

Le anomalie del B in teorie effettive

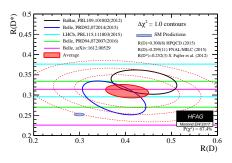
Marzia Bordone Universität Zürich in collaborazione con G. Isidori, S.Trifinopoulus, sulla base di 1702.07238

IFAE. 20.04.2017

$$b \rightarrow c \ell \nu$$

$$R_{D^{(*)}} = rac{\mathcal{B}(B o D^{(*)} au \overline{
u})}{\mathcal{B}(B o D^{(*)} \mu \overline{
u})}$$

- il processo $B \to D^{(*)} \ell \nu$ avviene a tree level nel MS
- nel rapporto le incertezze dovute ai fattori di forma adronici si cancellano
- dalla combinazione delle varie misure si riscontra una deviazione di 4σ dal MS



University of Zurich^{UZH}

Physik Institut

 $b \to s\ell\ell$

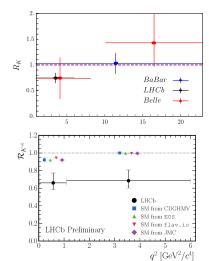
$$R_{K^{(*)}} = rac{\mathcal{B}(B o K^{(*)}\mu\mu)}{\mathcal{B}(K o K^{(*)}ee)}$$

- il decadimento $B \to K^{(*)}\ell\ell$ é generato a 1 loop nel MS, soppresso dalla CKM
- la predizione MS nel bin $q^2 \in [1, 6]$ Gev²:

$$R_{K^{(*)}}^{th} = 1.00 \pm 0.01$$

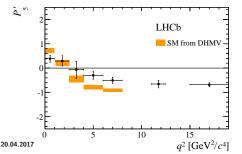
[Bordone, Isidori, Pattori]

• dalla misura effettuata da LHCb si riscontra una deviazione di 2.6σ dal MS



$B \rightarrow K^* \mu \mu$

$$\begin{split} \frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \, \frac{\mathrm{d}^4(\Gamma+\bar{\Gamma})}{\mathrm{d}q^2 \, \mathrm{d}\bar{\Omega}} &= \frac{9}{32\pi} \left[\frac{1}{4} (1-F_\mathrm{L}) \sin^2\theta_K + F_\mathrm{L} \cos^2\theta_K \right. \\ &\qquad \qquad + \frac{1}{4} (1-F_\mathrm{L}) \sin^2\theta_K \cos 2\theta_l \\ &\qquad \qquad - F_\mathrm{L} \cos^2\theta_K \cos 2\theta_l + S_3 \sin^2\theta_K \sin^2\theta_l \cos 2\phi \\ &\qquad \qquad + S_4 \sin 2\theta_K \sin 2\theta_l \cos \phi + S_5 \sin 2\theta_K \sin \theta_l \cos \phi \\ &\qquad \qquad + \frac{4}{3} A_\mathrm{FB} \sin^2\theta_K \cos \theta_l + S_7 \sin 2\theta_K \sin \theta_l \sin \phi \\ &\qquad \qquad + S_8 \sin 2\theta_K \sin 2\theta_l \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_l \sin 2\phi \right] \end{split}$$



$$P_5' = \frac{S_5}{\sqrt{F_L(1-F_L)}}$$

- costruita per ridurre le incertezze sui fattori di forma
- 3.4σ dal MS

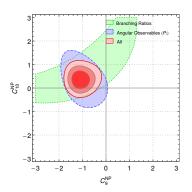
Domande aperte:

 Sono le correzioni non fattorizzabili sotto controllo?

Page 4

$b \rightarrow s\ell\ell$

- ullet I dati sperimentali nel canale $b o s\ell\ell$ segnalano una discrepanza con il MS
- La tensione tra le osservabili e le predizioni nel MS puó essere ridotta introducendo NP



$$egin{align} \mathcal{O}_9 &= rac{e^2}{16\pi^2} (ar{s}_{ extsf{L}} \gamma^{\mu} P_{ extsf{L}} b_{ extsf{L}}) (ar{\mu} \gamma_{\mu} \mu) \ \mathcal{O}_{10} &= rac{e^2}{16\pi^2} (ar{s}_{ extsf{L}} \gamma^{\mu} P_{ extsf{L}} b_{ extsf{L}}) (ar{\mu} \gamma_{\mu} \gamma_5 \mu) \ \mathcal{C}_9^{NP} &= -C_{10}^{NP} = -1 \ rac{ extsf{[Altmannshofer,Straub:}}{ extsf{[Altmannshofer,Straub:}} \end{split}$$

[Altmannsnoter,Straub;

Descotes-Genon, Hofer, Matias, Virto]

Come interpretare le anomalie?

Le anomalie nella fisica del B indicano la presenza di nuova fisica.

La NP deve:

- modificare sia corrente carica e corrente neutra
- accoppiare prevalentemente ai fermioni pesanti
- apportare contributi alle corrente cariche e alla correnti neutre di dimensione diversa
 - per spiegare $R_{D^{(*)}}$ la scala effettiva della NP é dell'ordine del \sim TeV
 - ullet per spiegare R_K la scala effettiva della NP é dell'ordine del $\sim 10~{
 m TeV}$

L'approccio in teorie effettive

- L'approccio in teorie effettive permette un'analisi indipendente dal modello delle anomalie del B
- La simmetria di flavour $U(2)^n$ é introdotta per selezionare le interazioni con i fermioni pesanti, come suggerito dai dati sperimentali
- Base completa di operatori che contribuiscono a processi $\Delta F=2,\,\Delta F=1$ e puramente leptonici.

$U(2)^{n}$

La teoria effettiva che stiamo considerando é costituita da:

- i campi del MS
- la simmetria di gauge del MS $SU(3)_c \times SU(2)_L \times U(1)_Y$
- la simmetria di flavour $\mathcal{G}_{\mathrm{flavour}} = U(2)_q imes U(2)_\ell imes \mathcal{G}_R$

	$U(2)_q$	$U(2)_{\ell}$
q 3L	1	1
ℓ_{3L}	1	1
Q	2	1
L	1	2

$$q_{3L}$$
, ℓ_{3L} doppietti di SU(2) della terza famiglia per quark e leptoni $Q=(q_L^1,q_L^2,),\ L=(\ell_L^1,\ell_L^2,)$ contengono rispettivamente i doppietti leggeri di SU(2) per quark e leptoni

• $\mathcal{G}_R = U(2)_{u_R} \times U(2)_{d_R} \times U(2)_{e_R}$

Rottura di \mathcal{G}_{flavor}

La rottura di $G_{flavour}$ é rotta introducendo due spurioni:

• $V_{\mathcal{O}} \sim (2,1)$ rispetto a $U(2)_{q} \times U(2)_{\ell}$

$$V_Q \equiv \left(V_{Q1}, V_{Q2}
ight) = \left|V_Q
ight| \left(rac{V_{td}^*}{V_{ts}^*}, 1
ight)$$

$$Y_u = y_t \left(\begin{array}{c|c} \Delta Y_u & \epsilon_t V_Q \\ \hline 0 & 1 \end{array} \right) \qquad Y_d = y_b \left(\begin{array}{c|c} \Delta Y_b & \epsilon_d V_Q \\ \hline 1 \end{array} \right)$$

• $V_L \sim (1,2)$ rispetto a $U(2)_q \times U(2)_\ell$

$$V_L \equiv (V_{L1}, V_{L2}) = |V_L|(0, 1)$$

La base dei doppietti

1. Base dei guark down

$$q_{3L} = \begin{pmatrix} V_{kb}^* u_L^k \\ b_L \end{pmatrix}$$
 $Q^i = \begin{pmatrix} V_{ki}^* u_L^k \\ d_L^i \end{pmatrix}$ for $i = 1, 2$

provoca una naturale soppressione CKM delle correnti cariche.

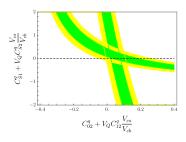
2. In generale:

$$q_{3L}' = \cos\theta q_{3L} + \sin\theta V_{0i}^{\dagger} Q^{i}$$

Se $\sin \theta \sim 1$ la soppressione CKM delle correnti cariche é attenuata. Tuttavia vengono introdotti contributi non trascurabili in altri processi (e.g. $\tau \to K \nu$)

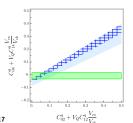
$$B \to D^{(*)} \tau \nu$$

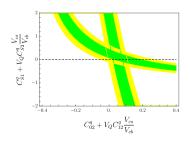
- Sia operatori scalari che vettoriali contribuiscono ai decadimenti $B \to D au
 u$
- I bound sugli operatori scalari sono deboli e compatibili con la scelta di considerarli trascurabili



$$B \to D^{(*)} \tau \nu$$

- Sia operatori scalari che vettoriali contribuiscono ai decadimenti $B \to D au
 u$
- I bound sugli operatori scalari sono deboli e compatibili con la scelta di considerarli trascurabili





- I bound piú significativi provengono da R_D e R_{D^*}
- il contributo di NP a $B o D \mu \nu$ puó essere trascurato

Stabilitá sotto correzioni radiative

Al di sopra della scala elettrodebole, l'evoluzione degli operatori che generano le transizioni $b \to c \ell \nu$ generano operatori puramente leptonici. [Feruglio,Paradisi,Pattori]

In particolare, alla generica scala $\Lambda\gg \Lambda_{EW}$ viene generato un contributo al decadimento $\tau\to \mu\nu\nu$, ed é proporzionale ai coefficienti di Wilson di NP che contribuiscono al decadimento $b\to c\tau\nu$.

$$C_{04}^{\ell}\left(M_{W}\right)=+\frac{3y_{t}^{2}}{8\pi^{2}}|V_{tb}|^{2}\left[C_{02}^{q}\left(\Lambda\right)+V_{Q}C_{12}^{q}\left(\Lambda\right)\right]\times\left[\log\left(\frac{\Lambda^{2}}{m_{t}^{2}}\right)+\frac{1}{2}\right]$$

Stabilitá sotto correzioni radiative

Al di sopra della scala elettrodebole, l'evoluzione degli operatori che generano le transizioni $b \to c \ell \nu$ generano operatori puramente leptonici. [Feruglio,Paradisi,Pattori]

In particolare, alla generica scala $\Lambda\gg \Lambda_{EW}$ viene generato un contributo al decadimento $\tau\to \mu\nu\nu$, ed é proporzionale ai coefficienti di Wilson di NP che contribuiscono al decadimento $b\to c\tau\nu$.

$$C_{04}^{\ell}\left(M_{W}\right) = +\frac{3y_{t}^{2}}{8\pi^{2}}|V_{tb}|^{2}\left[C_{02}^{q}\left(\Lambda\right) + V_{Q}C_{12}^{q}\left(\Lambda\right)\right] \times \left[\log\left(\frac{\Lambda^{2}}{m_{t}^{2}}\right) + \frac{1}{2}\right] + C_{04}^{\ell}\left(\Lambda\right)$$

Results

Process	Combination	Constraint	
$R_{D(*)}$	$\Re\left(C_{02}^{q}+V_{Q_{s}}C_{12}^{q}rac{V_{cs}}{V_{cb}} ight)$	0.09 ± 0.04	
$B o D\mu u_{\mu}$	$\Re\left(C_{04}^{q}+V_{Q_{s}}C_{14}^{q}rac{V_{cs}}{V_{cb}} ight)$	$-$ (0.8 \pm 2.5) \times 10 ⁻²	
$\tau \to \mu \nu \overline{\nu}$	$\Re\left(C_{04}^{\ell} ight)$	$-(1.2\pm0.5)\times10^{-2}$	
$R_{sd}^{ au/\mu}$	$\Re ig[C_{08}^q - C_{06}^q + \ (C_{14}^q - C_{12}^q) V_{Q_s} V_{ub} / V_{us} ig]$	$(0.7 \pm 0.4) \times 10^{-2}$	
$ au ightarrow \mu$ ee $ au ightarrow 3 \mu$	$ V_L imes (C_{13}^\ell + C_{14}^\ell ^2 + \\ + C_{R2}^\ell ^2 + C_{T2}^\ell ^2)^{1/2}$	$\leq 3.2\times 10^{-4}$	
$\tau \to \rho \mu$	$ C_{24}^q V_L $	$\leq 1.4 \times 10^{-4}$	
$\tau \to \omega \mu$	$ C_{23}^q V_L $	$\leq 3.2\times 10^{-4}$	
$B o K u\overline{ u}$	$\Re(C_{11}^q - C_{12}^q)$	$(2.2 \pm 4.5) \times 10^{-2}$	
$B^0 - \overline{B}^0$	$ C_{01}^{qq} + C_{02}^{qq} $	$\leq 0.42 \times 10^{-3}$	
$B o K^{(*)} \mu \overline{\mu}$	$\Re\left(\mathit{C}_{13}^{q}+\mathit{C}_{14}^{q} ight) \ \Re\left(\mathit{C}_{R5}^{q} ight)$	$-(0.8 \pm 0.3) \times 10^{-3}$ $-(0.4 \pm 0.3) \times 10^{-3}$	
$B_d o au \mu$	$ C_{31}^q + C_{32}^q $	$\leq 4.5 \times 10^{-2}$	

20.04.2017

Results

Process	Combination	Constraint	
$R_{D(*)}$	$\Re\left(\mathit{C}_{02}^{q}+\mathit{V}_{\mathit{Q}_{s}}\mathit{C}_{12}^{q}rac{\mathit{V}_{cs}}{\mathit{V}_{cb}} ight)$	$}}}0.09\pm0.0$	
$B o D\mu u_{\mu}$	$\Re\left(C_{04}^{q}+V_{Q_{s}}C_{14}^{q}rac{V_{cs}}{V_{cb}} ight)$	$-$ (0.8 \pm 2.5) \times 10 ⁻²	
$\tau \to \mu \nu \overline{\nu}$	$\Re\left(C_{04}^{\ell} ight)$	$-(1.2\pm0.5)\times10^{-2}$	
$R_{sd}^{ au/\mu}$	$\Re ig[C_{08}^q - C_{06}^q + \ (C_{14}^q - C_{12}^q) V_{Q_s} V_{ub} / V_{us} ig]$	$(0.7 \pm 0.4) \times 10^{-2}$	
$ au o \mu$ ee $ au o 3\mu$	$ V_L imes (C_{13}^\ell + C_{14}^\ell ^2 + \\ + C_{R2}^\ell ^2 + C_{T2}^\ell ^2)^{1/2}$	$\leq 3.2\times 10^{-4}$	
$\tau \to \rho \mu$	$ C_{24}^q V_L $	$\leq 1.4 \times 10^{-4}$	
$\tau \to \omega \mu$	$ C_{23}^q V_L $	$\leq 3.2\times 10^{-4}$	
$B o K u\overline{ u}$	$\Re(C_{11}^q - C_{12}^q)$	$(2.2 \pm 4.5) \times 10^{-2}$	
$B^0 - \overline{B}^0$	$ C_{01}^{qq} + C_{02}^{qq} $	$\leq 0.42 \times 10^{-3}$	
$B o K^{(*)} \mu \overline{\mu}$	$\Re\left(\mathit{C}_{13}^{q}+\mathit{C}_{14}^{q} ight) \ \Re\left(\mathit{C}_{\mathit{R5}}^{q} ight)$	$-(0.8 \pm 0.3) \times 10^{-3}$ $-(0.4 \pm 0.3) \times 10^{-3}$	
$B_d o au \mu$	$ C_{31}^q + C_{32}^q $	$\leq 4.5\times 10^{-2}$	

20.04.2017

Parametric counting

Modelli espliciti:

- NP interagisce solo con le famiglie pesanti.
- Le interazione con le famiglie leggere avviene tramite parametri di mixing

$$Q_L^i o \epsilon_L^q Q_L^i$$
 $L_L^i o \epsilon_L^\ell L^i$
 $E_R o \epsilon_R^\ell$

Parametric counting

Modelli espliciti:

- NP interagisce solo con le famiglie pesanti.
- Le interazione con le famiglie leggere avviene tramite parametri di mixing

$$\begin{aligned} Q_L^i &\to \epsilon_L^q Q_L^i \\ L_L^i &\to \epsilon_L^\ell L^i \end{aligned}$$

 $E_{R} \rightarrow \epsilon_{R}^{\ell}$

Anche gli spurioni possono essere riscalati

- nel settore dei quark, é possibile che lo spurione non abbia lo stesso peso per i coupling di NP e le yukawa
- nel settore leptonico, l'ordine di grandezza di $|V_I|$ sconosciuto

$$|V_Q|
ightarrow \epsilon_q' |V_{ts}| \ |V_L|
ightarrow \epsilon_\ell'$$

Results

Process	Combination	Constraint	Parametric scaling	Order of magnitude
$R_{D(*)}$	$\Re\left(C_{02}^{q} + V_{Q_{s}}C_{12}^{q}\frac{V_{cs}}{V_{cb}}\right)$	0.09 ± 0.04	1	10^{-1}
$B o D \mu u_{\mu}$	$\Re\left(C_{04}^{q}+V_{Q_{s}}C_{14}^{q}\frac{V_{cs}}{V_{cb}}\right)$	$-(0.8\pm 2.5)\times 10^{-2}$	$\left(\epsilon_L^\ell\right)^2$	10-2
$ au o \mu u \overline{ u}$	$\Re\left(C_{04}^{\ell} ight)$	$-(1.2\pm0.5)\times10^{-2}$	$(\epsilon_L^\ell)^2 r_{q\ell}$	$10^{-2} r_{q\ell}$
$R_{sd}^{ au/\mu}$	$\Re \left[C_{08}^q - C_{06}^q + \left(C_{14}^q - C_{12}^q \right) V_{Q_s} V_{ub} / V_{us} \right]$	$(0.7\pm0.4)\times10^{-2}$	$\left(\epsilon_L^q\right)^2$	$\leq 10^{-2}$
$ au ightarrow \mu$ ee $ au ightarrow 3 \mu$	$ V_L imes (C_{13}^\ell + C_{14}^\ell ^2 + $ $+ C_{R2}^\ell ^2 + C_{T2}^\ell ^2)^{1/2}$	$\leq 3.2\times 10^{-4}$	$\epsilon_{\ell}' \left(\epsilon_{L,R}^{\ell} \right)^2 r_{q\ell}$	$10^{-3} \left(rac{\epsilon_\ell'}{0.1} ight) r_{q\ell}$
$\tau \to \rho \mu$	$ C_{24}^q V_L $	$\leq 1.4 \times 10^{-4}$	$\epsilon'_{\ell}(\epsilon^q_{L})^2$	$\leq 10^{-3} \left(rac{\epsilon_\ell'}{0.1} ight)$
$\tau \to \omega \mu$	$ C_{23}^q V_L $	$\leq 3.2\times 10^{-4}$	$\epsilon'_{\ell}(\epsilon^q_L)^2$	$\leq 10^{-3} \left(rac{\epsilon_\ell'}{0.1} ight)$
$B o K u \overline{ u}$	$\Re(C_{11}^q - C_{12}^q)$	$(2.2 \pm 4.5) \times 10^{-2}$	ϵ_q'	$10^{-2} \left(\frac{\epsilon_q'}{0.1} \right)$
$B^0 - \overline{B}^0$	$ C_{01}^{qq} + C_{02}^{qq} $	$\leq 0.42\times 10^{-3}$	$\left(\epsilon_q'\right)^2 r_{q\ell}^{-1}$	$10^{-3} \left(\frac{\epsilon_q'}{0.1}\right)^2 r_{q\ell}^{-1}$
$B o K^{(*)}\mu\overline{\mu}$	$\Re\left(C_{13}^{q}+C_{14}^{q}\right)$	$-(0.8 \pm 0.3) \times 10^{-3}$	$\epsilon_q' \left(\epsilon_L^\ell \right)^2$	$10^{-3} \left(\frac{\epsilon_q'}{0.1}\right)$
	$\Re\left(C_{R5}^{q}\right)$	$-(0.4\pm0.3)\times10^{-3}$	$\epsilon_q' \left(\epsilon_R^\ell \right)^2$	` /
$B_d o au \mu$	$ C_{31}^q + C_{32}^q $	$\leq 4.5 \times 10^{-2}$	$\epsilon_q'\epsilon_\ell'$	$10^{-3} \left(\frac{\epsilon_q' \epsilon_\ell'}{10^{-2}} \right)$

Results

Process	Combination	Constraint	Parametric scaling	Order of magnitude
$R_{D(*)}$	$\Re\left(C_{02}^q + V_{Q_s}C_{12}^q rac{V_{cs}}{V_{cb}} ight)$	0.09 ± 0.04	1	10^{-1}
$B o D \mu u_{\mu}$	$\Re\left(C_{04}^{q} + V_{Q_{s}}C_{14}^{q}\frac{V_{cs}}{V_{cb}}\right)$	$-(0.8 \pm 2.5) \times 10^{-2}$	$\left(\epsilon_L^\ell\right)^2$	10^{-2}
$ au o \mu u \overline{ u}$	$\Re\left(C_{04}^{\ell}\right)$	$-(1.2\pm0.5)\times10^{-2}$	$(\epsilon_L^\ell)^2 r_{q\ell}$	$10^{-2} r_{q\ell}$
$R_{sd}^{ au/\mu}$	$\Re ig[C_{08}^q - C_{06}^q + \ (C_{14}^q - C_{12}^q) V_{Q_s} V_{ub} / V_{us} ig]$	$(0.7\pm0.4)\times10^{-2}$	$(\epsilon_L^q)^2$	$\leq 10^{-2}$
$ au ightarrow \mu$ ee $ au ightarrow 3 \mu$	$ V_L imes (C_{13}^\ell + C_{14}^\ell ^2 + + C_{R2}^\ell ^2 + C_{T2}^\ell ^2)^{1/2}$	$\leq 3.2\times 10^{-4}$	$\epsilon_{\ell}' \left(\epsilon_{L,R}^{\ell} \right)^2 r_{q\ell}$	$10^{-3} \left(\frac{\epsilon'_\ell}{0.1} \right) r_{q\ell}$
$\tau \to \rho \mu$	$ C_{24}^q V_L $	$\leq 1.4 imes 10^{-4}$	$\epsilon'_{\ell}(\epsilon^q_{L})^2$	$\leq 10^{-3} \left(rac{\epsilon_\ell'}{0.1} ight)$
$\tau \to \omega \mu$	$ C_{23}^q V_L $	$\leq 3.2 imes 10^{-4}$	$\epsilon'_{\ell}(\epsilon^q_L)^2$	$\leq 10^{-3} \left(rac{\epsilon'_\ell}{0.1} ight)$
$B o K u\overline{ u}$	$\Re(C_{11}^q - C_{12}^q)$	$(2.2 \pm 4.5) \times 10^{-2}$	ϵ_q'	$10^{-2} \left(\frac{\epsilon_q'}{0.1} \right)$
$B^0 - \overline{B}^0$	$ C_{01}^{qq} + C_{02}^{qq} $	$\leq 0.42 \times 10^{-3}$	$\left(\epsilon_q'\right)^2 r_{q\ell}^{-1}$	$10^{-3} \left(\frac{\epsilon_q'}{0.1}\right)^2 r_{q\ell}^{-1}$
$B o K^{(*)} \mu \overline{\mu}$	$\Re\left(C_{13}^{q}+C_{14}^{q}\right)$	$-(0.8 \pm 0.3) \times 10^{-3}$	$\epsilon_q' \left(\epsilon_L^\ell \right)^2$	$10^{-3} \left(\frac{\epsilon_q'}{0.1}\right)$
	$\Re\left(C_{R5}^{q}\right)$	$-(0.4\pm0.3)\times10^{-3}$	$\epsilon_q' \left(\epsilon_R^\ell \right)^2$	` ′
$B_d o au \mu$	$ C_{31}^q + C_{32}^q $	$\leq 4.5\times 10^{-2}$	$\epsilon_q'\epsilon_\ell'$	$10^{-3} \left(\frac{\epsilon_q' \epsilon_\ell'}{10^{-2}} \right)$

Rĸ

Per ottenere un effetto di violazione di universalità leptonica nelle correnti neutre, occorre introdurre operatori pesati con $|V_Q||V_L|^2$.

$$C_9^{NP} = -C_{10}^{NP} = \left(0.8 \times 10^3\right) \times \textit{O}\left[\epsilon_q'(\epsilon_\ell')^2\right] \; , \label{eq:c9NP}$$

Coerente con l'ordine di ϵ_q' e ϵ_ℓ' ottenuto da altri processi

Conclusioni

- Date le precise misure delle osservabili relative ai decadimenti dei B e dei τ , la sola imposizione della simmetria di flavour non é abbastanza forte da garantire la consistenza della teoria effettiva
- L'ulteriore assunzione che la NP accoppi preferenzialmente con la terza generazione ha permesso di riscalare i campi associati alle famiglie leggere e gli spurioni in modo tale da ottenere una teoria coerente:
 - Dal $B_{s(d)}$ dobbiamo imporre un allineamento nello spazio di flavour dei quark
 - A causa degli effetti di RGE, dobbiamo imporre una cancellazione tra due termini in modo tale da non avere NP nel decadimento $au o \mu \nu \nu$

Appendix

$$au
ightarrow K
u ext{ vs } K
ightarrow \mu
u$$

$$R_{sd}^{\tau/\mu} = \frac{\mathcal{B}(K \to \mu \overline{\nu}_{\mu})^{\mathrm{exp}}/\mathcal{B}(K \to \mu \overline{\nu}_{\mu})^{\mathrm{SM}}}{\mathcal{B}(\tau \to K \nu_{\tau})^{\mathrm{exp}}/\mathcal{B}(\tau \to K \nu_{\tau})^{\mathrm{SM}}} = 1.029 \pm 0.015$$

- estremamente preciso in quanto la costante di decadimento del K e V_{us} si cancellano
- $R_{sd}^{ au\mu}$ é equivalente a mettere a confronto la determinazione di V_{us} dai decadimenti del au e del k
- anche in questo canale é presente una tensione tra le misure attuali e la predizione del MS