NA62: Indirect Searches for New Physics in Rare Kaon Decays

Francesca Bucci (INFN, Sezione di Firenze)

XVII SuperB Workshop and Kick Off Meeting May 28 - June 2, 2011

Introduction

- Precise measurement of FCNC processes in the B sector have severely restricted the parameter space of new-physics models
- Experiments at LHC have started a direct exploration of the physics in the TeV range
- In this scenario, which is the role of high-precision low-energy experiments on kaon physics in investigating the flavour structure of possible physics beyond the SM?

$K^+ \rightarrow l^+ \nu$ (K₁₂) and $K^+ \rightarrow l^+ \pi^0 \nu$ (K₁₃) Decays

Leptonic and semileptonic kaon decays are mediated by charged current at tree level

The natural size of the non-standard contributions depends on the particular BSM scenario

- In various consistent frameworks the effect is within the present experimental sensitivity
- In some cases $(R_K = K_{e2}/K_{\mu 2})$ SM theoretical predictions < 0.1% in others (V_{us}) errors larger but already < 1% (mainly thanks to Lattice progress)

Example of $K^+ \rightarrow \mu^+ \nu$ Sensitivity to NP

The effect of Higgs-mediated scalar currents is negligible in K_{13} , while it could have a sizable impact in K_{12}

$$R_{\mu 23} = \frac{K_{\mu 2}}{K_{\mu 3}} = \left(1 - \frac{m_K^2 \tan^2 \beta}{M_H^2 (1 + \varepsilon_0 \tan \beta)}\right)$$

Kaon data exclude the low- M_H and large $tan\beta$ region favoured by the 3σ discrepancy between the $B\rightarrow \tau \nu$ measured value and the preferred one from global CKM fit [M. Bona et al. arXiv:0908.3470]

[Eur. Phys. J. C 69 (2010) 399]

$$R_K = \Gamma(K^+ \rightarrow e^+ \nu) / \Gamma(K^+ \rightarrow \mu^+ \nu)$$

- In the ratio $R_K = \Gamma(K \rightarrow ev / K \rightarrow \mu v)$ hadronic uncertainties cancel
- □ The SM prediction of R_K has reached <0.1% precision

$$R_{K}^{SM} = \left(\frac{m_{\rm e}}{m_{\rm \mu}}\right)^{2} \left(\frac{m_{\rm K}^{2} - m_{\rm e}^{2}}{m_{\rm K}^{2} - m_{\rm \mu}^{2}}\right)^{2} \left(1 + \delta R_{\rm K}^{\rm rad.\,corr.}\right) = \left(2.477 \pm 0.001\right) \times 10^{-5}$$
[V. Cirigliano and I. Rosell Phys. Rev. Lett. 99 (2007) 231801]

In MSSM with two Higgs doublets, LFV couplings, present at one loop level, can contribute to R_KSM at the % level

$$\mathbf{R}_{\mathrm{K}}^{\mathrm{LFV}} = \mathbf{R}_{\mathrm{K}}^{\mathrm{SM}} \left[1 + \left(\frac{m_{\mathrm{K}}}{m_{\mathrm{H}}} \right)^{4} \left(\frac{m_{\mathrm{\tau}}}{m_{\mathrm{e}}} \right)^{2} \left| \Delta_{13} \right|^{2} \tan^{6} \beta \right]$$

[A. Masiero, P.Paradisi, R. Petronzio Phys. Rev. D74 (2006) 0011701]

Larger effects foreseen in B decays due to $(m_B/m_K)^4 \sim 10^4$ but experimentally challenging

$K \rightarrow \pi \nu \overline{\nu}$ Decays

■ FCNC decays mediated by Z penguins and box diagrams \rightarrow strongly suppressed in the SM (<10⁻¹⁰)

Calculable with excellent precision [Phys.Rev. D83 (2011) 034030]

$$BR(K^{+} \to \pi^{+} \nu \nu) = (7.81 \pm 0.75 \pm 0.29) \times 10^{-11} \quad BR(K_{L} \to \pi^{0} \nu \nu) = (2.43 \pm 0.39 \pm 0.06) \times 10^{-11}$$

Sensitive to possible contributions from New Physics e.g. in MSSM with non-MFV:

Example of $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ Sensitivity to NP

- Non-standard effects induced by chargino-squarks amplitudes
- Small tanβ effects

[G. Isidori et al. JHEP 0608:064 (2006)]

Example of $K^+ \rightarrow \pi^+ \nu \nu$ Sensitivity to NP

- Non-standard effects induced by charged Higgs top-quark loops
- Large tanβ effects

[G. Isidori and P. Paradisi, PRD 73 (2006) 055017]

The NA62 experiment

A fixed target experiment at the CERN SPS

The SPS is needed as LHC proton injector only part-time

For the remainder of the time it can provide 400 GeV/c protons for fixed target and neutrino experiments

NA48-NA62 Experiments

Experience, infrastructures and (some) detectors from NA48 to NA62

NA48/2 Data taking:

- □ Six months in 2003 (K[±])
- □ Six months in 2004 (K[±])

NA62 phase I data taking (R_K measurement):

- Four months in 2007 (mostly K⁺ only)
- Two weeks in 2008

NA62 phase II data taking ($K^+ \rightarrow \pi v v$ and R_K measurement):

Two years of data taking

R_K: Measurement Strategy

- □ $K^+ \rightarrow e^+ v$ (K_{e2}), $K^+ \rightarrow \mu^+ v$ ($K_{\mu 2}$) collected simultaneously:
 - No dependence on K flux
 - Cancellation of several effects at first order

Analysis performed in bins of the reconstructed lepton momentum

R_K: K_{e2} and K_{µ2} Selection

Geometry

- One reconstructed charged track
- □ 13 < p < 65 [GeV/c]
- Geometrical acceptance cut
- Decay vertex in the fiducial region upstream
- Photon veto using LKr

Kinematics

- Missing mass: $M_{miss}^2(I) = (p_K p_I)^2$
- $-M_1^2 < M_{miss}^2(I) < M_2^2$

Particle ID (E_{LKR}/p_{spectr})

- **e** $((E/p)_{min} < E/p < 1.1)$
- μ (E/p < 0.85)

R_K: Signal and Background

40% of the total 2007 data analyzed

 $59,813 \text{ K}_{e2}^+ \text{ candidates}$ (99.27±0.05)% e⁺ ID efficiency

Decay	B/(S+B)
$K^+ \to \mu^+ \nu$	$(6.11 \pm 0.22)\%$
$K^+ \rightarrow \mu^+ \nu \ (\mu \rightarrow e)$	$(0.27 \pm 0.04)\%$
$K^+ \rightarrow e^+ v \gamma \text{ (SD+)}$	$(1.07 \pm 0.05)\%$
$K^+ o \pi^0 e^+ v$	$(0.05 \pm 0.03)\%$
$K^+ o \pi^+ \pi^0$	$(0.05 \pm 0.03)\%$
Beam halo	$(1.16 \pm 0.06)\%$

R_K: Final Result

50

Lepton momentum, GeV/c

The whole 2007 sample will allow stat uncertainty $\sim 0.3\%$, total of $\sim 0.4\%$

20

30

2.35

R_K: Sensitivity to NP

For non-tiny values of the LFV s-lepton mixing Δ_{13} the sensitivity to H[±] in R_K is strong

Techniques for $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

Stopped

- Work in kaon frame
- High kaon purity
- Compact detectors

In-Flight

- Decays in vacuum
- RF separated or not separated beams
- Extended decay regions

Exp	Machine	Meas. or UL 90% CL	Notes
	Argonne	<5.7×10 ⁻⁵	Stopped; HL Bubble Chamber
	Bevatron	<5.6×10 ⁻⁷	Stopped; Spark Chambers
	KEK	<1.4×10 ⁻⁷	Stopped; $\pi^+ \rightarrow \mu^+ \rightarrow e^+$
E787/E949	AGS	$(1.73^{+1.15}_{-1.05}) \times 10^{-10}$	Stopped
NA62	SPS		In Flight; Unseparated
P996	FNAL		Stopped; Tevatron as strecher ring?

NA62 K⁺ $\rightarrow \pi^+ \nu \bar{\nu}$ Measurement

Branching ratio measurement of $K^+ \rightarrow \pi^+ \nu \nu$ with 10% accuracy

- □ O(100) K⁺ $\rightarrow \pi^+ \nu \overline{\nu}$ events (2 years of data taking)
- 10/1 signal to background ratio

Total Length 270m

Background Rejection

Signal signature:

- Incoming high momentum(75 GeV/c) K+
- Outgoing low momentum(<35 GeV/c) π^+ in time with the incoming K⁺

$m_{miss}^2 \cong m_K^2 \bigg[1 -$	$-\frac{\left P_{\pi} ight }{}$	$\Big _{+m^2}\Big _{1-}$	$-\frac{ P_K }{ P_K }$	$ _{- P P \theta^2}$
$m_{miss} = m_K$	$ P_K $	$\int \int m_{\pi} \int$	$\left P_{\pi} ight _{J}$	$ \mathbf{I} K \mathbf{I} \pi \mathbf{\sigma} \pi K$

Decay	BR
$K^+ \rightarrow \mu^+ \nu (K_{\mu 2})$	0.64
$K^+{\to}\pi^+\pi^0(K_{\pi2})$	0.21
$K^+ \rightarrow \pi^+ \pi^+ \pi^ K^+ \rightarrow \pi^+ \pi^0 \pi^0$	0.07

Particle Identification

- K⁺ positive identification (CEDAR)
- \square π/μ separation (RICH)
- \square π /e separation (E/p)

Decay	BR
$K^+ \rightarrow \pi^0 e^+ v(K_{e3})$	0.051
$K^+ \rightarrow \pi^0 \mu^+ \nu (K_{\mu 3})$	0.034
$K^+ \rightarrow \mu^+ \nu \gamma (K_{\mu 2 \gamma})$	6.2×10 ⁻³
$K^+ \rightarrow \pi^+ \pi^- e^+ v (K_{e4})$	4.1×10 ⁻⁵
$K^+ \rightarrow \pi^+ \pi^- \mu^+ \nu (K_{\mu 4})$	1.4 ×10 ⁻⁵

Sensitivity

Decay Mode	Events
Signal: $K^+ \rightarrow \pi^+ \nu \nu$ [flux = 4.8×10 ¹² decay/year]	55 evt/year
$K^+ \to \pi^+ \pi^0 \ [\eta_{\pi 0} = 2 \times 10^{-8} \ (3.5 \times 10^{-8})]$	4.3% (7.5%)
$K^+ \rightarrow \mu^+ \nu$	2.2%
$K^+ \rightarrow e^+ \pi^+ \pi^- \nu$	≤3%
Other 3 – track decays	≤1.5%
$K^+ \rightarrow \pi^+ \pi^0 \gamma$	~2%
$K^+ \rightarrow \mu^+ \nu \gamma$	~0.7 %
$K^+ \rightarrow e^+(\mu^+) \pi^0 \nu$, others	negligible
Expected background	≤13.5% (≤17%)

Definition of "year" and running efficiencies based on NA48 experience: ~100 days/year and 60% overall efficiency

Detector Layout and Planning

- Beam tracker (10^9 part/s) based on Si micro pixel with ~200 ps time resolution and thickness ~0.5% X_0 per station
- □ Spectrometer (Straw Tubes) to be operated in the vacuum tank: total thickness for 16 views $\sim 1\%X_0$
- PID (π/μ) with a μ rejection factor >5×10³ up to 35 GeV/c Employ a Neon RICH with 17 m focal length spherical mirrors
- Hermetic coverage with π^0 suppression factor $\sim 10^8$ Employ high performance calorimeters as photon vetoes: Liquid Krypton (NA48)+Lead Glass(OPAL)
 - R&D finished in 2010
 - **2010-2012:** construction
 - End 2012: first technical run
 - Physics data taking driven by CERN accelerator schedule

NA62 Physics Handbook

CERN, December 10-11, 2009

$K_L^0 \rightarrow \pi^0 \nu \overline{\nu}$

The charm contribution can be fully neglected since it proceeds in the SM almost entirely through direct CP violation \rightarrow determination of η

Exp	Machine	Meas. or UL 90% CL	Notes
KTeV	Tevatron	$<$ 5.7×10 ⁻⁷ (π^0 \rightarrow ee γ)	
E391a	KEK-PS	<2.6×10 ⁻⁸	
КОТО	J-PARC		Aim at 2.7 SM evts/3y
KOPIO			Opportunity at Project X ?

Need a huge number of K_L decays NA48 K_L flux corresponding to 3×10^{10} /year NA62 possible K_L flux 5-10 times NA48 one After SPS upgrade 100 times more

Conclusions

- \square R_K measurement:
 - The analysis of a partial data sample (40%) allows for 0.5% relative precision, combined with the other world measurements
 - The complete data set will allow a total uncertainty of 0.4%
 - The NA62 phase-II could improve the precision down to 0.2%
- \square B(K⁺ $\rightarrow \pi$ ⁺ $\nu \nu$) measurement:
 - High sensitivity to New Physics
 - 10% precision BR measurement in two years of data taking planned
 - Experiment under construction

Rare kaon decays are an outstanding opportunity to search for NP effects complementary to the high energy frontier and to the precision B physics

Spares

R_K: Sensitivity to NP

B \to τν [HFAG 2010] R_{μ 23} [Eur. Phys. J. C 69 (2010) 399] b \to sγ [HFAG 2010]

Cedar

- H₂ @ 3.86 bar
- ullet 100 photons/K
- K @ 50MHz
- $\bullet \approx 250 \text{ PMs}$
- 3MHz/PM
- $\quad \bullet \quad \sigma_t < 100 \mathrm{ps}$

GigaTracker

GigaTracker: Test Beam

- Wafer with
 - Full final sensor
 - Single chip sensors
 - Prototype ASICs (EOC, p-TDC)
- 10GeV π beam
- 4 stations/ASIC prototype

Spectrometer

- Dipole magnet 0.36T (270MeV/ $c\ p_T$ kick)
- In vacuum ($< 10^{-6}$ mbar)
- 7168 mylar straws
- ArCO₂ 70%:30%
- \bullet < 4 × 0.5% X_0

- $\sigma_p/p < 1\%$
 - \bullet $\sigma_{\theta} < 60 \mu \text{rad}$
 - $\bullet \geq 99\%$ hit efficiency
 - leakrate $< 10^{-1}$ mbar l/s

Straw Chambers

- 4 views (u,v,x,y)

- Track angle coverage $\pm 3^o$
- $30\mu m$ gold-plated W wire
- $100\mu m$ straw straightness
- $200 \mu \mathrm{m} |$ wire position acccuracy
- $\sigma < 130 \mu \mathrm{m}$ single view

Straw: Test Beam

- 64 straws prototype
- Final mechanics
- Vacuum proof vessel
- CARIOCA based FE
- $120 \text{GeV} \pi \text{ beam}$

RICH

RICH: Test Beam

- 414 PMs (full acceptance covered)
- Same mirror (2 aluminizations)
- \bullet Beam $\pi^+/e^+/p$ @ 10-46 ${\rm GeV}/c$
- Cooling

RICH: Test Beam

LAV

- 12 stations
- 2500 lead glass blocks (part of OPAL e.m calorimeter)
- Able to operate in a vacuum of $10^{-6} \mathrm{mbar}$
- \bullet \approx 8 to 50 mrad
- Inefficiency $< 10^{-4}$ for $E_{\gamma} > 200 {\rm MeV}$

LAV: Test Beam

- 1 full station
- Beam:
 - e[−] @ 0.3-2GeV
 - μ @ 8GeV
- FE validated
- Charge from ToT technique validated

