corresponcence

- In general, AdS/CFT works for supergravity i.e. for a theory with fermionic dofs.

Aim: Extend Fluid-Gravity correspondence to fermionic sector

- New internal (Grassmannian) dofs for the fluid

New contributions to "classical" thermodynamic variables

AdS/CFT Correspondence

A particular sector of AdS/CFT correspondence relates Einstein equations in d-dimensions to Navier-Stokes equations in ($d-1$)-dimensions .

Fluid-Gravity Corresponcence

- In general, AdS/CFT works for supergravity i.e. for a theory with fermionic dofs.

Aim: Extend Fluid-Gravity correspondence to fermionic sector

- New internal (Grassmannian) dofs for the fluid
- New conserved charges
- Extend the construction to all supergravity fields

AdS/CFT Correspondence

A particular sector of AdS/CFT correspondence relates Einstein equations in d-dimensions to Navier-Stokes equations in $(d-1)$-dimensions .

Fluid-Gravity Corresponcence

- In general, AdS/CFT works for supergravity i.e. for a theory with fermionic dofs.

Aim: Extend Fluid-Gravity correspondence to fermionic sector

- New internal (Grassmannian) dofs for the fluid
- New conserved charges
- New contributions to "classical" thermodynamic variables
- Extend the construction to all supergravity fields

AdS/CFT Correspondence

A particular sector of AdS/CFT correspondence relates Einstein equations in d-dimensions to Navier-Stokes equations in ($d-1$)-dimensions .

Fluid-Gravity Corresponcence

- In general, AdS/CFT works for supergravity i.e. for a theory with fermionic dofs.

Aim: Extend Fluid-Gravity correspondence to fermionic sector

- New internal (Grassmannian) dofs for the fluid
- New conserved charges
- New contributions to "classical" thermodynamic variables
- Extend the construction to all supergravity fields

AdS/CFT Correspondence

A particular sector of AdS/CFT correspondence relates Einstein equations in d-dimensions to Navier-Stokes equations in ($d-1$)-dimensions .

Fluid-Gravity Corresponcence

- In general, AdS/CFT works for supergravity i.e. for a theory with fermionic dofs.

Aim: Extend Fluid-Gravity correspondence to fermionic sector

- New internal (Grassmannian) dofs for the fluid
- New conserved charges
- New contributions to "classical" thermodynamic variables
- Extend the construction to all supergravity fields

New contributions to BH conserved charges (?)

AdS/CFT Correspondence

A particular sector of AdS/CFT correspondence relates Einstein equations in d-dimensions to Navier-Stokes equations in ($d-1$)-dimensions .

Fluid-Gravity Corresponcence

- In general, AdS/CFT works for supergravity i.e. for a theory with fermionic dofs.

Aim: Extend Fluid-Gravity correspondence to fermionic sector

- New internal (Grassmannian) dofs for the fluid
- New conserved charges
- New contributions to "classical" thermodynamic variables
- Extend the construction to all supergravity fields

Aim: Generates new sugra solution through finite susy transformations (Wig)

AdS/CFT Correspondence

A particular sector of AdS/CFT correspondence relates Einstein equations in d-dimensions to Navier-Stokes equations in ($d-1$)-dimensions .

Fluid-Gravity Corresponcence

- In general, AdS/CFT works for supergravity i.e. for a theory with fermionic dofs.

Aim: Extend Fluid-Gravity correspondence to fermionic sector

- New internal (Grassmannian) dofs for the fluid
- New conserved charges
- New contributions to "classical" thermodynamic variables
- Extend the construction to all supergravity fields

Aim: Generates new sugra solution through finite susy transformations (Wig)

- New contributions to BH conserved charges (?)

AdS/CFT Correspondence

A particular sector of AdS/CFT correspondence relates Einstein equations in d-dimensions to Navier-Stokes equations in ($d-1$)-dimensions .

Fluid-Gravity Corresponcence

- In general, AdS/CFT works for supergravity i.e. for a theory with fermionic dofs.

Aim: Extend Fluid-Gravity correspondence to fermionic sector

- New internal (Grassmannian) dofs for the fluid
- New conserved charges
- New contributions to "classical" thermodynamic variables
- Extend the construction to all supergravity fields

Aim: Generates new sugra solution through finite susy transformations (Wig)

- New contributions to BH conserved charges (?)
- New solutions-generating technique for supergravity

Attractor mechanism

For an extremal BH in matter-coupled supergravities

In approaching the Event Horizon, the moduli completely lose memory of the initial data, and take values dependent only on the electric/magnetic charges of the $B H$:

$$
\left.z^{i}\right|_{\text {horizon }}=z^{i}(Q, P)
$$

Attractor mechanism

For an extremal BH in matter-coupled supergravities

In approaching the Event Horizon, the moduli completely lose memory of the initial data, and take values dependent only on the electric/magnetic charges of the $B H$:

$$
\left.z^{i}\right|_{\text {horizon }}=z^{i}(Q, P)
$$

Attractor mechanism

For an extremal BH in matter-coupled supergravities
In approaching the Event Horizon, the moduli completely lose memory of the initial data, and take values dependent only on the electric/magnetic charges of the $B H$:

$$
\left.z^{i}\right|_{\text {horizon }}=z^{i}(Q, P)
$$

Regardless of the initial conditions, the Horizon values depend ONLY on the charges, but nevertheless the evolution remains DETERMINISTIC!

Example

$\mathcal{N}=2, D=4$ Axion-Dilaton-Einstein-Maxwell Sugra coupled to a gauge multiplet: $\left\{g_{\mu \nu}, A_{\mu} ; A_{\mu}^{\prime}, \phi\right\}$

$$
S=\int d^{4} x \sqrt{-g}\left[R-2 \partial^{\mu} \phi \partial_{\mu} \phi-\frac{1}{2} e^{-2 \phi}\left(F^{\mu \nu} F_{\mu \nu}+F^{\prime \mu \nu} F_{\mu \nu}^{\prime}\right)\right]
$$

Electric and magnetic charge can be chosen to set axion to zero, then

Example

$\mathcal{N}=2, D=4$ Axion-Dilaton-Einstein-Maxwell Sugra coupled to a gauge multiplet: $\left\{g_{\mu \nu}, A_{\mu} ; A_{\mu}^{\prime}, \phi\right\}$

$$
S=\int d^{4} x \sqrt{-g}\left[R-2 \partial^{\mu} \phi \partial_{\mu} \phi-\frac{1}{2} e^{-2 \phi}\left(F^{\mu \nu} F_{\mu \nu}+F^{\prime \mu \nu} F_{\mu \nu}^{\prime}\right)\right]
$$

Electric and magnetic charge can be chosen to set axion to zero, then

$$
\Rightarrow d s^{2}=-e^{2 U(r)} d t^{2}+e^{-2 U(r)}\left[d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)\right]
$$

Example

$\mathcal{N}=2, D=4$ Axion-Dilaton-Einstein-Maxwell Sugra coupled to a gauge multiplet: $\left\{g_{\mu \nu}, A_{\mu} ; A_{\mu}^{\prime}, \phi\right\}$

$$
S=\int d^{4} x \sqrt{-g}\left[R-2 \partial^{\mu} \phi \partial_{\mu} \phi-\frac{1}{2} e^{-2 \phi}\left(F^{\mu \nu} F_{\mu \nu}+F^{\prime \mu \nu} F_{\mu \nu}^{\prime}\right)\right]
$$

Electric and magnetic charge can be chosen to set axion to zero, then

$$
\Rightarrow d s^{2}=-e^{2 U(r)} d t^{2}+e^{-2 U(r)}\left[d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)\right]
$$

...computations...

Example

$\mathcal{N}=2, D=4$ Axion-Dilaton-Einstein-Maxwell Sugra coupled to a gauge multiplet: $\left\{g_{\mu \nu}, A_{\mu} ; A_{\mu}^{\prime}, \phi\right\}$

$$
S=\int d^{4} x \sqrt{-g}\left[R-2 \partial^{\mu} \phi \partial_{\mu} \phi-\frac{1}{2} e^{-2 \phi}\left(F^{\mu \nu} F_{\mu \nu}+F^{\prime}{ }^{\mu \nu} F_{\mu \nu}^{\prime}\right)\right]
$$

Electric and magnetic charge can be chosen to set axion to zero, then

$$
\Rightarrow d s^{2}=-e^{2 U(r)} d t^{2}+e^{-2 U(r)}\left[d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)\right]
$$

...computations...

$$
\begin{array}{ll}
\Rightarrow e^{-2 U(r)}=H_{1} H_{2} & e^{-2 \phi(r)}=H_{1} / H_{2} \\
H_{1}=e^{-\phi_{0}}+\frac{|q|}{4 \pi r} & H_{2}=e^{\phi_{0}}+\frac{\left|p^{\prime}\right|}{4 \pi r}
\end{array}
$$

Example

$\mathcal{N}=2, D=4$ Axion-Dilaton-Einstein-Maxwell Sugra coupled to a gauge multiplet: $\left\{g_{\mu \nu}, A_{\mu} ; A_{\mu}^{\prime}, \phi\right\}$

$$
S=\int d^{4} x \sqrt{-g}\left[R-2 \partial^{\mu} \phi \partial_{\mu} \phi-\frac{1}{2} e^{-2 \phi}\left(F^{\mu \nu} F_{\mu \nu}+F^{\prime}{ }^{\mu \nu} F_{\mu \nu}^{\prime}\right)\right]
$$

Electric and magnetic charge can be chosen to set axion to zero, then

$$
\Rightarrow d s^{2}=-e^{2 U(r)} d t^{2}+e^{-2 U(r)}\left[d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)\right]
$$

...computations...

$$
\begin{array}{ll}
\Rightarrow e^{-2 U(r)}=H_{1} H_{2} & e^{-2 \phi(r)}=H_{1} / H_{2} \\
H_{1}=e^{-\phi_{0}}+\frac{|q|}{4 \pi r} & H_{2}=e^{\phi_{0}}+\frac{\left|p^{\prime}\right|}{4 \pi r}
\end{array}
$$

$$
\left.\Rightarrow e^{-2 \phi}\right|_{\mathrm{hor}}=\left|\frac{q}{p^{\prime}}\right|
$$

What is a Wig?

When you compute the finite variation of a field under a symmetry what you actually compute is

What is a Wig?

When you compute the finite variation of a field under a symmetry what you actually compute is

$$
\Phi=e^{\delta} \phi=\phi+\delta \phi+\frac{1}{2} \delta^{2} \phi+\frac{1}{3!} \delta^{3} \phi+\ldots
$$

What is a Wig?

When you compute the finite variation of a field under a symmetry what you actually compute is

$$
\Phi=e^{\delta} \phi=\phi+\delta \phi+\frac{1}{2} \delta^{2} \phi+\frac{1}{3!} \delta^{3} \phi+\ldots
$$

Dealing with Grassmannian variables once you soak out the fermionic dofs the series automatically truncates!

What is a Wig?

When you compute the finite variation of a field under a symmetry what you actually compute is

$$
\Phi=e^{\delta} \phi=\phi+\delta \phi+\frac{1}{2} \delta^{2} \phi+\frac{1}{3!} \delta^{3} \phi+\ldots
$$

Dealing with Grassmannian variables once you soak out the fermionic dofs the series automatically truncates!

The Wig is the complete non-linear supergravity solution built from a purely bosonic background.

What is a Wig?

When you compute the finite variation of a field under a symmetry what you actually compute is

$$
\Phi=e^{\delta} \phi=\phi+\delta \phi+\frac{1}{2} \delta^{2} \phi+\frac{1}{3!} \delta^{3} \phi+\ldots
$$

Dealing with Grassmannian variables once you soak out the fermionic dofs the series automatically truncates!

The Wig is the complete non-linear supergravity solution built from a purely bosonic background.

Note that as susy parameters we use the "anti-Killing spinors".

Killing Spinor

Space are endorsed with both isometries and superisometries, the latter generated by Killing spinors:

- Computation of the Killing Spinor ϵ :

Killing Spinor

Space are endorsed with both isometries and superisometries, the latter generated by Killing spinors:

- Computation of the Killing Spinor ϵ :

Killing Spinor

Space are endorsed with both isometries and superisometries, the latter generated by Killing spinors:

- Computation of the Killing Spinor ϵ :

$$
\left(\partial_{M}+\left.\frac{1}{4} \hat{\omega}_{M}^{A B}\right|_{\text {empty }} \Gamma_{A B}+\left.\frac{\Lambda}{2} e_{M}^{A}\right|_{\text {empty }} \Gamma_{A}\right) \epsilon=0
$$

- Turning on BH

Killing Spinor

Space are endorsed with both isometries and superisometries, the latter generated by Killing spinors:

- Computation of the Killing Spinor ϵ :

$$
\left(\partial_{M}+\left.\frac{1}{4} \hat{\omega}_{M}^{A B}\right|_{\text {empty }} \Gamma_{A B}+\left.\frac{\Lambda}{2} e_{M}^{A}\right|_{\text {empty }} \Gamma_{A}\right) \epsilon=0
$$

- ϵ : For example in $A d S_{3} 2 \mathbb{C}$ fermionic components $\longrightarrow 4$ real dof's

Killing Spinor

Space are endorsed with both isometries and superisometries, the latter generated by Killing spinors:

- Computation of the Killing Spinor ϵ :

$$
\left(\partial_{M}+\left.\frac{1}{4} \hat{\omega}_{M}^{A B}\right|_{\text {empty }} \Gamma_{A B}+\left.\frac{\Lambda}{2} e_{M}^{A}\right|_{\text {empty }} \Gamma_{A}\right) \epsilon=0
$$

- ϵ : For example in $A d S_{3} 2 \mathbb{C}$ fermionic components $\longrightarrow 4$ real dof's
- Turning on BH: $\quad \delta_{\epsilon} \psi=\mathcal{D}^{\text {bh }} \epsilon_{\text {emply }} \neq 0$

Killing Spinor

Space are endorsed with both isometries and superisometries, the latter generated by Killing spinors:

- Computation of the Killing Spinor ϵ :

$$
\left(\partial_{M}+\left.\frac{1}{4} \hat{\omega}_{M}^{A B}\right|_{\text {empty }} \Gamma_{A B}+\left.\frac{\Lambda}{2} e_{M}^{A}\right|_{\text {empty }} \Gamma_{A}\right) \epsilon=0
$$

- ϵ : For example in $A d S_{3} 2 \mathbb{C}$ fermionic components $\longrightarrow 4$ real dof's
- Turning on BH: $\quad \delta_{\epsilon} \psi=\mathcal{D}^{\text {bh }} \epsilon_{\text {emply }} \neq 0$

Killing Spinor

Space are endorsed with both isometries and superisometries, the latter generated by Killing spinors:

- Computation of the Killing Spinor ϵ :

$$
\left(\partial_{M}+\left.\frac{1}{4} \hat{\omega}_{M}^{A B}\right|_{\text {empty }} \Gamma_{A B}+\left.\frac{\Lambda}{2} e_{M}^{A}\right|_{\text {empty }} \Gamma_{A}\right) \epsilon=0
$$

- ϵ : For example in $A d S_{3} 2 \mathbb{C}$ fermionic components $\longrightarrow 4$ real dof's
- Turning on BH: $\quad \delta_{\epsilon} \psi=\mathcal{D}^{\text {bh }} \epsilon_{\text {emply }} \neq 0$

The black hole has (partially) broken the superisometries!

Road to Wig

- Fermionic bilinears \longrightarrow series truncates!
- Development of algorithms to compute, order by order (Wig)

Road to Wig

- Fermionic bilinears \longrightarrow series truncates!
- Development of algorithms to compute, order by order (Wig)

Road to Wig

- Fermionic bilinears \longrightarrow series truncates!
- Development of algorithms to compute, order by order (Wig)
- Implementation of algorithms in Mathematica code

Road to Wig

- Fermionic bilinears \longrightarrow series truncates!
- Development of algorithms to compute, order by order (Wig)

$$
\left\{\psi_{M}, e_{M}^{A}, A_{M}, \hat{\omega}_{M}^{A B}\right\}
$$

Road to Wig

- Fermionic bilinears \longrightarrow series truncates!
- Development of algorithms to compute, order by order (Wig)

$$
\left\{\psi_{M}, e_{M}^{A}, A_{M}, \hat{\omega}_{M}^{A B}\right\}
$$

- Implementation of algorithms in Mathematica code

LGCG, P. A. Grassi and A. Mezzalira - hep-th/1207.0686

$\mathcal{N}=2, D=4$ Minimally Coupled MESGT

Field Content

$$
\begin{aligned}
& \text { Bosons } \\
& e_{\mu}^{a} A_{\mu}^{\wedge} z^{i}
\end{aligned}
$$

Fermions

$$
\psi_{A \mu} \quad \lambda^{i A}
$$

$\mathcal{N}=2, D=4$ Minimally Coupled MESGT

Field Content

$$
\begin{aligned}
& \text { Bosons } \\
& e_{\mu}^{a} A_{\mu}^{\wedge} z^{i}
\end{aligned}
$$

Fermions

$\psi_{A \mu} \quad \lambda^{i A}$

Supersymmetry transformations

$\delta e_{\mu}^{a}=-i \bar{\psi}_{A \mu} \gamma^{a} \epsilon^{A}+$ h.c.,
$\delta A_{\mu}^{\wedge}=2 \bar{L}^{\wedge} \bar{\psi}_{A \mu} \epsilon_{B} \varepsilon^{A B}+i f_{i}^{\wedge} \bar{\lambda}^{i A} \gamma_{\mu} \epsilon^{B} \varepsilon_{A B}+$ h.c.,
$\delta z^{i}=\bar{\lambda}^{i A} \epsilon_{A}$,

$$
\begin{aligned}
\delta \psi_{A \mu} & =\nabla_{\mu} \epsilon_{A}+\varepsilon_{A B} T_{\mu \nu}^{-} \gamma^{\nu} \epsilon^{B}+\text { stuff... } \\
\delta \lambda^{i A} & =G_{\mu \nu}^{i-} \gamma^{\mu \nu} \epsilon_{B} \varepsilon^{A B}+\text { other stuff... }
\end{aligned}
$$

$\mathcal{N}=2, D=4$ Minimally Coupled MESGT

Field Content

$$
\begin{aligned}
& \text { Bosons } \\
& e_{\mu}^{a} A_{\mu}^{\wedge} z^{i}
\end{aligned}
$$

Fermions

$$
\psi_{A \mu} \quad \lambda^{i A}
$$

Supersymmetry transformations

$$
\begin{aligned}
\delta e_{\mu}^{a} & =-i \bar{\psi}_{A \mu} \gamma^{a} \epsilon^{A}+\text { h.c. } \\
\delta A_{\mu}^{\wedge} & =2 \bar{L}^{\wedge} \bar{\psi}_{A \mu} \epsilon_{B} \varepsilon^{A B}+i f_{i}^{\wedge} \bar{\lambda}^{i A} \gamma_{\mu} \epsilon^{B} \varepsilon_{A B}+\text { h.c. }, \\
\delta z^{i} & =\bar{\lambda}^{i A} \epsilon_{A},
\end{aligned}
$$

$$
\begin{aligned}
\delta \psi_{A \mu} & =\nabla_{\mu} \epsilon_{A}+\varepsilon_{A B} T_{\mu \nu}^{-} \gamma^{\nu} \epsilon^{B}+\text { stuff... } \\
\delta \lambda^{i A} & =G_{\mu \nu}^{i}-\gamma^{\mu \nu} \epsilon_{B} \varepsilon^{A B}+\text { other stuff... }
\end{aligned}
$$

Where

$$
G_{\mu \nu}^{\prime-}=-g^{i{ }^{i} F_{j}}(\operatorname{ImN})_{\Gamma \Lambda} \tilde{F}_{\mu \nu}^{\Lambda-}
$$

Special Kähler Geometry

Scalar (complex) fields coordinatize a complex Kähler manifold

Special Kähler Geometry

Scalar (complex) fields coordinatize a complex Kähler manifold Hermitian $g_{i \bar{j}} \longrightarrow d \Omega=-2 i d\left(g_{i \bar{j}} d z^{i} \wedge d \bar{z}^{\bar{j}}\right)=0 \longrightarrow$ Kähler

Special Kähler Geometry

Scalar (complex) fields coordinatize a complex Kähler manifold

$$
\text { Hermitian } g_{i j} \longrightarrow d \Omega=-2 i d\left(g_{\bar{j} j} d z^{i} \wedge d \bar{z}^{\bar{j}}\right)=0 \quad \text { Kähler }
$$

The manifold is also special since there exist a $C_{i j k}$ satisfying

$$
R_{i j \bar{j} k}=-g_{j \bar{j}} g_{k \bar{i}}-g_{k i} g_{\bar{j} \bar{i}}+g^{t \bar{s} \bar{s}} \bar{C}_{i \bar{i} \bar{s}} C_{t k j}
$$

Special Kähler Geometry

Scalar (complex) fields coordinatize a complex Kähler manifold

$$
\text { Hermitian } g_{i \bar{j}} \longrightarrow d \Omega=-2 i d\left(g_{i \bar{j}} d z^{i} \wedge d \bar{z}^{\bar{j}}\right)=0 \quad \text { Kähler }
$$

The manifold is also special since there exist a $C_{i j k}$ satisfying

$$
R_{i j \bar{j} k}=-g_{j \bar{j}} g_{k \bar{i}}-g_{k i} g_{\bar{j} \bar{i}}+g^{t \bar{s} \bar{s}} \bar{C}_{i \bar{i} \bar{s}} C_{t k j}
$$

What you have to keep in mind:

$$
(\operatorname{ImN})_{\Gamma \Lambda} f_{i}^{\wedge} L^{\ulcorner }=0
$$

$$
(\operatorname{ImN})_{\Gamma \wedge} f_{i}^{\wedge} L^{\ulcorner } \neq 0
$$

Axion-Dilaton Model for DE-Black Holes

In this model

$$
K=-\ln [2(z+\bar{z})] \quad \mathcal{N}_{\ulcorner\wedge}=-i \operatorname{diag}(z, 1 / z)
$$

At zeroth order, you get (Attractor Mechanism!)

Axion-Dilaton Model for DE-Black Holes

In this model

$$
K=-\ln [2(z+\bar{z})] \quad \mathcal{N}_{\ulcorner\Lambda}=-i \operatorname{diag}(z, 1 / z)
$$

At zeroth order, you get (Attractor Mechanism!)

$$
z^{(0)}=\frac{q_{0}-i p^{1}}{q_{1}-i p^{0}}
$$

Axion-Dilaton Model for DE-Black Holes

In this model

$$
K=-\ln [2(z+\bar{z})] \quad \mathcal{N}_{\ulcorner\wedge}=-i \operatorname{diag}(z, 1 / z)
$$

At zeroth order, you get (Attractor Mechanism!)

$$
z^{(0)}=\frac{q_{0}-i p^{1}}{q_{1}-i p^{0}}
$$

but at fourth order the ids. in the precedent slide implies...

$$
\delta^{(4)} z=\frac{M^{4}}{(M+r)^{4}} \frac{p^{0} q_{0}-p^{1} q_{1}}{\left(p^{0}+i q_{1}\right)^{2}\left(p^{0}-i q_{1}\right)\left(q_{0}+i p^{1}\right)} \mathcal{Q} \sin ^{2} \phi \sin ^{2} \theta
$$

(...not so attractive, is it?).

Axion-Dilaton Model for DE-Black Holes

In this model

$$
K=-\ln [2(z+\bar{z})] \quad \mathcal{N}_{\ulcorner\wedge}=-i \operatorname{diag}(z, 1 / z)
$$

At zeroth order, you get (Attractor Mechanism!)

$$
z^{(0)}=\frac{q_{0}-i p^{1}}{q_{1}-i p^{0}}
$$

but at fourth order the ids. in the precedent slide implies...

$$
\delta^{(4)} z=\frac{M^{4}}{(M+r)^{4}} \frac{p^{0} q_{0}-p^{1} q_{1}}{\left(p^{0}+i q_{1}\right)^{2}\left(p^{0}-i q_{1}\right)\left(q_{0}+i p^{1}\right)} \mathcal{Q} \sin ^{2} \phi \sin ^{2} \theta
$$

(...not so attractive, is it?). Note that a purely electric (magnetic) configuration leaves the scalar field unchanged.

$\mathcal{N}=2 D=5$ Minimally Coupled MESGT

Field Content

$$
\begin{aligned}
& \text { Bosons } \\
& e_{\mu}^{a} \quad A_{\mu}^{\prime} \quad \phi^{i}
\end{aligned}
$$

```
Fermions
    \psi}\mp@subsup{\mu}{}{i}\quad\mp@subsup{\lambda}{}{xi
```


$\mathcal{N}=2 D=5$ Minimally Coupled MESGT

Field Content

$$
\begin{array}{ll}
\text { Bosons } \\
e_{\mu}^{a} & A_{\mu}^{\prime}
\end{array}
$$

Fermions

Supersymmetry transformations

$$
\begin{aligned}
\delta e_{\mu}^{a} & =\frac{1}{2} \bar{\epsilon} \gamma^{a} \psi_{\mu}, \\
\delta A_{\mu}^{\prime} & =-\frac{1}{2} \bar{\epsilon} \gamma_{\mu} \lambda^{x} h_{x}^{\prime} \\
\delta \phi^{x} & =\frac{1}{2} i \bar{\epsilon} \lambda^{x},
\end{aligned}
$$

$$
\begin{aligned}
\delta \psi_{\mu}^{i} & =\nabla_{\mu} \epsilon^{i}+\text { stuff... } \\
\delta \lambda^{x i} & =-\frac{i}{2} \gamma^{\mu} \hat{D}_{\mu} \phi^{x} \epsilon^{i}+\text { other stuff } \ldots,
\end{aligned}
$$

$\mathcal{N}=2 D=5$ Minimally Coupled MESGT

Field Content

$$
\begin{gathered}
\text { Bosons } \\
e_{\mu}^{a} A_{\mu}^{\prime} \phi^{i}
\end{gathered}
$$

Supersymmetry transformations

$$
\begin{aligned}
\delta e_{\mu}^{a} & =\frac{1}{2} \bar{\epsilon} \gamma^{a} \psi_{\mu} \\
\delta A_{\mu}^{\prime} & =-\frac{1}{2} \bar{\epsilon} \gamma_{\mu} \lambda^{x} h_{x}^{\prime} \\
\delta \phi^{x} & =\frac{1}{2} i \bar{\epsilon} \lambda^{x}
\end{aligned}
$$

$$
\begin{aligned}
\delta \psi_{\mu}^{i} & =\nabla_{\mu} \epsilon^{i}+\text { stuff... } \\
\delta \lambda^{x i} & =-\frac{i}{2} \gamma^{\mu} \hat{D}_{\mu} \phi^{x} \epsilon^{i}+\text { other stuff... }
\end{aligned}
$$

Fermions

$\psi_{\mu}^{i} \quad \lambda^{x i}$

In 5D the (real) scalars coordinatize a Real Special Kähler manifold. This time we will need just

$$
\partial_{\mu} h^{\prime}=0 \Rightarrow \partial_{\mu} \phi^{x}=0 \quad h_{l x} F_{\mu \nu}^{\prime}=0
$$

Universal result

Using the two ids of Real Geometry we get

Universal result

Using the two ids of Real Geometry we get

$$
\delta^{(4)} \phi^{x}=\mathcal{A}^{\mu} \partial_{\mu} \phi^{x}+\mathcal{B}^{\mu \nu} h_{I x} F_{\mu \nu}^{\prime}+\{\ldots\}=0
$$

where \mathcal{A} and \mathcal{B} are cumbersome expressions and $\{\ldots\}$ are terms which goes to zero on the chosen background.

Universal result

Using the two ids of Real Geometry we get

$$
\delta^{(4)} \phi^{x}=\mathcal{A}^{\mu} \partial_{\mu} \phi^{x}+\mathcal{B}^{\mu \nu} h_{I x} F_{\mu \nu}^{\prime}+\{\ldots\}=0
$$

where \mathcal{A} and \mathcal{B} are cumbersome expressions and $\{\ldots\}$ are terms which goes to zero on the chosen background.

So in 5D the Attractor Mechanism is really attractive! Ok but... Why?

Universal result

Using the two ids of Real Geometry we get

$$
\delta^{(4)} \phi^{x}=\mathcal{A}^{\mu} \partial_{\mu} \phi^{x}+\mathcal{B}^{\mu \nu} h_{1 x} F_{\mu \nu}^{\prime}+\{\ldots\}=0
$$

where \mathcal{A} and \mathcal{B} are cumbersome expressions and $\{\ldots\}$ are terms which goes to zero on the chosen background.

So in 5D the Attractor Mechanism is really attractive! Ok but... Why?

The Attractor Mechanism is sensitive to the dyonicity of the solution.

In $5 D$ no dyonic solutions are present so, the AM is unchanged at all orders.

Interpretation

The wig generates fermionic corrections (in the forms of bilinears) to bosonic objects, such as the metric and the gauge field. What are them?

- No classical counterpart
- Generated through supersymmetry

Interpretation

The wig generates fermionic corrections (in the forms of bilinears) to bosonic objects, such as the metric and the gauge field. What are them?

- No classical counterpart
- Generated through supersymmetry

Interpretation

The wig generates fermionic corrections (in the forms of bilinears) to bosonic objects, such as the metric and the gauge field. What are them?

- No classical counterpart
- Generated through supersymmetry

Idea: treat them as operator \longrightarrow vev need to be taken!

Interpretation

The wig generates fermionic corrections (in the forms of bilinears) to bosonic objects, such as the metric and the gauge field. What are them?

- No classical counterpart
- Generated through supersymmetry

Idea: treat them as operator \longrightarrow vev need to be taken!

- Quantize the fermionic zero mode
- Compute quantistic vev for the various operator

Interpretation

The wig generates fermionic corrections (in the forms of bilinears) to bosonic objects, such as the metric and the gauge field. What are them?

- No classical counterpart
- Generated through supersymmetry

Idea: treat them as operator \longrightarrow vev need to be taken!

- Quantize the fermionic zero mode
- Compute quantistic vev for the various operator

Interpretation

The wig generates fermionic corrections (in the forms of bilinears) to bosonic objects, such as the metric and the gauge field. What are them?

- No classical counterpart
- Generated through supersymmetry

Idea: treat them as operator \longrightarrow vev need to be taken!

- Quantize the fermionic zero mode
- Compute quantistic vev for the various operator

Interpretation

The wig generates fermionic corrections (in the forms of bilinears) to bosonic objects, such as the metric and the gauge field. What are them?

- No classical counterpart
- Generated through supersymmetry

$$
\text { Idea: treat them as operator } \longrightarrow \text { vev need to be taken! }
$$

- Quantize the fermionic zero mode
- Compute quantistic vev for the various operator

But: very difficult for gravity! Use monopoles instead
(work in progress . . .)

Results and Open Issues

- Wig computation

Susy

 Fluid-dynamics
Other models

Minimally coupled Sugra

Results and Open Issues

- Wig computation

Susy Fluid-dynamics

- Dual Fluid: no dissipative corrections \oplus presence of new dof

Other models

Minimally coupled Sugra

Results and Open Issues

- Wig computation

Susy Fluid-dynamics

- Dual Fluid: no dissipative corrections \oplus presence of new dof
- Analysis of Energy Momentum Tensor

Other models

- $A d S_{5}$: $1^{\text {st }}$ order correction to Euler equations \oplus Fermionic Corrections to AdS_{3} dual Fluid

Results and Open Issues

- Wig computation

Susy Fluid-dynamics

- Dual Fluid: no dissipative corrections \oplus presence of new dof
- Analysis of Energy Momentum Tensor
1209.4100-1302.5060
- Wigs for $A d S_{3}, A d S_{4}$ and $A d S_{5} \mathrm{BH}$
1207.0686-1209.4100

Other models

Minimally coupled Sugra

Results and Open Issues

- Wig computation

Susy Fluid-dynamics

- Dual Fluid: no dissipative corrections \oplus presence of new dof
- Analysis of Energy Momentum Tensor
1209.4100-1302.5060
- Wigs for $A d S_{3}, A d S_{4}$ and $A d S_{5} B H$
1207.0686-1209.4100
- $A d S_{5}$: $1^{\text {st }}$ order correction to Euler equations \oplus Fermionic Corrections to AdS_{3} dual Fluid

> Minimally coupled Sugra

Results and Open Issues

- Wig computation

Susy Fluid-dynamics

- Dual Fluid: no dissipative corrections \oplus presence of new dof
- Analysis of Energy Momentum Tensor
1209.4100-1302.5060
- Wigs for $A d S_{3}, A d S_{4}$ and $A d S_{5} B H$
1207.0686-1209.4100
- AdS_{5} : $1^{\text {st }}$ order correction to Euler equations \oplus Fermionic Corrections to AdS_{3} dual Fluid
1105.4706-1302.5060
- Modification of AM in $\mathcal{N}=2 D=4$

Minimally coupled Sugra

Results and Open Issues

- Wig computation

Susy Fluid-dynamics

- Dual Fluid: no dissipative corrections \oplus presence of new dof
- Analysis of Energy Momentum Tensor
1209.4100-1302.5060
- Wigs for $A d S_{3}, A d S_{4}$ and $A d S_{5} \mathrm{BH}$
1207.0686-1209.4100

Other models

- AdS_{5} : $1^{\text {st }}$ order correction to Euler equations \oplus Fermionic Corrections to AdS_{3} dual Fluid
1105.4706-1302.5060
- Modification of AM in $\mathcal{N}=2 D=4$
- Modification of AM in $\mathcal{N}=2 D=5$

Minimally coupled Sugra

Results and Open Issues

- Wig computation

Susy Fluid-dynamics

- Dual Fluid: no dissipative corrections \oplus presence of new dof
- Analysis of Energy Momentum Tensor
1209.4100-1302.5060
- Wigs for $A d S_{3}, A d S_{4}$ and $A d S_{5} \mathrm{BH}$
1207.0686-1209.4100

Other models

- AdS_{5} : $1^{\text {st }}$ order correction to Euler equations \oplus Fermionic Corrections to AdS_{3} dual Fluid
1105.4706-1302.5060
- Modification of AM in $\mathcal{N}=2 D=4$
- Modification of AM in $\mathcal{N}=2 D=5$
- To Do:

Results and Open Issues

- Wig computation

Susy Fluid-dynamics

- Dual Fluid: no dissipative corrections \oplus presence of new dof
- Analysis of Energy Momentum Tensor
1209.4100-1302.5060
- Wigs for $A d S_{3}, A d S_{4}$ and $A d S_{5} \mathrm{BH}$
1207.0686-1209.4100

Other models

- AdS_{5} : $1^{\text {st }}$ order correction to Euler equations \oplus Fermionic Corrections to AdS_{3} dual Fluid
1105.4706-1302.5060
- Modification of AM in $\mathcal{N}=2 D=4$
- Modification of AM in $\mathcal{N}=2 D=5$
- To Do:
- "Twin wigs" (wigs of twin-supergravities)

Results and Open Issues

- Wig computation

Susy Fluid-dynamics

- Dual Fluid: no dissipative corrections \oplus presence of new dof
- Analysis of Energy Momentum Tensor
1209.4100-1302.5060
- Wigs for $A d S_{3}, A d S_{4}$ and $A d S_{5} B H$
1207.0686-1209.4100

Other models

- $A d S_{5}$: $1^{\text {st }}$ order correction to Euler equations \oplus Fermionic Corrections to AdS_{3} dual Fluid
1105.4706-1302.5060
- Modification of AM in $\mathcal{N}=2 D=4$
- Modification of AM in $\mathcal{N}=2 D=5$
- To Do:
- "Twin wigs" (wigs of twin-supergravities)
- Wigs of Monopoles in $\mathcal{N}=2$ SYM and intepretation

