Soft and Hard probes of proton multiple scattering in p+Pb collisions with the ATLAS experiment at the LHC

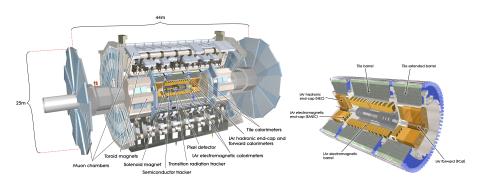
Miguel Arratia on behalf of the ATLAS Collaboration

15th September 2014. Primoten, Croatia

DIFFRACTION 2014 International Workshop on Diffraction in High-Energy Physics

Motivation

The study of particle production and scaling properties and underlying nature of p+Pb collisions,


In p+Pb, nucleons are struck multiple times. Simply an incoherent sum of nucleon-nucleon interactions?

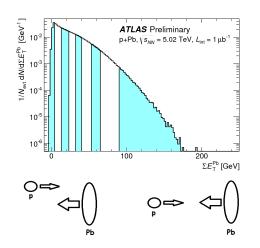
- Hard Probes: Inclusive Jets and Z bosons
- Soft Probes: Charged particle η distributions.

Allow the study initial state nuclear effects.

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults

p+Pb data Data: 2012
$$(1\mu b^{-1})$$
 and 2013 $(30~nb^{-1})$. p = 4 TeV, Pb = 1.57 TeV/A, $\sqrt{s_{NN}}$ = 5.02 TeV and $\Delta y \approx \pm$ 0.47 .

Results presented are based on measurements of:

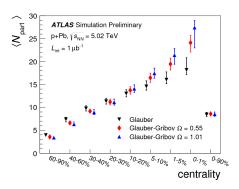

- Electrons (ID, MS, CAL)
- Muons (ID,MS)
- Charged particles (ID)

- Jets (ID, CAL)
- Event activity (FCAL)
- 6 + trigger system

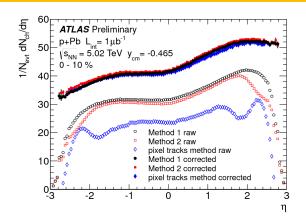
Experimental Selection of Centrality

Geometry of the p+Pb collision is indirectly constrained by measurements of soft particle production in Pb going direction.

(sensitive to multiple interactions in Pb nucleus).

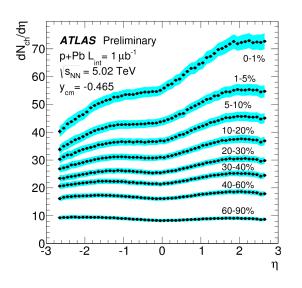


- Centrality characterized by the total E_T deposited in Pb-going Forward Calorimeters.
- Centrality classes defined with percentiles of total E_T: 0-1% (most central), 5-10%, 10-20%....60-90% (most peripheral).
- Class 90-100% excluded from analysis.


Centrality and Geometry

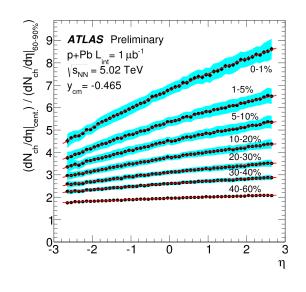
Estimate the number of nucleons that participate in the p+Pb collision, N_{part} , for each centrality class.

- Geometry estimated with semi-classical model. "Glauber" with $\sigma_{\it NN}=70\pm 5$ mb, and
- "Glauber-Gribov" extension with event-by-event fluctuations on σ_{NN} controlled by Ω , estimated from data PLB 633 (2006), PLB 722 (2013) .
- Monte Carlo simulation and fit to measured FCAL E_T used to estimate (N_{part}) in each centrality class.



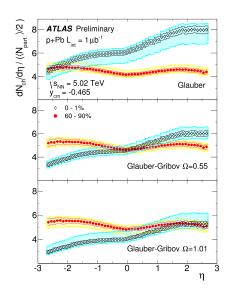
Charged particle reconstruction

- Hits in the first three Pixel detector layers are used.
- Three methods with different systematics and acceptance.
 - Two 2-point tracklet methods. (black and red).
 - 3-point track method (extrapolated to p_T =0). (blue)
- Consistency among methods after corrections.


Charged particle multiplicity vs centrality

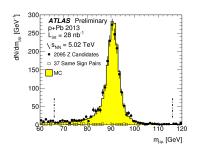
- $dN_{\rm ch}/d\eta$ measured for $|\eta| <$ 2.7 in eight centrality intervals.
- Visible double peak structure.
- Distribution asymmetry has strong centrality dependence.

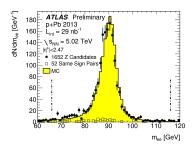
 η < 0 is proton-going.


Ratios to the most peripheral distribution

- Divide by the most peripheral (60-90%) events "pp like".
- Double peak divides out
- Ratio grows linearly with η. Centrality dependent slope

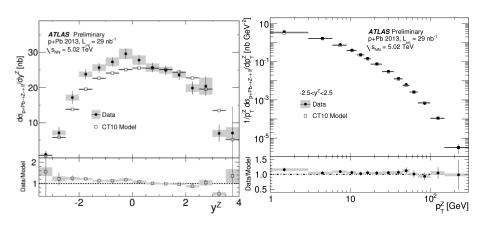
 η < 0 is proton-going.


N_{part} scaling

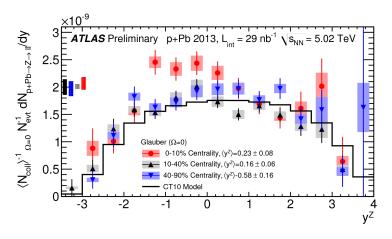


 $\eta < 0$ is proton-going.

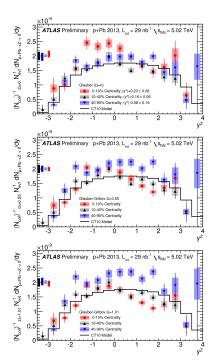
- Normalized to $\langle N_{part}/2 \rangle$ for 0-1% and 60-90% events.
- Same data but different $\langle N_{part} \rangle$ according to three geometrical models
- Intercept (scaling)
 occurs at different η for
 the different models.
- Central events show enhancement at Pb-going side, or suppression at p-going side depending on model.


Z boson reconstruction: $Z \rightarrow \mu\mu$ and $Z \rightarrow ee$

- Dimuon and dielectron channel used. Good agreement; results are combined.
- MC: Powheg CT10, PYTHIA8 showering. Used to correct data. Checked with data-driven methods.
- MC is normalized to total NNLO prediction, used as baseline.


Z boson differential cross-sections

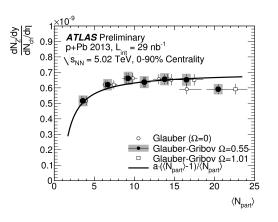
y > 0 is proton-going.


Significant excess at Pb going side with respect to CT10.

Z boson: N_{coll}-scaled centrality differential yield

y > 0 is proton-going.

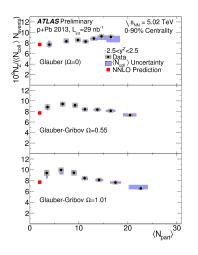
 Significant excess at Pb going side only seen at central events. (Standard Glauber...)

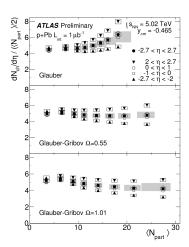

y > 0 is proton-going.

- Same data but different N_{coll} according to three geometric models
- Central events show enhancement at Pb going side, or suppression at p going side depending on geometric model.
- Similar trend as in charged particle multiplicity

Ratio: Z bosons / charged particle multiplicity

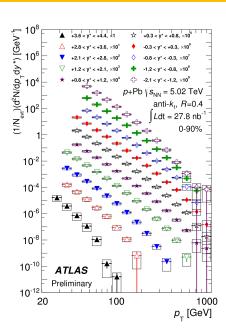
Expectation


Z bosons \propto number of binary nucleon-nucleon collisions. $\langle N_{\rm coll} \rangle$ $dN_{\rm ch}/\eta \propto$ number of participants nucleons $\langle N_{\rm par} \rangle$


- In p+Pb collisions $\langle N_{\rm coll} \rangle = \langle N_{\rm par} \rangle$ -1
- Ratio (model independent) is plotted three times.
 Glauber model and two extensions.
- Data consistent with expectations

Geometric scaling

Z bosons


Charged Particles

Scaling behaviour quite sensitive to geometric modelling. Similar trends in these two different observables.

Jets in p+Pb

- anti-kt R=0.4 calorimeter jets.
- Underlying Event estimated and subtracted with technique designed for Pb+Pb, checked with pp
- Measured in intervals of $y^* = y \Delta y$, p_T and centrality.

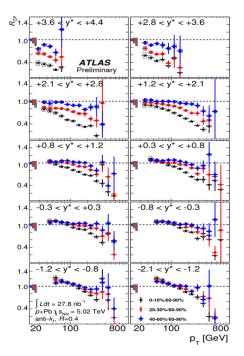
Central to Peripheral Ratio

Null Hyphothesis

 $p{+}Pb$ collisions behave like an incoherent superposition of nucleon-nucleon collisions. That is, there is $\emph{geometric scaling}$

Observable

$$R_{CP} = rac{(1/N_{
m evt})dN^2/dp_{
m T}dy^*}{(1/N_{
m evt})dN^2/dp_{
m T}dy^*} imes R_{
m coll}$$


- Per-event yield in Central p+Pb collisions.
- Per-event yield in Peripheral p+Pb collisions.
- ullet Ratio of $\langle N_{coll} \rangle$ at central and peripheral. Glauber model

In the absence of nuclear effects, $R_{CP} \approx 1$.

Jet $R_{\rm CP}$

 $y^* > 0$ is proton-going.

- Larger suppression at large p_T.
- Smooth centrality dependence.
- Suppression more pronounced at large y*, present even at negative y*

Nuclear modification factor

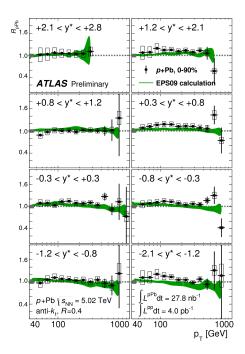
Null Hyphothesis

p+Pb collisions behave like an incoherent superposition of nucleon-nucleon collisions. That is, there is *geometric scaling*

Observable

$$R_{\mathrm{pPb}} = rac{(1/N_{\mathrm{evt}})dN^{2}/dp_{\mathrm{T}}dy^{*}}{T_{\mathrm{pA}} imes d\sigma^{2}/dp_{\mathrm{T}}dy^{*}}$$

- Per-event yield in p+Pb collisions at $\sqrt{s} = 5.02 \text{ TeV}$
- Cross-section in pp collisions at $\sqrt{s}=2.76$ TeV x_T -scaled to $\sqrt{s}=5.02$ TeV .
- Nuclear thickness function $\propto \langle N_{coll} \rangle$, from Glauber Model.

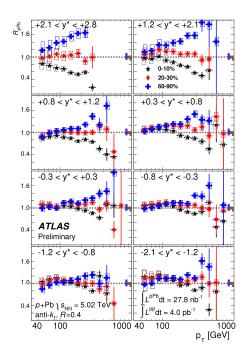

In absence of nuclear effects

$$R_{\rm pPb} = 1$$

Jet R_{pPb} integrated in centrality.

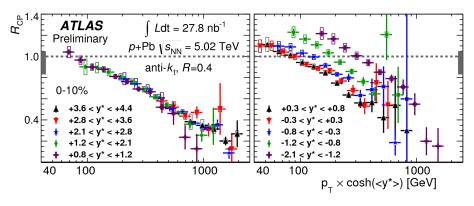
 $y^* > 0$ is proton-going.

- Includes events in 0-90% centrality.
- ≈ 5–10% enhancement over geometric scaling.
- Consistent with predictions, nPDF EPS09.



Jet $R_{\rm pPb}$ vs centrality.

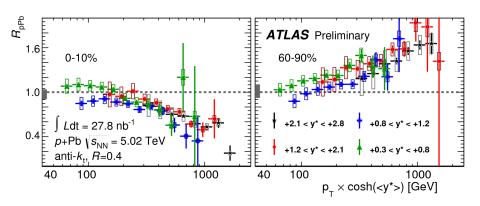
 $y^* > 0$ is proton-going.


0-10% centrality. Suppressed. 60-90% centrality Enhanced!

- Larger modifications at large p_T and forward y*
- Geometric scaling at low p_T and backward y*

R_{CP} vs p

If the data is presented vs $p = p_T \cosh(y^*)$ (total jet energy)

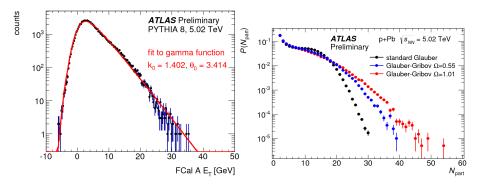


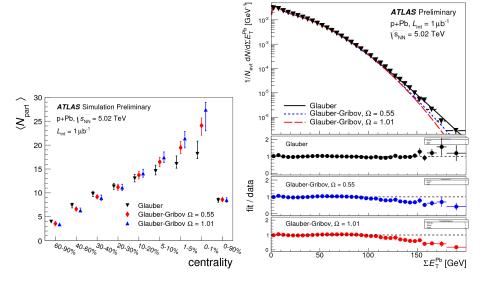
 $y^* > 0$ is proton-going.

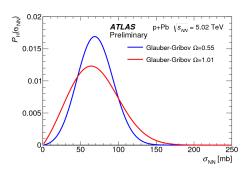
- Data at forward y^* follow same trend.
- Implications for underlying suppression mechanism?

R_{pPb} vs p in central and peripheral events.

If the data is presented vs $p = p_T \cosh(y^*)$ (total jet energy)




 Jet energy scaling less perfect, but present in both central and peripheral events.


Conclusions

- $dN/d\eta$ shows strong centrality dependent asymmetry.
 - Almost linear η dependence when scaled by peripheral (proxy to pp).
- Z rapidity cross-sections show significant asymmetry.
 - Centrality dependent.
- Scaled Z bosons and $dN/d\eta$ show similar N_{part} dependence.
 - Behaviour dependent on geometric model.
 - Show the importance of considering fluctuations in σ_{NN}
- Jet rates mildly enhanced in 0-90% centrality.
 - Consistent with nPDFs expectations
- Strong centrality dependence effects in jets yields.
 - At high p_T, suppression for central events and enhancement for peripheral events.

Stay tuned for more p+Pb results: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults



