Motivations	Wig	$\mathcal{N}=$ 2, $\mathit{D}=$ 4 MESGT	Л
0	00	0	
00		0	

Fermions, Wigs and Attractors

Lorenzo G.C. Gentile

Università di Padova & INFN

28 maggio 2014

Based on arXiv: 1309.8021 - 1403.5097

In collaboration with P.A. Grassi, A. Marrani, A. Mezzalira and W. Sabra

Motivations	Wig	$\mathcal{N}=2,~l$
0	00	0
00		0

 $\mathcal{N} = 2, \ D = 5 \text{ MESG}$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Contents

Motivations a.k.a. "What is it good for?"

- AdS/CFT Correspondence
- The Attractor Mechanism
 - Example
- 2 The wig
 - Killing Spinor
- 3 $\mathcal{N} = 2, D = 4$ Minimally Coupled MESGT
 - Special Kähler Geometry
 - Axion-Dilaton Model for DE-Black Holes
- N = 2 D = 5 Minimally Coupled MESGT
 Universal result for BPS Black Holes
 - Results and Open Issues

Motivations	Wig	$\mathcal{N}=2,\ D=4$!
0	00	0
00		0

 $\mathcal{N} = 2, \ D = 5 \text{ MESG}^{-1}$

Final Results

Contents

Motivations a.k.a. "What is it good for?"

- AdS/CFT Correspondence
- The Attractor Mechanism
 - Example

2 The wig

Killing Spinor

3) $\mathcal{N} = 2, D = 4$ Minimally Coupled MESGT

- Special K\u00e4hler Geometry
- Axion-Dilaton Model for DE-Black Holes
- N = 2 D = 5 Minimally Coupled MESGT
 Universal result for BPS Black Holes

Results and Open Issues

・ロト ・ 同ト ・ ヨト ・ ヨト

Motivations	Wig	$\mathcal{N}=2,~D=$
0	00	0
00		U U

Contents

Motivations a.k.a. "What is it good for?"

- AdS/CFT Correspondence
- The Attractor Mechanism
 - Example
- 2 The wig
 - Killing Spinor
- 3 $\mathcal{N} = 2, D = 4$ Minimally Coupled MESGT
 - Special Kähler Geometry
 - Axion-Dilaton Model for DE-Black Holes
- N = 2 D = 5 Minimally Coupled MESGT
 Universal result for BPS Black Holes
- 5 Results and Open Issues

Motivations	Wig	$\mathcal{N}=2,~D=$
0	00	0
00		0

Contents

Motivations a.k.a. "What is it good for?"

- AdS/CFT Correspondence
- The Attractor Mechanism
 - Example
- 2 The wig
 - Killing Spinor
- 3 $\mathcal{N} = 2, D = 4$ Minimally Coupled MESGT
 - Special Kähler Geometry
 - Axion-Dilaton Model for DE-Black Holes
- 4 $\mathcal{N} = 2 D = 5$ Minimally Coupled MESGT
 - Universal result for BPS Black Holes
 - 5 Results and Open Issues

・ロト ・四ト ・ヨト ・ヨト

Motivations	Wig	$\mathcal{N}=2,~D$:
0	00	0
00		0

Contents

Motivations a.k.a. "What is it good for?"

- AdS/CFT Correspondence
- The Attractor Mechanism
 - Example
- 2 The wig
 - Killing Spinor
- 3 $\mathcal{N} = 2, D = 4$ Minimally Coupled MESGT
 - Special Kähler Geometry
 - Axion-Dilaton Model for DE-Black Holes
- 4 $\mathcal{N} = 2 D = 5$ Minimally Coupled MESGT
 - Universal result for BPS Black Holes
 - Results and Open Issues

3

・ロト ・回ト ・ヨト ・ヨト

Motivations	Wig	
•	00	
00		

 $\mathcal{N} = 2, \ D = 5 \text{ MESG}$

・ロト ・ 同ト ・ ヨト ・ ヨト

AdS/CFT Correspondence

A particular sector of AdS/CFT correspondence relates Einstein equations in d-dimensions to Navier-Stokes equations in (d-1)-dimensions.

Fluid-Gravity Corresponcence

• In general, AdS/CFT works for supergravity *i.e.* for a theory with fermionic dofs.

- New internal (Grassmannian) dots for the fluid
- New conserved charges
- New contributions to "classical" thermodynamic variables
- Extend the construction to all supergravity fields

New contributions to DN conserved charges (?) New solutions-generating technique for supergravit

Motivations	Wig
•	00
00	

 $\mathcal{N} = 2, \ D = 5 \text{ MESG}$

Final Results

AdS/CFT Correspondence

A particular sector of AdS/CFT correspondence relates Einstein equations in d-dimensions to Navier-Stokes equations in (d - 1)-dimensions.

Fluid-Gravity Corresponcence

In general, AdS/CFT works for supergravity *i.e.* for a theory with fermionic dofs.

Aim: Extend Fluid-Gravity correspondence to fermionic sector

- New internal (Grassmannian) dofs for the fluid
- New conserved charges
- New contributions to "classical" thermodynamic variables
- Extend the construction to all supergravity fields

New contributions to bit conserved charges (?) New solutions-generating technique for supergrav

<ロ> <同> <同> < 同> < 同> < 同> <

Motivations	Wig	
•	00	
00		

AdS/CFT Correspondence

A particular sector of AdS/CFT correspondence relates Einstein equations in d-dimensions to Navier-Stokes equations in (d-1)-dimensions.

Fluid-Gravity Corresponcence

• In general, AdS/CFT works for supergravity *i.e.* for a theory with fermionic dofs.

Aim: Extend Fluid-Gravity correspondence to fermionic sector

- New internal (Grassmannian) dofs for the fluid
- New conserved charges
- New contributions to "classical" thermodynamic variables
- Extend the construction to all supergravity fields

New contributions to BH conserved charges (?) New solutions-generating technique for supergrav

Votivations	Wig	
•	00	
00		

 $\mathcal{N} = 2, \ D = 5 \text{ MESG}$

Final Results

AdS/CFT Correspondence

A particular sector of AdS/CFT correspondence relates Einstein equations in d-dimensions to Navier-Stokes equations in (d-1)-dimensions.

Fluid-Gravity Corresponcence

• In general, AdS/CFT works for supergravity *i.e.* for a theory with fermionic dofs.

Aim: Extend Fluid-Gravity correspondence to fermionic sector

- New internal (Grassmannian) dofs for the fluid
- New conserved charges
- New contributions to "classical" thermodynamic variables
- Extend the construction to all supergravity fields

New contributions to BH conserved charges. (?) New set utions comprained technicate for supergrav

Motivations	Wig	
•	00	
00		

 $\mathcal{N} = 2, \ D = 5 \text{ MESG}$

Final Results

AdS/CFT Correspondence

A particular sector of AdS/CFT correspondence relates Einstein equations in d-dimensions to Navier-Stokes equations in (d-1)-dimensions.

Fluid-Gravity Corresponcence

In general, AdS/CFT works for supergravity *i.e.* for a theory with fermionic dofs.

Aim: Extend Fluid-Gravity correspondence to fermionic sector

- New internal (Grassmannian) dofs for the fluid
- New conserved charges
- New contributions to "classical" thermodynamic variables
- Extend the construction to all supergravity fields

New contributions to BH conserved charges (?) New solutions-generaling technique for supergrave

Votivations	Wig
•	00
00	

 $\mathcal{N} = 2, \ D = 5 \text{ MESG}$

Final Results

AdS/CFT Correspondence

A particular sector of AdS/CFT correspondence relates Einstein equations in d-dimensions to Navier-Stokes equations in (d-1)-dimensions.

Fluid-Gravity Corresponcence

• In general, AdS/CFT works for supergravity *i.e.* for a theory with fermionic dofs.

Aim: Extend Fluid-Gravity correspondence to fermionic sector

- New internal (Grassmannian) dofs for the fluid
- New conserved charges
- New contributions to "classical" thermodynamic variables
- Extend the construction to all supergravity fields

New contributions to BH conserved charges (?) New self lights constrained by triang for structure

Votivations	Wig
•	00
00	

 $\mathcal{N} = 2, \ D = 5 \text{ MESG}$

Final Results

AdS/CFT Correspondence

A particular sector of AdS/CFT correspondence relates Einstein equations in d-dimensions to Navier-Stokes equations in (d-1)-dimensions.

Fluid-Gravity Corresponcence

In general, AdS/CFT works for supergravity *i.e.* for a theory with fermionic dofs.

Aim: Extend Fluid-Gravity correspondence to fermionic sector

- New internal (Grassmannian) dofs for the fluid
- New conserved charges
- New contributions to "classical" thermodynamic variables

• Extend the construction to all supergravity fields

New contributions to BH conserved charges (?) New solutions-generating technique for supergrav

Votivations	Wig
•	00
00	

 $\mathcal{N} = 2, \ D = 5 \text{ MESG}$

AdS/CFT Correspondence

A particular sector of AdS/CFT correspondence relates Einstein equations in d-dimensions to Navier-Stokes equations in (d-1)-dimensions.

Fluid-Gravity Corresponcence

• In general, AdS/CFT works for supergravity *i.e.* for a theory with fermionic dofs.

Aim: Extend Fluid-Gravity correspondence to fermionic sector

- New internal (Grassmannian) dofs for the fluid
- New conserved charges
- New contributions to "classical" thermodynamic variables
- Extend the construction to all supergravity fields

Aim: Generates new sugra solution through finite susy transformations (Wig)

- New contributions to BH conserved charges (?)
- New solutions-generating technique for supergravity

Votivations	Wig
•	00
00	

 $\mathcal{N} = 2, \ D = 5 \text{ MESG}^{*}$

AdS/CFT Correspondence

A particular sector of AdS/CFT correspondence relates Einstein equations in d-dimensions to Navier-Stokes equations in (d-1)-dimensions.

Fluid-Gravity Corresponcence

• In general, AdS/CFT works for supergravity *i.e.* for a theory with fermionic dofs.

Aim: Extend Fluid-Gravity correspondence to fermionic sector

- New internal (Grassmannian) dofs for the fluid
- New conserved charges
- New contributions to "classical" thermodynamic variables
- Extend the construction to all supergravity fields

Aim: Generates new sugra solution through finite susy transformations (Wig)

- New contributions to BH conserved charges (?)
- New solutions-generating technique for supergravity

Votivations	Wig
•	00
00	

 $\mathcal{N} = 2, \ D = 5 \text{ MESG}^{*}$

AdS/CFT Correspondence

A particular sector of AdS/CFT correspondence relates Einstein equations in d-dimensions to Navier-Stokes equations in (d-1)-dimensions.

Fluid-Gravity Corresponcence

• In general, AdS/CFT works for supergravity *i.e.* for a theory with fermionic dofs.

Aim: Extend Fluid-Gravity correspondence to fermionic sector

- New internal (Grassmannian) dofs for the fluid
- New conserved charges
- New contributions to "classical" thermodynamic variables
- Extend the construction to all supergravity fields

Aim: Generates new sugra solution through finite susy transformations (Wig)

- New contributions to BH conserved charges (?)
- New solutions-generating technique for supergravity

Votivations	Wig
•	00
00	

 $\mathcal{N} = 2, \ D = 5 \text{ MESG}$

Final Results

AdS/CFT Correspondence

A particular sector of AdS/CFT correspondence relates Einstein equations in d-dimensions to Navier-Stokes equations in (d-1)-dimensions.

Fluid-Gravity Corresponcence

• In general, AdS/CFT works for supergravity *i.e.* for a theory with fermionic dofs.

Aim: Extend Fluid-Gravity correspondence to fermionic sector

- New internal (Grassmannian) dofs for the fluid
- New conserved charges
- New contributions to "classical" thermodynamic variables
- Extend the construction to all supergravity fields

Aim: Generates new sugra solution through finite susy transformations (Wig)

- New contributions to BH conserved charges (?)
- New solutions-generating technique for supergravity

Votivations	Wig
•	00
00	

AdS/CFT Correspondence

A particular sector of AdS/CFT correspondence relates Einstein equations in d-dimensions to Navier-Stokes equations in (d-1)-dimensions.

Fluid-Gravity Corresponcence

• In general, AdS/CFT works for supergravity *i.e.* for a theory with fermionic dofs.

Aim: Extend Fluid-Gravity correspondence to fermionic sector

- New internal (Grassmannian) dofs for the fluid
- New conserved charges
- New contributions to "classical" thermodynamic variables
- Extend the construction to all supergravity fields

Aim: Generates new sugra solution through finite susy transformations (Wig)

- New contributions to BH conserved charges (?)
- New solutions-generating technique for supergravity

・ロト ・ 同ト ・ ヨト ・ ヨト

Motivations	
0	
•0	

 $\mathcal{N} = 2, \ D = 5 \text{ MESG}^{-1}$

Final Results

Attractor mechanism

For an extremal BH in matter-coupled supergravities

In approaching the Event Horizon, the moduli completely lose memory of the initial data, and take values dependent only on the electric/magnetic charges of the BH:

$$z^{i}\Big|_{\text{horizon}} = z^{i}(Q, P)$$

3

・ロト ・回ト ・ヨト ・ヨト

Motivations	V
0	C
•0	

 $\mathcal{N} = 2, \ D = 5 \text{ MESG}$

Attractor mechanism

For an extremal BH in matter-coupled supergravities

In approaching the Event Horizon, the moduli completely lose memory of the initial data, and take values dependent only on the electric/magnetic charges of the BH:

$$z^{i}\Big|_{\text{horizon}} = z^{i}(Q, P)$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Motivations	W
0	0
•0	

 $\mathcal{N} = 2, \ D = 5 \text{ MESG}^2$

Attractor mechanism

For an extremal BH in matter-coupled supergravities

In approaching the Event Horizon, the moduli completely lose memory of the initial data, and take values dependent only on the electric/magnetic charges of the BH:

$$\left. z^{i} \right|_{\text{horizon}} = z^{i} \left(Q, P \right)$$

・ロト ・ 同ト ・ ヨト

Regardless of the initial conditions, the Horizon values depend ONLY on the charges, but nevertheless the evolution remains DETERMINISTIC!

Motivations	Wig	$\mathcal{N}=$ 2, $D=$ 4 MESGT	$\mathcal{N}=$ 2, $D=$ 5 MESGT	Final Re
0	00	0	0	
00		0		

 $\mathcal{N} = 2, D = 4$ Axion-Dilaton-Einstein-Maxwell Sugra coupled to a gauge multiplet: { $g_{\mu\nu}, A_{\mu}$; A'_{μ}, ϕ }

$$S = \int d^{4}x \sqrt{-g} \left[\frac{R}{2} - 2\partial^{\mu}\phi \partial_{\mu}\phi - \frac{1}{2}e^{-2\phi} \left(\frac{F^{\mu\nu}F_{\mu\nu}}{F_{\mu\nu}} + F^{'\mu\nu}F_{\mu\nu}' \right) \right]$$

Electric and magnetic charge can be chosen to set axion to zero, then

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Motivations	Wig	$\mathcal{N}=2, \ D=4$ MESGT	$\mathcal{N}=2, \ D=5 \text{ MESGT}$
0	00	0	0
0.		0	

 $\mathcal{N} = 2, D = 4$ Axion-Dilaton-Einstein-Maxwell Sugra coupled to a gauge multiplet: { $g_{\mu\nu}, A_{\mu}$; A'_{μ}, ϕ }

$$S = \int d^{4}x \sqrt{-g} \left[\frac{R}{2} - 2\partial^{\mu}\phi \partial_{\mu}\phi - \frac{1}{2}e^{-2\phi} \left(\frac{F^{\mu\nu}F_{\mu\nu}}{F^{\mu\nu}} + F^{\prime\mu\nu}F^{\prime}_{\mu\nu} \right) \right]$$

Electric and magnetic charge can be chosen to set axion to zero, then

$$\Rightarrow ds^{2} = -e^{2U(r)}dt^{2} + e^{-2U(r)}\left[dr^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta d\varphi^{2}\right)\right]$$

イロト イヨト イヨト イヨト 三日

Motivations	Wig	$\mathcal{N} = 2, \ D = 4 \text{ MESGT}$	$\mathcal{N}=2, \ D=5 \text{ MESGT}$
0	00	0	0
00		0	

 $\mathcal{N} = 2, D = 4$ Axion-Dilaton-Einstein-Maxwell Sugra coupled to a gauge multiplet: { $g_{\mu\nu}, A_{\mu}$; A'_{μ}, ϕ }

$$S = \int d^{4}x \sqrt{-g} \left[\frac{R}{2} - 2\partial^{\mu}\phi \partial_{\mu}\phi - \frac{1}{2}e^{-2\phi} \left(\frac{F^{\mu\nu}F_{\mu\nu}}{F^{\mu\nu}} + F^{\prime\mu\nu}F^{\prime}_{\mu\nu} \right) \right]$$

Electric and magnetic charge can be chosen to set axion to zero, then

$$\Rightarrow ds^{2} = -e^{2U(r)}dt^{2} + e^{-2U(r)}\left[dr^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta d\varphi^{2}\right)\right]$$

...computations...

(ロ) (部) (E) (E) (E)

Motivations	Wig	$\mathcal{N} = 2, \ D = 4 \text{ MESGT}$	$\mathcal{N}=2, \ D=5$ MESGT
0	00	0	0
0.		0	

 $\mathcal{N} = 2, D = 4$ Axion-Dilaton-Einstein-Maxwell Sugra coupled to a gauge multiplet: { $g_{\mu\nu}, A_{\mu}$; A'_{μ}, ϕ }

$$S = \int d^{4}x \sqrt{-g} \left[\frac{R}{2} - 2\partial^{\mu}\phi \partial_{\mu}\phi - \frac{1}{2}e^{-2\phi} \left(\frac{F^{\mu\nu}F_{\mu\nu}}{F^{\mu\nu}} + F^{\prime\mu\nu}F^{\prime}_{\mu\nu} \right) \right]$$

Electric and magnetic charge can be chosen to set axion to zero, then

$$\Rightarrow ds^{2} = -e^{2U(r)}dt^{2} + e^{-2U(r)}\left[dr^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta d\varphi^{2}\right)\right]$$

...computations...

$$\Rightarrow e^{-2U(r)} = H_1 H_2 \qquad e^{-2\phi(r)} = H_1 / H_2$$
$$H_1 = e^{-\phi_0} + \frac{|q|}{4\pi r} \qquad H_2 = e^{\phi_0} + \frac{|p'|}{4\pi r}$$

(ロ) (部) (E) (E) (E)

Motivations	Wig	$\mathcal{N}=2, D=4$ MESGT	$\mathcal{N}=2, \ D=5 \ \text{MESGT}$
0	00	0	0
0.		0	

 $\mathcal{N} = 2, D = 4$ Axion-Dilaton-Einstein-Maxwell Sugra coupled to a gauge multiplet: { $g_{\mu\nu}, A_{\mu}$; A'_{μ}, ϕ }

$$S = \int d^{4}x \sqrt{-g} \left[\frac{R}{2} - 2\partial^{\mu}\phi \partial_{\mu}\phi - \frac{1}{2}e^{-2\phi} \left(\frac{F^{\mu\nu}F_{\mu\nu}}{F^{\mu\nu}} + F^{\prime\mu\nu}F^{\prime}_{\mu\nu} \right) \right]$$

Electric and magnetic charge can be chosen to set axion to zero, then

$$\Rightarrow ds^{2} = -e^{2U(r)}dt^{2} + e^{-2U(r)}\left[dr^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta d\varphi^{2}\right)\right]$$

...computations...

$$\Rightarrow e^{-2U(r)} = H_1 H_2 \qquad e^{-2\phi(r)} = H_1 / H_2$$
$$H_1 = e^{-\phi_0} + \frac{|q|}{4\pi r} \qquad H_2 = e^{\phi_0} + \frac{|p'|}{4\pi r}$$

$$\Rightarrow \left. e^{-2\phi} \right|_{\mathrm{hor}} = \left| rac{q}{p'} \right|$$

Fermions, Wigs and Attractors

Motivations	Wig	$\mathcal{N}=$ 2, $D=$ 4 MESGT	$\mathcal{N}=$ 2, $D=$ 5 MESGT	Final Resu
0 00	00	0 0	0	

When you compute the finite variation of a field under a symmetry what you actually compute is

Motivations	Wig	$\mathcal{N}=$ 2, $D=$ 4 MESGT	$\mathcal{N}=2, \ D=5 \ MESGT$	Final Result
0 00	00	0	0	

When you compute the finite variation of a field under a symmetry what you actually compute is

$$\Phi = e^{\delta}\phi = \phi + \delta\phi + \frac{1}{2}\delta^2\phi + \frac{1}{3!}\delta^3\phi + \dots$$

<ロト <回ト < 回ト < 回ト = 三日

Motivations	Wig	$\mathcal{N}=2, \ D=4$ MESGT	$\mathcal{N}=$ 2, $D=$ 5 MESGT	Final Result
000	00	0	0	

When you compute the finite variation of a field under a symmetry what you actually compute is

$$\Phi = e^{\delta}\phi = \phi + \delta\phi + \frac{1}{2}\delta^2\phi + \frac{1}{3!}\delta^3\phi + \dots$$

Dealing with Grassmannian variables once you soak out the fermionic dofs the series automatically truncates!

イロトスポトメラトメラト・ラ

Motivations	Wig	$\mathcal{N}=2,~D=4~MESGT$	$\mathcal{N}=$ 2, $D=$ 5 MESGT	Final Result
000	00	0	0	

When you compute the finite variation of a field under a symmetry what you actually compute is

$$\Phi = e^{\delta}\phi = \phi + \delta\phi + \frac{1}{2}\delta^2\phi + \frac{1}{3!}\delta^3\phi + \dots$$

Dealing with Grassmannian variables once you soak out the fermionic dofs the series automatically truncates!

The Wig is the complete non-linear supergravity solution built from a purely bosonic background.

イロトスポトメラトメラト・ラ

Motivations	Wig	$\mathcal{N}=2, \ D=4$ MESGT	$\mathcal{N}=$ 2, $D=$ 5 MESGT	Final Result
000	00	0	0	

When you compute the finite variation of a field under a symmetry what you actually compute is

$$\Phi = e^{\delta}\phi = \phi + \delta\phi + \frac{1}{2}\delta^2\phi + \frac{1}{3!}\delta^3\phi + \dots$$

Dealing with Grassmannian variables once you soak out the fermionic dofs the series automatically truncates!

The Wig is the complete non-linear supergravity solution built from a purely bosonic background.

Note that as susy parameters we use the "anti-Killing spinors" .

Motivations	Wig	$\mathcal{N}=$ 2, $D=$ 4 MESGT	$\mathcal{N}=2, \ D=5 \ \text{MESGT}$	Final Re
0	•0	0	0	
00		0		

Space are endorsed with both isometries and superisometries, the latter generated by Killing spinors:

Computation of the Killing Spinor ε:

$$\left(\partial_{M} + \frac{1}{4} \; \phi_{M}^{AB} |_{maxy} \; \nabla_{AB} + \frac{\Lambda}{2} \; \phi_{M}^{A} |_{maxy} \; \nabla_{A} \right) \epsilon = 0$$

• ϵ : For example in $AdS_3 \ge \mathbb{C}$ fermionic components $\longrightarrow 4$ real dof's

• Turning on BH: $\delta_{\epsilon}\psi = \mathcal{D}^{\mathrm{bh}}\epsilon_{\mathrm{empty}} \neq 0$

A B > A B > A B > B
 B
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

Motivations	Wig	$\mathcal{N}=$ 2, $D=$ 4 MESGT	$\mathcal{N}=$ 2, $D=$ 5 MESGT	Final Res
0	•0	0	0	
00		0		

Space are endorsed with both isometries and superisometries, the latter generated by Killing spinors:

Computation of the Killing Spinor ε:

$$\left(\partial_{M} + \frac{1}{4} \hat{\omega}_{M}^{AB}|_{\text{empty}} \Gamma_{AB} + \frac{\Lambda}{2} e_{M}^{A}|_{\text{empty}} \Gamma_{A}\right) \epsilon = 0$$

• ϵ : For example in AdS_3 2 $\mathbb C$ fermionic components \longrightarrow 4 real dof's

• Turning on BH: $\delta_{\epsilon}\psi = \mathcal{D}^{\mathrm{bh}}\epsilon_{\mathrm{empty}} \neq 0$

A B > A B > A B > B
 B
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

Motivations	Wig	$\mathcal{N}=$ 2, $D=$ 4 MESGT	$\mathcal{N}=$ 2, $D=$ 5 MESGT	Final Res
000	•0	0	0	

Space are endorsed with both isometries and superisometries, the latter generated by Killing spinors:

Computation of the Killing Spinor ε:

$$\left(\partial_{M} + \frac{1}{4} \hat{\omega}_{M}^{AB}|_{\text{empty}} \Gamma_{AB} + \frac{\Lambda}{2} e_{M}^{A}|_{\text{empty}} \Gamma_{A}\right) \epsilon = 0$$

€: For example in AdS₃ 2 C fermionic components → 4 real dof's

• Turning on BH: $\delta_{\epsilon}\psi = \mathcal{D}^{\mathrm{bh}}\epsilon_{\mathrm{empty}} \neq 0$

Motivations	Wig	$\mathcal{N}=2,~D=4~\text{MESGT}$	$\mathcal{N}=$ 2, $D=$ 5 MESGT	Final Res
000	•0	0	0	

Space are endorsed with both isometries and superisometries, the latter generated by Killing spinors:

Computation of the Killing Spinor ε:

$$\left(\partial_{M} + \frac{1}{4} \hat{\omega}_{M}^{AB}|_{\text{empty}} \Gamma_{AB} + \frac{\Lambda}{2} e_{M}^{A}|_{\text{empty}} \Gamma_{A}\right) \epsilon = 0$$

ϵ: For example in AdS₃ 2 C fermionic components → 4 real dof's

• Turning on BH: $\delta_{\epsilon}\psi = \mathcal{D}^{\mathrm{bh}}\epsilon_{\mathrm{empty}} \neq 0$

イロト イヨト イヨト イヨト 三日

Motivations	Wig	$\mathcal{N}=$ 2, $D=$ 4 MESGT	$\mathcal{N}=$ 2, $D=$ 5 MESGT	Final Res
000	•0	0	0	

Space are endorsed with both isometries and superisometries, the latter generated by Killing spinors:

Computation of the Killing Spinor ε:

$$\left(\partial_{M} + \frac{1}{4} \hat{\omega}_{M}^{AB}|_{\text{empty}} \Gamma_{AB} + \frac{\Lambda}{2} e_{M}^{A}|_{\text{empty}} \Gamma_{A}\right) \epsilon = 0$$

- *ϵ*: For example in AdS₃ 2 C fermionic components → 4 real dof's
- Turning on BH: $\delta_{\epsilon}\psi = \mathcal{D}^{\mathrm{bh}}\epsilon_{\mathrm{empty}} \neq 0$

The black hole has (partially) broken the superisometries

A B > A B > A B > B
 B
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
Motivations	Wig	$\mathcal{N}=$ 2, $D=$ 4 MESGT	$\mathcal{N}=$ 2, $D=$ 5 MESGT	Final Res
000	•0	0	0	

Killing Spinor

Space are endorsed with both isometries and superisometries, the latter generated by Killing spinors:

Computation of the Killing Spinor ε:

$$\left(\partial_{M} + \frac{1}{4} \hat{\omega}_{M}^{AB}|_{\text{empty}} \Gamma_{AB} + \frac{\Lambda}{2} e_{M}^{A}|_{\text{empty}} \Gamma_{A}\right) \epsilon = 0$$

- *ϵ*: For example in AdS₃ 2 C fermionic components → 4 real dof's
- Turning on BH: $\delta_{\epsilon}\psi = \mathcal{D}^{\mathrm{bh}}\epsilon_{\mathrm{empty}} \neq 0$

The black hole has (partially) broken the superisometries!

(a)

Motivations	Wig	$\mathcal{N}=$ 2, $D=$ 4 MESGT	$\mathcal{N}=$ 2, $D=$ 5 MESGT	Final Res
0 00	•0	0	0	

Killing Spinor

Space are endorsed with both isometries and superisometries, the latter generated by Killing spinors:

Computation of the Killing Spinor ε:

$$\left(\partial_{M} + \frac{1}{4} \hat{\omega}_{M}^{AB}|_{\text{empty}} \Gamma_{AB} + \frac{\Lambda}{2} e_{M}^{A}|_{\text{empty}} \Gamma_{A}\right) \epsilon = 0$$

- *ϵ*: For example in AdS₃ 2 C fermionic components → 4 real dof's
- Turning on BH: $\delta_{\epsilon}\psi = \mathcal{D}^{bh}\epsilon_{empty} \neq 0$

The black hole has (partially) broken the superisometries!

Motivations	Wig	$\mathcal{N}=2, \ D=4$ MESGT	$\mathcal{N}=2,~D=5~{\sf MESGT}$	Final F
000	0•	0	0	

Fermionic bilinears —> series truncates!

Development of algorithms to compute, order by order (Wig)

Implementation of algorithms in Mathematica code

LGCG, P. A. Grassi and A. Mezzalira - hep-th/1207.0686

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

Motivations	Wig	$\mathcal{N}=$ 2, $D=$ 4 MESGT	$\mathcal{N}=$ 2, $D=$ 5 MESGT	Final R
0 00	0•	0	0	

- Fermionic bilinears —> series truncates!
- Development of algorithms to compute, order by order (Wig)

Implementation of algorithms in Mathematica code

LGCG, P. A. Grassi and A. Mezzalira - hep-th/1207.0686

イロト イポト イヨト イヨト

Motivations	Wig	$\mathcal{N}=$ 2, $D=$ 4 MESGT	$\mathcal{N}=2,~D=5~\mathrm{MESGT}$	Final F
000	0●	0	0	

- Fermionic bilinears —> series truncates!
- Development of algorithms to compute, order by order (Wig)

$$\left\{\psi_{M}\;,\; e^{A}_{M}\;,\; A_{M}\;,\; \hat{\omega}^{AB}_{M}
ight\}$$

Implementation of algorithms in Mathematica code

LGCG, P. A. Grassi and A. Mezzalira - hep-th/1207.0686

Motivations	Wig	$\mathcal{N}=$ 2, $D=$ 4 MESGT	$\mathcal{N}=2,~D=5~\mathrm{MESGT}$	Final F
0 00	0●	0 0	0	

- Fermionic bilinears —> series truncates!
- Development of algorithms to compute, order by order (Wig)

$$\left\{\psi_{\mathcal{M}}, \ \boldsymbol{e}_{\mathcal{M}}^{\mathcal{A}}, \ \boldsymbol{A}_{\mathcal{M}}, \ \hat{\omega}_{\mathcal{M}}^{\mathcal{A}\mathcal{B}}\right\}$$

Implementation of algorithms in Mathematica code

LGCG, P. A. Grassi and A. Mezzalira - hep-th/1207.0686

A B A B A B A
 A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3

Motivations	Wig	$\mathcal{N}=$ 2, $D=$ 4 MESGT	$\mathcal{N}=2,~D=5~\mathrm{MESGT}$	Final F
0 00	0●	0 0	0	

- Fermionic bilinears —> series truncates!
- Development of algorithms to compute, order by order (Wig)

$$\left\{\psi_{M}, e_{M}^{A}, A_{M}, \hat{\omega}_{M}^{AB}\right\}$$

• Implementation of algorithms in Mathematica code

LGCG, P. A. Grassi and A. Mezzalira - hep-th/1207.0686

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

$$\begin{split} \delta \boldsymbol{e}^{a}_{\mu} &= -i \bar{\psi}_{A\,\mu} \gamma^{a} \boldsymbol{\epsilon}^{A} + \mathrm{h.c.} \;, \\ \delta \boldsymbol{A}^{\Lambda}_{\mu} &= 2 \bar{L}^{\Lambda} \bar{\psi}_{A\,\mu} \boldsymbol{\epsilon}_{B} \boldsymbol{\varepsilon}^{AB} + i \boldsymbol{f}^{\Lambda}_{i} \bar{\lambda}^{i\,A} \gamma_{\mu} \boldsymbol{\epsilon}^{B} \boldsymbol{\varepsilon}_{AB} + \mathrm{h.c.} \;, \\ \delta \boldsymbol{z}^{i} &= \bar{\lambda}^{i\,A} \boldsymbol{\epsilon}_{A} \;, \end{split}$$

$$\begin{split} \delta\psi_{A\,\mu} = & \nabla_{\mu}\epsilon_{A} + \varepsilon_{AB}T^{-}_{\mu\nu}\gamma^{\nu}\epsilon^{B} + \text{stuff...} , \\ \delta\lambda^{i\,A} = & G^{i-}_{\mu\nu}\gamma^{\mu\nu}\epsilon_{B}\epsilon^{AB} + \text{other stuff...} , \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

$$\begin{split} \delta \pmb{e}^{A}_{\mu} &= -i \bar{\psi}_{A\,\mu} \gamma^{a} \epsilon^{A} + \mathrm{h.c.} \;, \\ \delta A^{\Lambda}_{\mu} &= 2 \bar{L}^{\Lambda} \bar{\psi}_{A\,\mu} \epsilon_{B} \epsilon^{AB} + i f^{\Lambda}_{i} \bar{\lambda}^{i\,A} \gamma_{\mu} \epsilon^{B} \epsilon_{AB} + \mathrm{h.c.} \;, \\ \delta z^{i} &= \bar{\lambda}^{i\,A} \epsilon_{A} \;, \end{split}$$

$$\begin{split} \delta\psi_{A\,\mu} = & \nabla_{\mu}\epsilon_{A} + \varepsilon_{AB}T^{-}_{\mu\nu}\gamma^{\nu}\epsilon^{B} + \text{stuff...} , \\ \delta\lambda^{i\,A} = & G^{i\,-}_{\mu\nu}\gamma^{\mu\nu}\epsilon_{B}\epsilon^{AB} + \text{other stuff...} , \end{split}$$

Where

$$G^{i-}_{\mu
u} = -g^{iar{j}}ar{f}^{\Gamma}_{j}\,({
m Im}{\cal N})_{\Gamma\Lambda}\, ilde{F}^{\Lambda-}_{\mu
u}$$

Motivations	Wig	$\mathcal{N}=$ 2, $D=$ 4 MESGT	$\mathcal{N}=$ 2, $D=$ 5 MESGT	Final Results
0 00	00	•	0	

Scalar (complex) fields coordinatize a complex Kähler manifold

<ロト <回ト < 回ト < 回ト = 三日

Motivations	Wig	$\mathcal{N}=2, D=4$ MESGT	$\mathcal{N}=2, \ D=5 \text{ MESGT}$	Final Results
000	00	• •	0	

Scalar (complex) fields coordinatize a complex Kähler manifold

Hermitian
$$g_{i\bar{j}}$$
 \longrightarrow $d\Omega = -2id\left(g_{i\bar{j}}dz^i \wedge d\bar{z}^{\bar{j}}\right) = 0$ \longrightarrow Kähler

<ロト <回ト < 回ト < 回ト = 三日

Motivations	Wig	$\mathcal{N}=$ 2, $D=$ 4 MESGT	$\mathcal{N}=$ 2, $D=$ 5 MESGT	Final Results
000	00	•	0	

Scalar (complex) fields coordinatize a complex Kähler manifold

Hermitian
$$g_{i\bar{j}}$$
 \longrightarrow $d\Omega = -2id\left(g_{i\bar{j}}dz^i \wedge d\bar{z}^{\bar{j}}\right) = 0$ \longrightarrow Kähler

The manifold is also special since there exist a C_{ijk} satisfying

$$R_{ar{i}ar{j}ar{l}k} = -g_{ar{j}ar{l}}g_{kar{i}} - g_{kar{l}}g_{ar{j}ar{i}} + g^{tar{ extstyle}}ar{\mathcal{C}}_{ar{i}ar{l}ar{ extstyle}}\mathcal{C}_{tkj}$$

Э

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Motivations	Wig	$\mathcal{N}=$ 2, $\mathit{D}=$ 4 MESGT	$\mathcal{N}=2, \ D=5$ MESGT	Final Results
000	00	•	0	

Scalar (complex) fields coordinatize a complex Kähler manifold

Hermitian
$$g_{i\bar{j}}$$
 \longrightarrow $d\Omega = -2id\left(g_{i\bar{j}}dz^i \wedge d\bar{z}^{\bar{j}}\right) = 0$ \longrightarrow Kähler

The manifold is also special since there exist a C_{ijk} satisfying

$$m{R}_{ar{l}jar{l}k}=-g_{ar{l}ar{l}}g_{kar{l}}-g_{kar{l}}g_{ar{l}ar{l}}+g^{tar{s}}ar{C}_{ar{l}ar{l}ar{s}}C_{tkj}$$

What you have to keep in mind:

$$(\mathrm{Im}\mathcal{N})_{\Gamma\Lambda} f_i^{\Lambda} L^{\Gamma} = 0$$

$$(\mathrm{Im}\mathcal{N})_{\Gamma\Lambda} f_i^{\Lambda} \bar{L}^{\Gamma} \neq 0$$

A D F A B F A B F A B F

wouvalions wig	$\mathcal{N} = 2, D = 4 \text{ MESGI}$	$\mathcal{N} = 2, D = 5 \text{ MESGI}$	Fina
0 00	0	0	

In this model

$$\mathcal{K} = -\ln \left[2\left(z + \bar{z}\right)\right]$$
 $\mathcal{N}_{\Gamma\Lambda} = -i \operatorname{diag}\left(z, 1/z\right)$

At zeroth order, you get (Attractor Mechanism!)

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Motivations	Wig	$\mathcal{N}=2, D=4$ MESGT	$\mathcal{N}=2, \ D=5 \ \text{MESGT}$	F
0 00	00	•	0	

In this model

$$\mathcal{K} = -\ln \left[2\left(z + \bar{z}\right)\right]$$
 $\mathcal{N}_{\Gamma\Lambda} = -i \operatorname{diag}\left(z, 1/z\right)$

At zeroth order, you get (Attractor Mechanism!)

$$z^{(0)} = \frac{q_0 - ip^1}{q_1 - ip^0}$$

(ロ) (部) (E) (E) (E)

Motivations	Wig	$\mathcal{N}=2, \ D=4$ MESGT	$\mathcal{N}=2, D=5$ MESGT
000	00	•	0

In this model

$$\mathcal{K} = -\ln \left[2\left(z+\bar{z}\right)\right]$$
 $\mathcal{N}_{\Gamma\Lambda} = -i\operatorname{diag}\left(z,1/z\right)$

At zeroth order, you get (Attractor Mechanism!)

$$z^{(0)} = \frac{q_0 - ip^1}{q_1 - ip^0}$$

but at fourth order the ids. in the precedent slide implies...

$$\delta^{(4)} z = \frac{M^4}{(M+r)^4} \frac{p^0 q_0 - p^1 q_1}{(p^0 + iq_1)^2 (p^0 - iq_1) (q_0 + ip^1)} \mathcal{Q} \sin^2 \phi \sin^2 \theta$$

(...not so attractive, is it?).

(ロ) (部) (E) (E) (E)

Motivations	Wig	$\mathcal{N}=2, \ D=4$ MESGT	$\mathcal{N}=2, D=5$ MESGT
000	00	•	0

In this model

$$\mathcal{K} = -\ln \left[2\left(z + \bar{z}\right)\right]$$
 $\mathcal{N}_{\Gamma\Lambda} = -i \operatorname{diag}\left(z, 1/z\right)$

At zeroth order, you get (Attractor Mechanism!)

$$z^{(0)} = \frac{q_0 - ip^1}{q_1 - ip^0}$$

but at fourth order the ids. in the precedent slide implies...

$$\delta^{(4)} z = \frac{M^4}{(M+r)^4} \frac{p^0 q_0 - p^1 q_1}{(p^0 + iq_1)^2 (p^0 - iq_1) (q_0 + ip^1)} Q \sin^2 \phi \sin^2 \theta$$

(...not so attractive, is it?). Note that a purely electric (magnetic) configuration

leaves the scalar field unchanged.

(ロ) (部) (E) (E) (E)

Motivations	Wig	$\mathcal{N}=$ 2, $\mathit{D}=$ 4 MESGT	$\mathcal{N}=$ 2, $D=$ 5 MESGT
0 00	00	0	0

$\mathcal{N} = 2 D = 5$ Minimally Coupled MESGT

Field Content

 e^a_μ A^l_μ ϕ^i

 $\psi^i_\mu \quad \lambda^{\rm xi}$

Motivations	Wig	$\mathcal{N}=2, \ D=4$ MESGT	$\mathcal{N}=$ 2, $D=$ 5 MESGT	Final Results
0 00	00	0 0	•	

Using the two ids of Real Geometry we get

<ロ> <回> <回> <回> <回> <回> < 回> < 回</p>

Motivations	Wig	$\mathcal{N}=2,~D=4~MESGT$	$\mathcal{N}=$ 2, $\mathit{D}=$ 5 MESGT	Final Results
0 00	00	0	•	

Using the two ids of Real Geometry we get

$$\delta^{(4)}\phi^{x} = \mathcal{A}^{\mu}\partial_{\mu}\phi^{x} + \mathcal{B}^{\mu\nu}h_{lx}F^{l}_{\mu\nu} + \{\ldots\} = 0$$

where ${\cal A}$ and ${\cal B}$ are cumbersome expressions and $\{\ldots\}$ are terms which goes to zero on the chosen background.

3

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

Motivations	Wig	$\mathcal{N}=2,~D=4~MESGT$	$\mathcal{N}=$ 2, $\mathit{D}=$ 5 MESGT	Final Results
0 00	00	0	•	

Using the two ids of Real Geometry we get

$$\delta^{(4)}\phi^{x} = \mathcal{A}^{\mu}\partial_{\mu}\phi^{x} + \mathcal{B}^{\mu\nu}h_{lx}F^{l}_{\mu\nu} + \{\ldots\} = 0$$

where ${\cal A}$ and ${\cal B}$ are cumbersome expressions and $\{\ldots\}$ are terms which goes to zero on the chosen background.

So in 5D the Attractor Mechanism is really attractive! Ok but... Why?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Motivations	Wig	$\mathcal{N}=2,~D=4~MESGT$	$\mathcal{N}=$ 2, $\mathit{D}=$ 5 MESGT	Final Results
000	00	0 0	•	

Using the two ids of Real Geometry we get

$$\delta^{(4)}\phi^{x} = \mathcal{A}^{\mu}\partial_{\mu}\phi^{x} + \mathcal{B}^{\mu\nu}h_{lx}F^{l}_{\mu\nu} + \{\ldots\} = 0$$

where ${\cal A}$ and ${\cal B}$ are cumbersome expressions and $\{\ldots\}$ are terms which goes to zero on the chosen background.

So in 5D the Attractor Mechanism is really attractive! Ok but... Why?

The Attractor Mechanism is sensitive to the dyonicity of the solution.

In 5D no dyonic solutions are present so, the AM is unchanged at all orders.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Motivations	Wig	$\mathcal{N}=2, \ D=4$ MESGT	$\mathcal{N}=2, \ D=5 \ \text{MESGT}$	Final Results
000	00	0	0	

The wig generates fermionic corrections (in the forms of bilinears) to bosonic objects, such as the metric and the gauge field. What are them?

- No classical counterpart
- Generated through supersymmetry

- Quantize the fermionic zero mode.
- Compute quantistic vev for the various operator

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Motivations	Wig	$\mathcal{N}=2, \ D=4$ MESGT	$\mathcal{N}=$ 2, $D=$ 5 MESGT	Final Results
0 00	00	0	0	

The wig generates fermionic corrections (in the forms of bilinears) to bosonic objects, such as the metric and the gauge field. What are them?

- No classical counterpart
- Generated through supersymmetry

- Quantize the fermionic zero mode
- Compute quantistic vev for the various operatories

・ロト ・ 同ト ・ ヨト・

Motivations	Wig	$\mathcal{N}=2, \ D=4$ MESGT	$\mathcal{N}=2, \ D=5 \ \text{MESGT}$	Final Resu
0 00	00	0	0	

The wig generates fermionic corrections (in the forms of bilinears) to bosonic objects, such as the metric and the gauge field. What are them?

- No classical counterpart
- Generated through supersymmetry

Idea: treat them as operator \rightarrow vev need to be taken!

- Quantize the fermionic zero mode
- Compute quantistic vev for the various operator

・ロト ・ 同ト ・ ヨト

Motivations	Wig	$\mathcal{N}=2, \ D=4$ MESGT	$\mathcal{N}=2, \ D=5 \ \text{MESGT}$	Final Results
0 00	00	0	0	

The wig generates fermionic corrections (in the forms of bilinears) to bosonic objects, such as the metric and the gauge field. What are them?

- No classical counterpart
- Generated through supersymmetry

Idea: treat them as operator \rightarrow vev need to be taken!

- Quantize the fermionic zero mode
- Compute quantistic vev for the various operator

<ロ> <同> <同> < 同> < 同> < 同> <

Motivations	Wig	$\mathcal{N}=2, \ D=4$ MESGT	$\mathcal{N}=2, \ D=5 \ \text{MESGT}$	Final Results
0 00	00	0	0	

The wig generates fermionic corrections (in the forms of bilinears) to bosonic objects, such as the metric and the gauge field. What are them?

- No classical counterpart
- Generated through supersymmetry

Idea: treat them as operator \rightarrow vev need to be taken!

- Quantize the fermionic zero mode
- Compute quantistic vev for the various operator

・ロト ・日 ・ ・ 日 ・ ・ 日 ・

Motivations	Wig	$\mathcal{N}=2, \ D=4$ MESGT	$\mathcal{N}=2, \ D=5 \ \text{MESGT}$	Final Results
0 00	00	0	0	

The wig generates fermionic corrections (in the forms of bilinears) to bosonic objects, such as the metric and the gauge field. What are them?

- No classical counterpart
- Generated through supersymmetry

Idea: treat them as operator \rightarrow vev need to be taken!

- Quantize the fermionic zero mode
- Compute quantistic vev for the various operator

・ロト ・日 ・ ・ 日 ・ ・ 日 ・

Motivations	Wig	$\mathcal{N}=2, \ D=4$ MESGT	$\mathcal{N}=$ 2, $D=$ 5 MESGT	Final Results
000	00	0	0	

The wig generates fermionic corrections (in the forms of bilinears) to bosonic objects, such as the metric and the gauge field. What are them?

- No classical counterpart
- Generated through supersymmetry

Idea: treat them as operator \rightarrow vev need to be taken!

- Quantize the fermionic zero mode
- Compute quantistic vev for the various operator

But: very difficult for gravity! Use monopoles instead

(work in progress . . .)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Motivations	Wig
0	00
00	

\mathcal{N}	2,	D	4	MESGT
0				

 $\mathcal{N} = 2, \ D = 5 \text{ MESG}$

Results and Open Issues

Wig computation

• Dual Fluid: no dissipative corrections \oplus presence of ne

Analysis of Energy Momentum Tensor

1209.4100 - 1302.5060

• Wigs for AdS_3 , AdS_4 and AdS_5 BH

1207.0686 - 1209.4100

Other models

• AdS_5 : 1st order correction to Euler equations \oplus Fermionic Corrections to AdS_3 dual Fluid

1105.4706 - 1302.5060

- Modification of AM in $\mathcal{N} = 2 D = 4$
- Modification of AM in $\mathcal{N} = 2 D = 5$

1309.0821 - 1403.5097

Minimally coupled Sugra

・ロト ・ 同ト ・ ヨト

Susy Fluid-dynamics

Motivations	Wig	
0	00	
00		

 $\mathcal{N} = 2, \ D = 4 \text{ MESGT}$

 $\mathcal{N} = 2, \ D = 5 \text{ MESG}$

Results and Open Issues

Wig computation

 $\bullet\,$ Dual Fluid: no dissipative corrections $\oplus\,$ presence of new dof

Analysis of Energy Momentum Tensor

1209.4100 - 1302.5060

• Wigs for AdS₃, AdS₄ and AdS₅ BH

1207.0686 - 1209.4100

Other models

Susy

Fluid-dynamics

 AdS₅: 1st order correction to Euler equations ⊕ Fermionic Corrections to AdS₃ dual Fluid

1105.4706 - 1302.5060

- Modification of AM in $\mathcal{N} = 2 D = 4$
- Modification of AM in $\mathcal{N} = 2 D = 5$

1309.0821 - 1403.5097

・ロト ・ 同ト ・ ヨト

Minimally coupled Sugra

Motivations	Wig	$\mathcal{N}=$ 2, $D=$ 4 MESGT	$\mathcal{N}=$ 2, $\mathit{D}=$ 5 MESGT
0	00	0	0
00		0	

Results and Open Issues

Wig computation

 $\bullet\,$ Dual Fluid: no dissipative corrections $\oplus\,$ presence of new dof

Analysis of Energy Momentum Tensor

1209.4100 - 1302.5060

Final Results

• Wigs for AdS_3 , AdS_4 and AdS_5 BH

1207.0686 - 1209.4100

Other models

Minimally coupled Sugra

• AdS_5 : 1st order correction to Euler equations \oplus Fermionic Corrections to AdS_3 dual Fluid

1105.4706 - 1302.5060

- Modification of AM in N = 2 D = 4
- Modification of AM in $\mathcal{N} = 2 D = 5$

1309.0821 - 1403.5097

15/15

・ロト ・四ト ・ヨト ・ヨト

• To Do:

Susy Fluid-dynamics

Motivations	Wig	$\mathcal{N}=$ 2, $\mathit{D}=$ 4 MESGT	$\mathcal{N}=$ 2, $\mathit{D}=$ 5 MESGT
0 00	00	0	0

Results and Open Issues

Wig computation

• Dual Fluid: no dissipative corrections \oplus presence of new dof

Analysis of Energy Momentum Tensor

1209.4100 - 1302.5060

Final Results

• Wigs for AdS₃, AdS₄ and AdS₅ BH

1207.0686 - 1209.4100

Other models

Minimally coupled Sugra

• AdS_5 : 1st order correction to Euler equations \oplus Fermionic Corrections to AdS_3 dual Fluid

1105.4706 - 1302.5060

- Modification of AM in $\mathcal{N} = 2 D = 4$
- Modification of AM in $\mathcal{N} = 2 D = 5$

1309.0821 - 1403.5097

15/15

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

• To Do:

Susy Fluid-dynamics
Motivations	Wig	$\mathcal{N}=$ 2, $\mathit{D}=$ 4 MESGT	$\mathcal{N}=$ 2, $D=$ 5 MESGT
0 00	00	0	0

Wig computation

• Dual Fluid: no dissipative corrections \oplus presence of new dof

Analysis of Energy Momentum Tensor

1209.4100 - 1302.5060

Final Results

• Wigs for AdS₃, AdS₄ and AdS₅ BH

1207.0686 - 1209.4100

Other models

Minimally coupled Sugra

• AdS_5 : 1st order correction to Euler equations \oplus Fermionic Corrections to AdS_3 dual Fluid

1105.4706 - 1302.5060

- Modification of AM in N = 2 D = 4
- Modification of AM in $\mathcal{N} = 2 D = 5$

1309.0821 - 1403.5097

15/15

A B A B A B A
 A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• To Do:

Motivations	Wig	$\mathcal{N}=$ 2, $\mathit{D}=$ 4 MESGT	$\mathcal{N}=2, \ D=5$ MESGT
000	00	0	0

Wig computation

• Dual Fluid: no dissipative corrections \oplus presence of new dof

Analysis of Energy Momentum Tensor

1209.4100 - 1302.5060

Final Results

• Wigs for AdS₃, AdS₄ and AdS₅ BH

1207.0686 - 1209.4100

Other models

• AdS_5 : 1st order correction to Euler equations \oplus Fermionic Corrections to AdS_3 dual Fluid

1105.4706 - 1302.5060

- Modification of AM in N = 2 D = 4
- Modification of AM in $\mathcal{N} = 2 D = 5$

Fermions, Wigs and Attractors

1309.0821 - 1403.5097

Motivations	Wig	$\mathcal{N}=$ 2, $\mathit{D}=$ 4 MESGT	$\mathcal{N}=$ 2, $\mathit{D}=$ 5 MESGT
0 00	00	0	0

Wig computation

• Dual Fluid: no dissipative corrections \oplus presence of new dof

Analysis of Energy Momentum Tensor

1209.4100 - 1302.5060

Final Results

• Wigs for AdS₃, AdS₄ and AdS₅ BH

1207.0686 - 1209.4100

Other models

• AdS_5 : 1st order correction to Euler equations \oplus Fermionic Corrections to AdS_3 dual Fluid

1105.4706 - 1302.5060

- Modification of AM in N = 2 D = 4
- Modification of AM in $\mathcal{N} = 2 D = 5$

1309.0821 - 1403.5097

15/15

・ロト ・ 同ト ・ ヨト

Minimally coupled Sugra

• To Do:

Motivations	Wig	$\mathcal{N}=$ 2, $\mathit{D}=$ 4 MESGT	$\mathcal{N}=$ 2, $\mathit{D}=$ 5 MESGT
0 00	00	0	0

Wig computation

• Dual Fluid: no dissipative corrections \oplus presence of new dof

Analysis of Energy Momentum Tensor

1209.4100 - 1302.5060

Final Results

• Wigs for AdS₃, AdS₄ and AdS₅ BH

1207.0686 - 1209.4100

Other models

• AdS_5 : 1st order correction to Euler equations \oplus Fermionic Corrections to AdS_3 dual Fluid

1105.4706 - 1302.5060

- Modification of AM in N = 2 D = 4
- Modification of AM in $\mathcal{N} = 2 D = 5$

1309.0821 - 1403.5097

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

• To Do:

- "Twin wigs" (wigs of twin-supergravities)
- Wigs of Monopoles in $\mathcal{N} = 2$ SYM and intepretation

Minimally coupled Sugra

Fermions, Wigs and Attractors

Motivations	Wig	$\mathcal{N}=2, \ D=4$ MESGT	$\mathcal{N}=$ 2, $D=$ 5 MESGT
0 00	00	0	0

Wig computation

Analysis of Energy Momentum Tensor

1209.4100 - 1302.5060

Final Results

• Wigs for AdS₃, AdS₄ and AdS₅ BH

1207.0686 - 1209.4100

Other models

Minimally

coupled Sugra

• *AdS*₅: 1st order correction to Euler equations \oplus Fermionic Corrections to AdS₃ dual Fluid

1105.4706 - 1302.5060

- Modification of AM in $\mathcal{N} = 2 D = 4$
- Modification of AM in $\mathcal{N} = 2 D = 5$

1309.0821 - 1403.5097

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

• To Do:

- "Twin wigs" (wigs of twin-supergravities)

Susy Fluid-dynamics

Fermions, Wigs and Attractors

Motivations	Wig	$\mathcal{N}=$ 2, $\mathit{D}=$ 4 MESGT	$\mathcal{N}=$ 2, $\mathit{D}=$ 5 MESGT
0 00	00	0	0

Wig computation

 $\bullet\,$ Dual Fluid: no dissipative corrections $\oplus\,$ presence of new dof

Analysis of Energy Momentum Tensor

1209.4100 - 1302.5060

Final Results

• Wigs for AdS₃, AdS₄ and AdS₅ BH

1207.0686 - 1209.4100

Other models

• AdS_5 : 1st order correction to Euler equations \oplus Fermionic Corrections to AdS_3 dual Fluid

1105.4706 - 1302.5060

- Modification of AM in $\mathcal{N} = 2 D = 4$
- Modification of AM in $\mathcal{N} = 2 D = 5$

1309.0821 - 1403.5097

15/15

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

To Do:

- "Twin wigs" (wigs of twin-supergravities)
- Wigs of Monopoles in $\mathcal{N} = 2$ SYM and intepretation

Minimally coupled Sugra

Fermions, Wigs and Attractors