

Persistency in HEP Applications:
Current Models and Future Outlook

Paolo Calafiura
SuperB Workshop – March 10 2010

Outline

 Current Models

– Conversion Mechanisms

– Event Store Organization
 Persistency and Parallelization

− Limits of the Event Farm

− Micro-streaming
 Some R&D suggestions

Persistency Basics

...123FA4507B... ...32.0,45.6,-0.9...

double x=32.0;
double y=45.6;
double z=-0.9;

...123FA4507B...

double x=32.0;
double y=45.6;
double z=-0.9;

Transient
Form

Persistent
Store

Conversion
Layer

Conversion Mechanisms

Streamer-based serialization (manual)
− Boost serialization, ROOT TBuffer streaming

Dictionary-based serialization (semi-automatic)
– HDF5, LHCb GOD, Protocol Buffers

Reflection-assisted conversion (automatic)
– ROOT object store

Object-mediated conversion
– Transient/Persistent separation

Our Example Class

class McCluster {
 public:

McCluster(); //usually required for
persistency

 ...

 private:
double m_x;
double m_y;
double m_z;
HepMcParticle* m_truth;
vector<IHit*> m_hits;

};

CLASS_DEF(McCluster, 3405700781, 1);

Streamer-based Persistency

A classic C++ streamer
streamer_t& operator >>(McCluster& o, streamer_t& s) {

s >> o.m_x >> o.m_y >> o.m_z
 >> ??? //m_truth
 >> m_hits; //vector streamer loop elements

}

or the boost version
template<class ARCHIVE>

void serialize(ARCHIVE& ar, McCluster& o, const unsigned int version)

{

 ar & o.m_x; a & o.m_y; a & & o.m_z; // & takes place of << or >>

 ar & m_truth; //pointer handled by boost serialization

 ar & m_hits; //container handled by boost serialization

}

Boost Serialization Package

● ANSI C++ based, no dictionaries, no reflection

● Orthogonal specification of class serialization and archive
format. Technology independence.

● Data Portability

● Schema evolution support

● Deep pointer save/restore. Proper handling of shared data.

● Serialization of STL containers and other templates.
● Non-intrusive serialization, can be applied to unaltered classes.

Dictionary-based Serialization

● Describe data in a dictionary
– XML an obvious choice (LHCb GOD)

– Ad-hoc DDL or code annotations also popular

– Usually limit data types to c-like structs
● Not necessarily a bad thing

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE gdd SYSTEM "gdd.dtd">
<gdd>
 <package name="MCEvent">
 <class name="Cluster" author="me" desc="A Calo Cluster">
 <attribute type='double' name='x' desc='X centroid'/>
 <attribute type='double' name='y' desc='Y centroid'/>
 <attribute type='double' name='z' desc='Z centroid'/>
 <relation name="truth" type="HepMCParticle" desc="Pointer to origin particle"/>

 </class>
 <!-- more classes -->
 </package

HDF5

● Hierarchical Data Store,
Unix fs-like tree

● Machine Independent
Data Format

● Multilanguage Data
Access Library

● Extensive Toolkit:

– Management,
browsing, plotting

● At the core, H5 DDL

Group

Dataset

“/MC/Clusters”

collection of blocks,
~column-wise tuple

TruthColl

Clusters

TruthColl TruthColl

Clusters Clusters Clusters

TrackColl TrackColl TrackColl

Event 1 Event 2

HDF5

From NCSA, of Mosaic fame
● @ version 5, ~10 years old, mature product

– Multilanguage serialization, IDL-based

– Optimized for large data sizes (MB objects in TB
stores)

● Parallel version (PHDF5) in production
● Used by “big iron” applications for e.g.

checkpoint/restart, but also as a lingua franca
for sparse collaborations (e.g. sky surveys)

Google Protocol Buffers
● Dictionary-based automated serialization
● Multilanguage, very natural API
● Similar to HDF5, but more geared towards data

exchange on the wire (RPC, map/reduce)
● Think XML-lite, even faster than

boost::serialization (although more limited)

http://fz-corp.net/?p=292
Many more at protobuf site
(unfortunately not ROOT)

http://fz-corp.net/?p=292

Reflection-assisted Conversion

 Generate class reflection dictionary
− Shape (data members)

− Factory methods (default constructor req'd)
 Use dictionary to auto-generate streamers

− Pioneered by ROOT/CINT, wide C++ coverage

− Limited multilanguage support (python, C/C++)
 Automatic persistency but

Efficient persistency constrains EDM design
 C-like simplicity. Again, probably for the best

Object-mediated Conversion

...A4560B... ...1320,1456,410...

double x=32.0;
double y=45.6;
double z=-0.9;

...A4560B...

double x=32.0;
double y=45.6;
double z=-0.9;

Transient
Object

Persistency
Layer

uint ix=1320;
uint iy=1456;
uint iz=410;

uint ix=1320;
uint iy=1456;
uint iz=410;

Persistent
Object

T/P Conversion

Transient-Persistent Separation

Persistent Store

Transient
Event

Persistent
Event

Physics
Algorithms Transient EDM, Technology-

independent
– Full language coverage

– Free(r) to evolve

Persistent EDM technology-
optimized. For ROOT

– Avoid polymorphism, pointers in
general

– Avoid strings, node-based
containers

– Use basic types, and arrays thereof

Event-based streaming

Overhead from separated T/P
models and conversion

Why T/P Separation?

vector<IHit*>

IHit*

IHit*
IHit*

IHit*

vector<Link>

Link

Link
Link

vector<LArHit>

LArHit

LArHit

vector<FCalHit>

FCalHit

FCalHit
FCalHit

LArHit

LArHit

FCalHit

FCalHit

LArHit

Heap

ATLAS gained up to x5 in conversion
speed using non-trivial mappings like this

1 Conversion 3

Transient EDM Persistent EDM

Persistency and Event Parallelism,
the Output Problem

Write & Merge

● Wasted I/O
● Metadata
● Event Ordering

Stream-to-Write

● Serialize data to pipe
to writer (structs OK)

● Output sync issues?

Fast Merge

Writer

Microstreaming to the Rescue?

What if we immediately
converted each transient
data object

– Either keep results in
stack of Persistent
Streams

● Write them to disk
asynchronously

– Or support parallel write
in ROOT

– Persistent refs potential
issue

Persistent
Streams

Writer

Tracking

Beyond Event Parallel

Many-core may
require to go task-
parallel

– Smaller processes

– Improved memory
locality

– Event Branch
Pipelines make
processes work
asynchronously

Tracking
TrackingTracking

TrackingPID

Streaming
Tracking
Tracking
Monitoring

Vincenzo
Event Branches

Reality Check
ATLAS Reco ca 2007
...when it was simple...

Detailed data-flow analysis required to define
and optimize event branches

Event Branches and Microstreaming

Persistent Store

Transient
Event

Persistent
Stream

Physics
Algorithms

Pipe or
shared memory access

Tracking Process PID Process

Transient
EventThe Tracks

Known Unknowns.
R&D suggestions

 Event parallelism is not quite in our pocket

– Need to address the output problem

• Will ROOT support parallel streaming?
– Recent TBasket “defragmentation” both encouraging/worrysome

 Large scale (>32) parallelism may strain
write&merge and stream-to-writer approaches

– Measure using object-level ROOT, ROOT bytestream,
HDF5 and possibly protobuf

 Serialization not only for persistency

– Investigate micro-streaming approach to sub-event
parallelism

Backup

Event Data Streams and Processing
Stages

− Streaming dictated by
hardware necessities

learned from Babar!

− Tension disk I/O-
efficiency/usability

− Abstracting level of
detail in EDM allows
to use same
algorithmic code at
different stages

Data Clustering

TrackColl

Event 1

TruthColl Cluster
s

TrackColl

Event 2

TruthColl Cluster
s

TruthColl

Cluster
s

TruthColl TruthColl

Cluster
s

Cluster
s

Cluster
s

TrackColl TrackColl TrackColl

Event 1 Event 2

How are data objects written to disk
− By event (most Raw Data Streams)

− By object, splitting events (most ROOT files)
 Allows to read subset of event data

Data Clustering in ROOT

− Use dictionary to split
objects and cluster
data members

Enables maximal
data compression
Gains size up to x2

− Allow to read subset of
event data (or object
data, usually bad idea)

m_x

m_trut
h

m_x m_x

m_trut
h

m_trut
h

m_trut
h

m_z m_z m_z

McCluster 1

McCluster 2

m_y m_y m_y

Full Split Mode
● Like an n-tuple

Schema Evolution

Fact #1: data models evolve

Fact #2: (Peta)bytes already on disk don't

Solution:
 Read old data using current Data Model

− Easy to handle automagically for basic types

− Harder when (pointers to) objects are involved

− Even harder when classes are split or merged

Persistable References

Persistable References

 Pointer value meaningful only within program
address space

 Replace with persistent object identifier
− ROOT TRef, POOL::Ref

 Replace with logical object identifier
− Gaudi SmartRef, ATLAS Data/ElementLink

− Technology (even language) independent

− Only works for PDOs and SDOs

Logical Reference Example
Follow link to GenParticle:

1. Get McEventCollection
using its PDO ID (“key”)

2. Find GenEvent using
McEventCollection index

3. Search GenParticle in
GenEvent using barcode

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

