
Marco Corvo

CNRS and INFN

Outline

 Collaboration needs wrt a VCS
system

 Why Subversion

 with some experience

 Why Git

05/07/2011

Marco Corvo – SuperB workshop

Ferrara 2

Requirements

 Distributed system (no single point of
failure)

 Wide community of
developers/contributors

 Reliable, strong and well supported

 ldap auth system

 Write once/Read many tagging

 Api for different languages interfaces

05/07/2011

Marco Corvo – SuperB workshop

Ferrara 3

SuperB Subversion service

 Hosted in Padova (sbrepo.pd.infn.it)
 Ldap auth service
 Accessible via https with a WebDAV Apache

module

 Structured with many repositories each
hosting many packages
 Critical issue: on one end we keep more control

over granularity and avoid the explosion of
revision numbers, on the other end there’s no
single point of access when navigating the code
and the user must know in advance which repo
he needs to reach a given package

05/07/2011

Marco Corvo – SuperB workshop

Ferrara 4

SuperB Subversion service

 “Write once/read many” tagging managed
with a pre-commit hook

 Mail alerts

 CLI to svn developed in Perl
 sbnewrel

○ Basic setup of the working directory

○ Checkout some useful packages and the list of all
packages, along with their Tag, which make up the
release

 sbaddpkg

○ Checkout of all packages requested by the user

05/07/2011

Marco Corvo – SuperB workshop

Ferrara 5

Subversion repo organization

05/07/2011

Marco Corvo – SuperB workshop

Ferrara 6

BrnApp

trunk tags usertags branches attic

V00-00-00 V00-00-01 V00-00-02
development area

freezed code

(versions)

deleted code

Core/BaBar/tags/V00-00-00

subversion repository

package name

tag

Subversion basics

 Directories structure

 much like a real file system

 main code development follows the trunk
line

 creating a branch or a tag means copying
a full snapshot of your project into an svn
directory (../branches or ../tags)

 Network is accessed for most
operations

05/07/2011

Marco Corvo – SuperB workshop

Ferrara 7

Git in a nutshell

 Git is a DVCS (Distributed Version
Control System)

 Main diff with other VCS, like svn, is
that client fully mirrors the repo

 Every client contains all information,
nice to solve servers failure

 Every commit is a full snapshot of the
project, not just a “diff” between
versions

05/07/2011

Marco Corvo – SuperB workshop

Ferrara 8

Git access protocols

 git://
 fastest as it’s optimized for git itself

 http|s://
 commonly used for “readonly” repositories.

Needs WebDAV as svn for “write” ones.

 ssh://
 Best choice, provides both fast and secure

commits

 How to use ldap auth too?
 As of version 1.6.6 there’s a Smart HTTP cgi

script which let git client push over HTTP w/o
WebDAV services

05/07/2011

Marco Corvo – SuperB workshop

Ferrara 9

Git basics

 Nearly every operation is local

 Diff, history navigation…there’s little
that you can’t do even w/o connection

 This also means that the equivalent as
“svn list” or “svn cat” are not available

 Git has three states

 Committed, modified, staged

 Other VCS lack the last state “staged”

05/07/2011

Marco Corvo – SuperB workshop

Ferrara 10

Git basics

 You work always in the same
directory, unlike svn or other VCS
where the HEAD (trunk), branches
and tags live in separate dirs

 Branches and tags are easier to
manage

 Basically they’re pointers to a given
snapshot

05/07/2011

Marco Corvo – SuperB workshop

Ferrara 11

Git three states

 Unlike other VCS,
Git has an
intermediate
“staging” area,
where changes go
before commit

05/07/2011

Marco Corvo – SuperB workshop

Ferrara 12

Git branches

 Two branches
point to the
same snapshot

 HEAD points to
the “current”
branch

05/07/2011

Marco Corvo – SuperB workshop

Ferrara 13

Typical Git brach workflow

05/07/2011

Marco Corvo – SuperB workshop

Ferrara 14

Three way merge

GitProjects

 https://git.wiki.kernel.org/index.ph
p/GitProjects

 A couple for all: Linux kernel and
Android os

05/07/2011

Marco Corvo – SuperB workshop

Ferrara 15

https://git.wiki.kernel.org/index.php/GitProjects
https://git.wiki.kernel.org/index.php/GitProjects
https://git.wiki.kernel.org/index.php/GitProjects

Conclusions

 This is not supposed to be an exaustive
presentation
 I started to play wit Git a couple of weeks ago

 The idea is to start a real and serious
evaluation of Git and possibly take a
decision in one year from now
 We can start migrating a FastSim repo to

perform some tests

 It’s nevertheless clear, at least to me,
that Git philosophy is quite different
form Cvs or Svn ones and needs some
“user behaviour” adjustments.

05/07/2011 16

Marco Corvo – SuperB workshop

Ferrara

