Probing QCD with Drell-Yan and quarkonium in nuclear collisions

François Arleo

LLR Palaiseau

IWHSS17

Cortona, Italy - April 2017

This talk

- Introduce various nuclear effects known to affect hard processes in nuclear collisions (pA, γ^*A)
 - nuclear parton distribution functions (nPDF)
 - parton energy loss in nuclear matter
- Show how future measurements could be useful to understand these effects
 - Structure functions and hadron production in DIS on nuclei
 - ► Charmonium and Drell-Yan in pA collisions

References

- FA, 1612.07987 (brief discussion on hard processes in pA)
- FA, S. Peigné, 1204.4609, 1212.0434 (quarkonia), 1512.01794 (DY), 1504.07428 (LHC fixed-target)
- FA, hep-ph/0201066 (DY at fixed target)
- FA, hep-ph/0306235 (hadron production in SIDIS)

Why hard processes in pA collisions?

Hard processes (with a large energy scale $Q\gg \Lambda_{_{\mathrm{QCD}}})$

$$pp \rightarrow (h, \gamma, Z,...) + X$$

- Great variety
 - ▶ Drell-Yan, light/heavy hadrons, photons, W/Z, jets, . . .
- Well known in QCD
 - computed in perturbation theory and systematically compared to pp
 - caveat: hadron production (especially quarkonia) less understood

Why hard processes in pA collisions?

Hard processes (with a large energy scale $Q\gg \Lambda_{_{\mathrm{QCD}}})$

$$pp \rightarrow (h, \gamma, Z,...) + X$$

- Great variety
 - ▶ Drell-Yan, light/heavy hadrons, photons, W/Z, jets, . . .
- Well known in QCD
 - computed in perturbation theory and systematically compared to pp
 - caveat: hadron production (especially quarkonia) less understood

pA collisions

- 'Simple' medium: static, known density profile
- Easier measurements (than in AA) due to smaller underlying event

Factorization in pA collisions

See the nucleus as an ordinary hadron

$$\frac{\mathrm{d}\sigma_{\mathrm{pA}}}{\mathrm{d}y\,\mathrm{d}Q} = \sum_{i,i} \int \mathrm{d}x_{1} \ f_{i}^{p}(x_{1},\mu) \int \mathrm{d}x_{2} \ f_{j}^{A}(x_{2},\mu) \frac{\mathrm{d}\hat{\sigma}_{ij}(Q,\mu')}{\mathrm{d}y\,\mathrm{d}Q} + \mathcal{O}\left(\frac{\mathsf{\Lambda}_{\mathrm{A}}^{n}}{Q^{n}}\right)$$

- Universal nuclear PDF (nPDF)
 - could be probed in various processes and collision systems (pA, γ^*A)
- ullet New scale for power corrections $(\Lambda_{_{
 m A}}>\Lambda_{_{
 m D}})$
 - specific processes like parton energy loss enhanced in pA collisions
 - ... could spoil the extraction of nuclear PDF

Factorization in pA collisions

See the nucleus as an ordinary hadron

$$\frac{\mathrm{d}\sigma_{\mathrm{pA}}}{\mathrm{d}y\ \mathrm{d}Q} = \sum_{i,j} \int \mathrm{d}x_1 \ f_i^{p}(x_1,\mu) \int \mathrm{d}x_2 \ f_j^{A}(x_2,\mu) \frac{\mathrm{d}\hat{\sigma}_{ij}(Q,\mu')}{\mathrm{d}y\ \mathrm{d}Q} + \mathcal{O}\left(\frac{\mathsf{\Lambda}_{\mathrm{A}}^{n}}{Q^{n}}\right)$$

- Universal nuclear PDF (nPDF)
 - \triangleright could be probed in various processes and collision systems (pA, γ^*A)
- ullet New scale for power corrections $(\Lambda_{_{
 m A}}>\Lambda_{_{
 m D}})$
 - specific processes like parton energy loss enhanced in pA collisions
 - ... could spoil the extraction of nuclear PDF

What to expect for nuclear PDF?

Nuclear parton distribution functions

Discovery of the EMC effect

First evidence of nuclear PDF modifications by EMC in 1983

• Structure functions in D and Fe are different in the range $0.05 \lesssim x \lesssim 0.5$

Nuclear PDF today

- Active field of research!
- nPDF ratios f_i^A/f_i^P extracted from global fits of data [DSSZ, nCTEQ15, KA15, EPPS16...]
 - ▶ Use data on F_2 (DIS), Drell-Yan, hadrons, W/Z, jets (pA collisions)

Nuclear Parton Distribution Functions (nPDF)

Parton densities are modified in nuclei

- Depletion ('shadowing') expected at small x
- Poor constraints, especially at small-x and in the gluon channel
- Crucial need to use LHC pPb data
 [Eskola et al. EPPS16 1612.05741]
- Future COMPASS data on F₂ could help tremendously!

[nCTEQ15, 1509.00792]

Probing nPDF at the LHC

- Ideally, looking for processes sensitive to PDF only
 - Avoid hadron production sensitive to energy loss effects
- Best candidates
 - Weak bosons
 - Jets
 - Drell-Yan

Weak bosons

W/Z measured recently in pPb by ALICE, ATLAS & CMS

- W boson rapidity asymmetry measured by CMS
 - data favor nuclear PDF modifications

Weak bosons

Lepton charge asymmetry

$$rac{N_\ell^+ - N_\ell^-}{N_\ell^+ + N_\ell^-}$$

- Tension at negative ηo possible flavour dependence $R_u^A
 eq R_d^A$
 - ▶ Isospin symmetry $R_u^A = R_d^A$ often assumed due to lack of data
 - ...which could be tested by COMPASS!

Talk Vincent Andrieux, Monday 15:20

Drell-Yan

A golden probe of sea quark (and gluon) shadowing...at the LHC

- ullet Low scale $Q\sim 10$ GeV can be reached where nPDF effects are largest
 - better than weak bosons, jets, prompt photons
 - mass can be varied
- Very well understood in QCD
 - better than light or heavy hadrons
 - factorization proven for DY

Drell-Yan at the LHC

- NLO calculations using DSSZ, EPS09 and nCTEQ15
 - should reveal sea quark shadowing at low scale
- To be measured by LHCb at fwd/bwd rapidity in pPb Run 2

Parton energy loss

Energy loss-es

On top of momentum broadening, parton multiple scattering in nuclei induces gluon radiation \rightarrow energy loss in cold nuclear matter

Energy loss-es

On top of momentum broadening, parton multiple scattering in nuclei induces gluon radiation \rightarrow energy loss in cold nuclear matter

- Could affect many hard processes!
 - ▶ Drell-Yan in low energy pA and π A collisions
 - ▶ Hadron production in semi-inclusive DIS $\gamma^*A \rightarrow h + X$
 - Quarkonium in pA collisions at all energy
- ullet Parametric dependence depends on the gluon formation time t_f

Parametric dependence

Small formation time $t_f \lesssim L$ (LPM energy loss)

$$\Delta E_{\text{\tiny LPM}} \propto \alpha_s \ \hat{q} \ L^2$$

- Drell-Yan in pA and π A collisions
- Hadron production in semi-inclusive DIS on nuclei
- ullet Only relevant at 'low' parton energy since $\Delta E_{\scriptscriptstyle
 m LPM}/E \sim 1/E$

Large formation time $t_f \gg L$ (fully coherent energy loss)

$$\Delta E_{
m coh} \propto lpha_{
m s} \; F_{
m c} \; rac{\sqrt{\hat{q} \; L}}{M_{\perp}} \; E \quad (\gg \Delta E_{
m \tiny LPM})$$

- Absent in DY and in DIS
- Important for hadron production in pA collisions at all energies

Model for J/ψ suppression from coherent energy loss

Energy shift

$$\frac{1}{A} \frac{\mathrm{d}\sigma_{\mathrm{pA}}^{\psi}}{\mathrm{d}E} \left(E, \sqrt{s} \right) = \int_{0}^{\varepsilon_{\mathrm{max}}} \mathrm{d}\varepsilon \, \mathcal{P}(\varepsilon, E) \, \frac{\mathrm{d}\sigma_{\mathrm{pp}}^{\psi}}{\mathrm{d}E} \left(E + \varepsilon, \sqrt{s} \right)$$

- pp cross section fitted from experimental data
- $\mathcal{P}(\epsilon)$: quenching weight related to induced gluon spectrum

$$P(\epsilon) \simeq rac{dI(\epsilon)}{d\omega} \, \exp\left\{-\int_{\epsilon}^{\infty} d\omega rac{dI}{d\omega}
ight\}$$

- Medium length L given by Glauber model
- Transport coefficient

$$\hat{q}(x) = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \rho x G(x) = \hat{\mathbf{q}}_0 \left(\frac{10^{-2}}{x}\right)^{0.3} ; \; \hat{\mathbf{q}}_0 = 0.075 \; \text{GeV}^2/\text{fm}$$

15 / 22

Comparing to low energy pA and π A data

Simple fully coherent energy loss model able to solve the longstanding issue of J/ψ forward suppression pA data [FA Peigné, 1212.0434]

- Good agreement with E866, NA3, NA60, HERA-B data
- no nPDF global fit can explain these data

RHIC predictions ($\sqrt{s} = 200 \text{ GeV}$)

- Good agreement for R_{pA} vs rapidity
- Small uncertainty coming from the variation of the pp cross section and the transport coefficient

LHC predictions ($\sqrt{s} = 5 \text{ TeV}$)

- Moderate effects ($\sim 20\%$) around mid-rapidity, smaller at y < 0
- Large effects above $y \gtrsim 2-3$
- ullet Smaller suppression expected in the Υ channel

LHC predictions ($\sqrt{s} = 5$ TeV)

- Very good agreement with ALICE and LHCb results, despite large uncertainty on normalization
- Data at $y \gtrsim 4$ would be helpful

Probing LPM energy loss: (1) Drell-Yan

- Quarkonium production is sensitive to coherent energy loss
- Drell-Yan is sensitive to LPM energy loss
 - sensitivity only at low energy!
 - ► COMPASS ideal experiment to probe energy loss in this regime

Probing LPM energy loss: (1) Drell-Yan

- Quarkonium production is sensitive to coherent energy loss
- Drell-Yan is sensitive to LPM energy loss

 NA3 data (1983!) allow to set constraints on the amount of energy loss (transport coefficient q̂)

[FA, hep-ph/0201066]

 More precise data on a large x_F range would help

Probing LPM energy loss (2): hadron production in SIDIS

Energy loss can be probed by looking at hadron fragmentation function

Probing LPM energy loss (2): hadron production in SIDIS

Energy loss can be probed by looking at hadron fragmentation function

$$rac{1}{N_A^e}rac{dN_A^h(
u,z)}{d
u\,dz}\simeq D_u^h(z,Q^2,A)$$

- Wealth of data by HERMES and CLAS
- Access to 'medium-modified' fragmentation functions due to energy loss effects

[FA, hep-ph/0306235]

Future measurements (?)

- Probing nuclear PDF
 - \triangleright F_2 in DIS
 - ightharpoonup Access quark nPDF at large x ~ 0.1
- Probing LPM energy loss
 - ▶ Drell-Yan in $\pi^{\pm}A$
 - hadron fragmentation function in semi-inclusive DIS
 - Access transport coefficient, universality of LPM energy loss
- Probing coherent energy loss
 - Quarkonium (and light hadron)
 - Access transport coefficient, parametric dependence of coherent energy loss
- Probing quarkonium production dynamics
 - lacktriangle Compare DY and quarkonium transverse momentum broadening $\langle p_{_\perp}^2
 angle$

Summary

- Hard processes in pA reveal many facets of QCD processes
 - ▶ Nuclear PDF, momentum broadening, radiative energy loss. . .
- A challenge for theorists: clarify the role of each process on various observables and at different energies
 - still a long way to go...but very encouraging progress already made
- Impressive data collected at LHC and earlier. And more to come!
 - ▶ ... pPb Run 2 at $\sqrt{s} = 8.16$ TeV last November
- Not just LHC! Nuclear effects can also (best!) be studied in...
 - ▶ DIS on nuclei
 - Low-energy hadron-nucleus collisions

Summary

- Hard processes in pA reveal many facets of QCD processes
 - ▶ Nuclear PDF, momentum broadening, radiative energy loss. . .
- A challenge for theorists: clarify the role of each process on various observables and at different energies
 - ▶ still a long way to go...but very encouraging progress already made
- Impressive data collected at LHC and earlier. And more to come!
 - ▶ ... pPb Run 2 at $\sqrt{s} = 8.16$ TeV last November
- Not just LHC! Nuclear effects can also (best!) be studied in...
 - ▶ DIS on nuclei
 - Low-energy hadron-nucleus collisions

Thanks!

