

and Review of $P \to e^+e^-$ Measurements

Simon Eidelman

Budker Institute of Nuclear Physics SB RAS and Novosibirsk State University, Novosibirsk, Russia

Outline

1. General

- 2. $\eta' \rightarrow e^+e^-$ at CMD-3
- 3. Status of $P \to e^+ e^-$
- 4. Conclusions

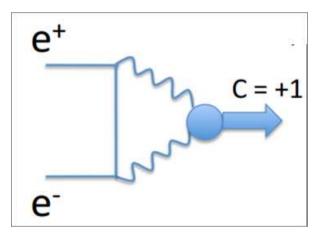
S.Eidelman, BINP

General

Why are $P \rightarrow l^+ l^-$ decays interesting?

- 1. Comparison to theory, test of various models See the talk of P. Masjuan
- Information on Pγ^(*)γ^(*) form factors is important for the hadronic light-by-light contribution, new dispersive approach by G. Colangelo et al., JHEP 09 (2014) 091 See the talks of M. Hoferichter, B. Kubis and A. Wirzba
- 3. All previous model calculations predict that the largest contribution to a_{μ}^{LBL} comes from the π^0 , η , η'

Status	of	P	\rightarrow	l^+	l^{-}	Studies
--------	----	---	---------------	-------	---------	---------


Helicity suppression \Rightarrow

Decay mode	$\mathcal{B}_{ ext{exp}}$	Events	Group	$\mathcal{B}_{ ext{unit.bound}}$
$\pi^0 \to e^+ e^-$	$(6.46 \pm 0.33) \cdot 10^{-8}$	794	KTEV, 2008	$4.8 \cdot 10^{-8}$
$\eta \to e^+ e^-$	$< 5.6 \cdot 10^{-6}$		HADES, 2012	$1.8 \cdot 10^{-9}$
$\eta \to \mu^+ \mu^-$	$(5.7 \pm 0.9) \cdot 10^{-6}$	114	SATURNEII, 1994	$4.3\cdot 10^{-6}$
$\eta' \to e^+ e^-$	$< 2.1 \cdot 10^{-7}$	_	ND, 1988	$3.75 \cdot 10^{-11}$
$K_L^0 \to e^+ e^-$	$(9^{+6}_{-4}) \cdot 10^{-12}$	4	B871, 1998	$3.0 \cdot 10^{-12}$
$K_L^0 \to \mu^+ \mu^-$	$(6.84 \pm 0.11) \cdot 10^{-9}$	6210	B871, 2000	$6.8 \cdot 10^{-9}$

Photon virtualities and transition f/f can enhance the unitarity bound \mathcal{B}

Search for C-even resonances in $e^+e^- - I$

Direct production of C-even resonances in e^+e^- collisions is possible via a $\gamma\gamma$ intermediate state.

The unitarity bound assuming 2 real photons is

$$\mathcal{B}_{P \to l^+ l^-} = \mathcal{B}_{P \to \gamma \gamma} \frac{\alpha^2}{2\beta} \left(\frac{m_e}{m_P}\right)^2 \left[\ln\left(\frac{1+\beta}{1-\beta}\right)\right]^2, \beta = \sqrt{1 - 4\left(\frac{m_e}{m_P}\right)^2}.$$

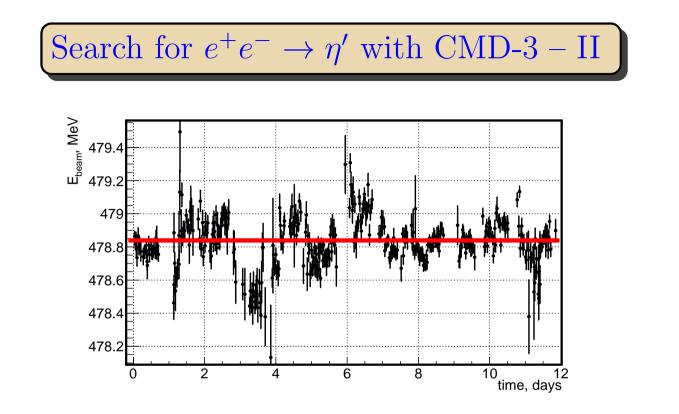
For η' the unitarity bound is $\mathcal{B} = 3.75 \cdot 10^{-11}$

"Standard" mechanism via $e^+e^- \rightarrow e^+e^-P$ involves two almost real photons and provides $\Gamma(P \rightarrow \gamma \gamma)$ only

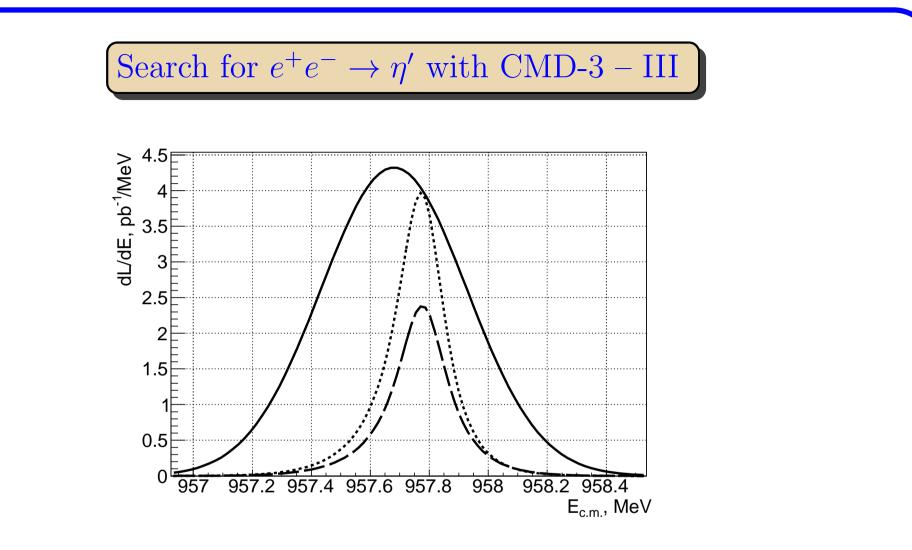
Search for C-even resonances in $e^+e^- - II$

 $\eta'(958)$, $f_0(980)$, $a_0(980)$, $f_2(1270)$, $a_2(1320)$ and $f_0(1370)$ mesons were studied with the ND (1988) and SND (2000) detectors at the VEPP-2M collider.

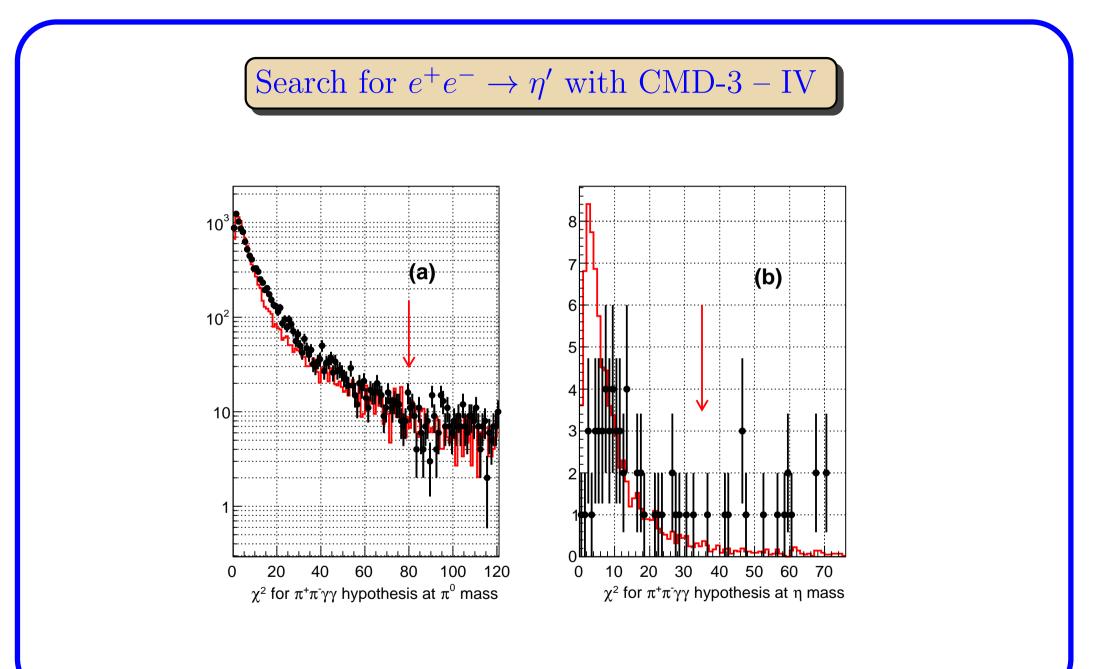
State	Mode	$\Gamma(e^+e^-)_{\rm exp},{\rm eV}$	Group	$\Gamma(e^+e^-)_{\rm unit.bound}, {\rm eV}$
$\eta'(958)$	$\eta \pi^+ \pi^-$	< 0.06	ND	$7.5\cdot 10^{-6}$
$f_0(980)$	$\pi^0\pi^0$	< 8.4	ND	
$a_0(980)$	$\eta\pi^0$	< 1.5	ND	
$f_2(1270)$	$\pi^0\pi^0$	< 0.11	SND	0.03
$a_2(1320)$	$\eta\pi^0$	< 0.56	SND	0.01
$f_0(1370)$	$\pi^0\pi^0$	< 20	ND	

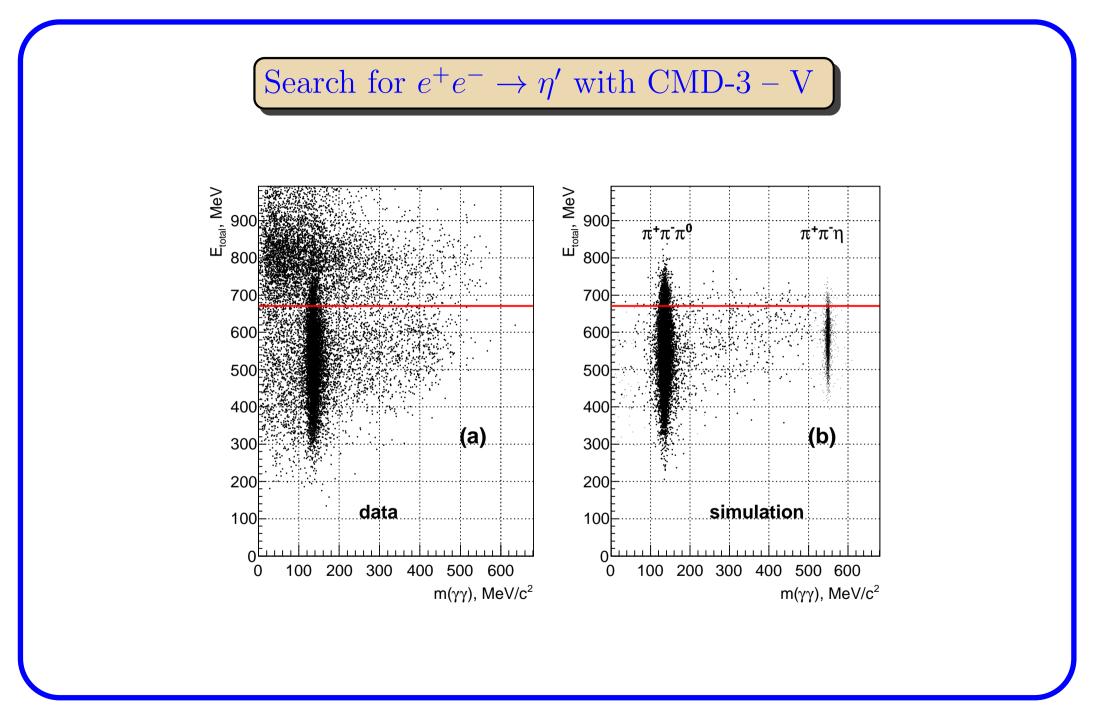

ND, P.V. Vorobyev et al., Sov. J. Nucl. Phys. 48 (1988) 273
SND, M.N. Achasov et al., Phys. Lett. 492 (2000) 8

Search for $e^+e^- \rightarrow \eta'$ with CMD-3 – I

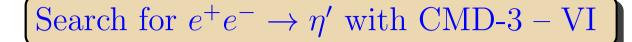

CMD-3 repeated a search for the process $e^+e^- \rightarrow \eta'(958) \rightarrow \eta \pi^+\pi^-$, $\eta \rightarrow 2\gamma$ using $\int Ldt = 2.69 \text{ pb}^{-1}$ collected with the CMD-3 detector at the VEPP-2000 c.m. energy $E_{\text{c.m.}} \approx m_{\eta'} = 957.78 \pm 0.06 \text{ MeV}/c^2$

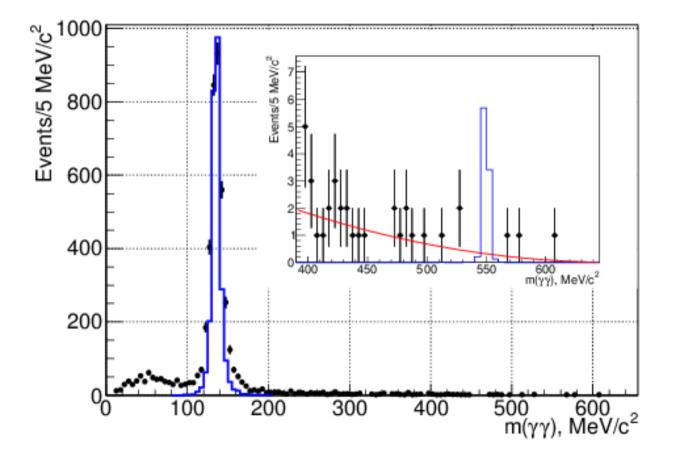
The total width of the η' is rather small, (198 ± 9) keV, it is very important to have c.m. energy close to this value. The collider beam energy was continuously monitored during the whole period of data taking (12 days) using the Back-Scattering-Laser-Light system providing the accuracy of $6 \cdot 10^{-5}$


R.R. Akhmetshin et al., arXiv:1409.1664, submitted to Phys. Lett. B



Measurements of the beam energy show good stability of the collider energy. The average value of the c.m. energy is $E_{c.m.}^{av.} = 957.678 \pm 0.014$ MeV with a few deviations of up to 0.2 MeV, corresponding to less than 5% of the integrated luminosity, which are still within an energy spread of the collider The collider beams have an energy spread mainly due to the quantum effects. For VEPP-2000 the c.m. energy spread $\sigma_{E_{c.m.}} = (0.246 \pm 0.030)$ MeV

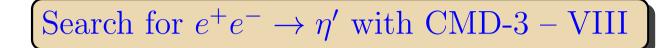



Energy spread (FWHM = 0.590 MeV) is much larger than $\Gamma_{\eta'}$. The differential luminosity distribution dL/dE versus the $E_{\rm c.m.}$ normalized to the $\int Ldt = 2.69 \text{ pb}^{-1}$ should be convolved with a Breit-Wigner (BW) for the η' line shape and a radiator

S.Eidelman, BINP

Search for
$$e^+e^- \rightarrow \eta'$$
 with CMD-3 – VII

From the absence of the signal


 $\Gamma_{\eta' \to e^+ e^-} \mathcal{B}_{\eta' \to \pi \pi \eta} \mathcal{B}_{\eta \to \gamma \gamma} < 0.00041 \text{ eV at } 90\% \text{ C.L.}$

and with $\mathcal{B}_{\eta'\to\pi\pi\eta}$ and $\mathcal{B}_{\eta\to\gamma\gamma}$ from PDG:

 $\Gamma_{\eta' \to e^+ e^-} < 0.0024 \text{ eV}$

Group	ND, 1988	CMD-3, 2014
$\Gamma_{\eta' \to e^+ e^-}, \mathrm{eV}$	< 0.06	< 0.0024
$\Gamma_{\eta'}, \mathrm{keV}$	~ 300	198 ± 9
$\mathcal{B}_{\eta' \to e^+ e^-}, 10^{-8}$	< 21	< 1.2

Much more stringent than that of ND, but still 300 times higher than the unitarity bound

Can we reach the unitarity bound? Possible (realistic) improvements include:

- Higher luminosity $(4 \cdot 10^{30} \text{cm}^{-2} \text{s}^{-1}) 4$
- More decay channels of η' and $\eta 2$
- Longer data taking period (2 weeks) 12
- The total gain ~ 100

Less realistic, but not completely excluded, is an option of a new collider in one of the existing BINP tunnels with much higher luminosity making observation possible

Search for $e^+e^- \rightarrow \eta'$ with CMD-3 – IX

A chance for the Super-tau-charm factory in Novosibirsk to get funding ($\sim 200 \cdot 10^6$ Euro) looks currently unlikely, the alternative suggestions based on crab waist include:

A machine in the VEPP-4 tunnel (360 m circumference):

$E_{\text{beam}}, \text{GeV}$	0.5	1.0	1.5	2.1
$L, 10^{35} \mathrm{cm}^{-1} \mathrm{s}^{-1}$	0.92	0.92	1.3	1.3

A less ambitious project considers

a machine in the VEPP-3 tunnel (80 m circumference):

$E_{\rm beam}, {\rm GeV}$	0.5	0.75	1.0	1.2	1.55
$L, 10^{34} \mathrm{cm}^{-1} \mathrm{s}^{-1}$	0.954	1.49	1.81	1.86	1.60

This increases the number of the ϕ by 2-3 and J/ψ by 1-2 orders

Revised Status of $P \rightarrow l^+ l^-$ Decay Searches

Decay mode	$\mathcal{B}_{ ext{exp}}$	Events	Group	$\mathcal{B}_{ ext{unit.bound}}$
$\pi^0 \to e^+ e^-$	$(6.46 \pm 0.33) \cdot 10^{-8}$	794	KTEV, 2008	$4.8 \cdot 10^{-8}$
$\eta \to e^+ e^-$	$< 5.6 \cdot 10^{-6}$	_	HADES, 2012	$1.8 \cdot 10^{-9}$
$\eta \to \mu^+ \mu^-$	$(5.7 \pm 0.9) \cdot 10^{-6}$	114	SATURNEII, 1994	$4.3 \cdot 10^{-6}$
$\eta' \to e^+ e^-$	$< 1.2 \cdot 10^{-8}$	_	CMD-3, 2014	$3.75 \cdot 10^{-11}$
$K_L^0 \to e^+ e^-$	$(9^{+6}_{-4}) \cdot 10^{-12}$	4	B871, 1998	$3.0 \cdot 10^{-12}$
$K_L^0 \to \mu^+ \mu^-$	$(6.84 \pm 0.11) \cdot 10^{-9}$	6210	B871, 2000	$6.8 \cdot 10^{-9}$

HADES improved the upper limit for $\mathcal{B}(\eta \to e^+e^-)$ by a factor of 6 CMD-3 improved the upper limit for $\mathcal{B}(\eta' \to e^+e^-)$ by a factor of 18

Future Possibilities – I

- ϕ meson decays at KLOE-2, ω mesons are more readily produced at COSY, JLAB etc.
- J/ψ and $\psi(2S)$ meson decays at BES-III, but $\psi(2S)$ are not promising
- π⁰ mesons from K[±] → π[±]π⁰ decays, NA48/2 collected 2 · 10¹¹ K[±] decays corresponding to 10¹⁰ completely reconstructed π⁰'s, NA62 will have 50 times more, but downscaled (E. Goudzovski), a few thousands expected (KTEV ~ 800 from K⁰_L → 3π⁰ decays)
- Promising numbers of π⁰, η, η' can come from hadronic collisions (Crystal Ball at MAMI, Crystal Barrel at ELSA, GLUEX and CLAS at JLAB)

Future Possibilities – II

Decay	ϕ	J/ψ	$\psi(2S)$
$\pi^0\gamma$	$1.3 \cdot 10^{-3} \ (10^7)$	$3.5 \cdot 10^{-5} \ (3.5 \cdot 10^5)$	$1.6 \cdot 10^{-6}$
$\eta\gamma$	$1.3 \cdot 10^{-2} \ (10^8)$	$1.1 \cdot 10^{-3} \ (10^7)$	$1.4 \cdot 10^{-6}$
$\eta'\gamma$	$6.2 \cdot 10^{-5} \ (6 \cdot 10^5)$	$5.2 \cdot 10^{-3} (5 \cdot 10^7)$	$1.2 \cdot 10^{-4}$

It is clear that $\psi(2S)$ mesons can't compete with the J/ψ The numbers in () correspond to the numbers of PS mesons produced in radiative decays. We assume 10^{10} of both ϕ and J/ψ available (about 5 fb⁻¹ at KLOE-2 and ×7 at BESIII)

Conclusions

- $\mu^+\mu^-$ decays of the η and η' have been observed with \mathcal{B} consistent with the unitarity bound
- The most precise measurement for $\pi^0 \to e^+e^-$ has \mathcal{B} significantly higher than the unitarity bound
- Most probable improvement for $\pi^0 \to e^+e^-$ can come from NA62
- ϕ factories with luminosity 2-3 orders higher than today will allow observation of all $P \rightarrow l^+l^-$ decays
- Searches for $e^+e^- \to R$ seem feasible for scalars and tensors
- Many thanks again to A. Kupść for encouragement and support!