Massive quarks in backreacted holographic QCD

Matti Järvinen

ENS, Paris

Gauge/Gravity Duality 2015 GGI – Florence – 13 April 2015

Outline

- 1. Motivation
- 2. Brief introduction to V-QCD models

[MJ, Kiritsis arXiv:1112.1261]

3. V-QCD at finite quark mass

[MJ, arXiv:1501.07272]

- Bound state masses at finite quark mass
- Four fermion operators

Motivation: Veneziano limit

QCD: $SU(N_c)$ gauge theory with N_f quark flavors (fundamental)

- ▶ Often useful: "quenched" or "probe" approximation, $N_f \ll N_c$, 't Hooft limit
- ► Here Veneziano limit: large N_f , N_c with $x = N_f/N_c$ fixed \Rightarrow backreaction

Backreaction \Rightarrow better modeling of (ordinary) QCD?

Important new features can be captured in the Veneziano limit:

- ▶ Phase diagram of QCD (at zero temperature, baryon density, and quark mass), varying $x = N_f/N_c$
- ▶ The QCD thermodynamics as a function of x
- Phase diagram as a function of baryon density

Motivation: finite quark mass

Why is detailed analysis at finite m_q necessary?

- Ordinary QCD has finite quark masses
- Important to make connection to lattice studies (which often have sizeable quark mass)
- Generally interesting scaling features
- May add constraints to the holographic model
 - E.g. at large quark mass many things can be computed from QCD

This talk: flavor independent mass

Holographic V-QCD: the fusion

The fusion:

1. IHQCD: model for glue by using dilaton gravity

[Gursoy, Kiritsis, Nitti; Gubser, Nellore]

2. Adding flavor and chiral symmetry breaking via tachyon brane actions

[Klebanov, Maldacena; Bigazzi, Casero, Cotrone, Iatrakis, Kiritsis, Paredes]

Consider 1. + 2. in the Veneziano limit with full backreaction \Rightarrow V-QCD models

[MJ, Kiritsis arXiv:1112.1261]

Defining V-QCD

Degrees of freedom:

- ▶ The tachyon $\tau \leftrightarrow \bar{q}q$, and the dilaton $\lambda \leftrightarrow \text{Tr}F^2$
- $\lambda = e^{\phi}$ is identified as the 't Hooft coupling $g^2 N_c$

Terms relevant in the classical vacuum:

$$S_{V-QCD} = N_c^2 M^3 \int d^5 x \sqrt{g} \left[R - \frac{4}{3} \frac{(\partial \lambda)^2}{\lambda^2} + V_g(\lambda) \right] - N_f N_c M^3 \int d^5 x V_f(\lambda, \tau) \sqrt{-\det(g_{ab} + \kappa(\lambda)\partial_a \tau \partial_b \tau)}$$

$$V_f(\lambda, \tau) = V_{f0}(\lambda) \exp(-a(\lambda)\tau^2); \qquad ds^2 = e^{2A(r)}(dr^2 + \eta_{\mu\nu}x^{\mu}x^{\nu})$$

Need to choose V_{f0} , a, and $\kappa \dots (V_g$ chosen as before)

The simplest and most reasonable choices do the job!

Phase diagram at $m_q = 0$

With reasonable potentials, at zero quark mass and temperature, constructing numerically all vacua, expected result:

- ► Conformal transition (BKT) at $x = x_c \simeq 4$ [Kaplan,Son,Stephanov;Kutasov,Lin,Parnachev]
- ► Transition: violation of the BF bound
- lacktriangle Miransky scaling, $\langle ar q q
 angle \sim \exp\left[-rac{2K}{\sqrt{x_c-x}}
 ight]$, in walking regime
- For $x < x_c$, "good" IR singularity + tachyon
- ▶ For $x > x_c$, IR AdS₅, zero tachyon

Turning on finite m_q

Quark mass defined through the tachyon boundary conditions in the UV $(r \rightarrow 0)$:

$$au(r) \simeq m_q(-\log r)^{-\gamma_0/\beta_0} r + \langle \bar{q}q \rangle (-\log r)^{\gamma_0/\beta_0} r^3$$

- Implies nonzero tachyon and chiral symmetry breaking
- Conformal transition becomes a crossover
- Discontinuous change of IR geometry in the conformal window

Analysis of the tachyon solution ⇒ different regimes

- Physics "near" the BKT transition independent of the details of the model
- Results partially apply to BKT transitions in other models (e.g. D3-D7 and dynamic AdS/QCD)

 $[Kutasov, Lin, Parnachev;\ Alvares, Alho, Erdmenger, Evans, Kim, Scott, Tuominen]$

Border between A and B
$$\sim \exp\left[-\frac{2K}{\sqrt{x_c-x}}\right] \sim \langle \bar{q}q \rangle$$

A: m_q is a small perturbation

 ${
m B}$: "Hyperscaling" regime: walking controlled by m_q

C: Regime of large quark mass

White regions: crossovers (no phase transitions at finite m_q)

Hyperscaling regime B $\left(\Delta_* = \text{dimension of quark mass at IR fixed point}\right)$

$$m({
m mesons}) \sim m_q^{1/\Delta_*} \qquad \langle ar q q
angle \sim m_q^{(4-\Delta_*)/\Delta_*}$$

- Results agree with standard field theory analysis and dynamic AdS/QCD [Evans, Scott]
- Quite generic consequence of the tachyon flow in the conformal window

Large quark mass (regime C): only tachyon potentials $V_f(au) \propto e^{-C au^2}$ produce

- ▶ Meson mass gap $\mathcal{O}(m_q)$ and
- Suppressed splitting between the lowest meson states
- ightharpoonup Asymptotically linear meson spectra at $m_q=0$ also require $V_f(au) \propto e^{-C au^2}$ (!) [Arean, latrakis, MJ, Kiritsis]
- lacktriangle Glueball masses take their YM values, not enhanced with m_q

Example: masses for the walking case

 $x_c - x \ll 1$, Masses in units of IR (glueball) scale

- All masses have the same behavior at intermediate m_q (regime B, hyperscaling)
- ▶ Meson masses enhanced wrt glueballs at large m_a

Chiral condensate

The dependence of $\sigma \propto \langle \bar{q}q \rangle$ on the quark mass

For $x < x_c$ spiral structure

- Dots: numerical data
- ► Continuous line: (semi-)analytic prediction

Allows to study the effect of double-trace deformations

Four-fermion operators

Witten's recipe: modified UV boundary conditions

$$W = -m_q \int d^4 x \bar{q} q + \frac{g_2}{2} \int d^4 x (\bar{q} q)^2$$

Denote $m_q \to \alpha_m$, $\sigma \to \beta_m$

$$\alpha_m = g_2 \beta_m$$
 (for $m_q = 0$)

Conclusions

- Finite (flavor independent) quark mass can be easily implemented in V-QCD
- Dependence of mass spectra on m_q matches with QCD at qualitative level
- Most results close to the conformal transition independent of details
- Next step: fitting the potentials of the model quantitatively to QCD data

Extra slides

Matching to QCD

In the UV $(\lambda \rightarrow 0)$:

► UV expansions of potentials matched with perturbative QCD beta functions ⇒

$$\lambda(r) \simeq -\frac{1}{\beta_0 \log r}, \quad \tau(r) \simeq m_q (-\log r)^{-\gamma_0/\beta_0} r + \sigma(-\log r)^{\gamma_0/\beta_0} r^3$$

the 5th coordinate r o 0 and $\sigma \sim \langle \bar{q}q \rangle$

In the IR $(\lambda \to \infty)$:

- ▶ $V_{f0}(\lambda)$, $a(\lambda)$, and $\kappa(\lambda)$ chosen to produce tachyon divergence: several possibilities (\rightarrow Potentials I and II)
- Extra constraints from the asymptotics of the meson spectra and regularity at finite theta angle
 [Arean, latrakis, MJ, Kiritsis]

Working potentials often string-inspired power-laws, multiplied by logarithmic corrections (i.e, first guesses usually work!)

Energy scales at zero quark mass

V-QCD reproduces the expected picture:

- 1. QCD regime: single energy scale Λ
- 2. Walking regime $(x_c x \ll 1)$: two scales related by Miransky/BKT scaling law

$$\frac{\Lambda_{\rm UV}}{\Lambda_{\rm IR}} \sim \text{exp}\left(\frac{\kappa}{\sqrt{x_c-x}}\right)$$

3. Conformal window ($x_c \le x < 11/2$): again one scale Λ , but slow RG flow

Gell-Mann-Oakes-Renner relation

Combination of two computations:

- 1. Pion mass at small m_q (analyzing the fluctuation equations)
- 2. Chiral condensate as $\frac{d}{dm_q}S_{
 m on-shell}$, when $m_q o 0$

$$f_{\pi}^{2}m_{\pi}^{2}\simeq-m_{q}\langle\bar{q}q\rangle\left[1+\mathcal{O}\left(m_{q}
ight)
ight]$$

- ► Expected linear corrections $\propto m_q$ (despite logarithmic running of m_q)
- Consistency check of UV structure

Vector correlators and S-parameter

1. Introduce bulk gauge fields dual to vector operators

$$A_{\mu}^{L/R} \leftrightarrow ar{q} \gamma_{\mu} (1 \pm \gamma_5) q$$

2. Fluctuate full flavor action of V-QCD

$$\begin{split} S_f &= -\frac{1}{2} M^3 N_c \mathbb{T} r \int d^4 x \, dr \, \left(V_f(\lambda, T^\dagger T) \sqrt{-\det \mathbf{A}_L} + (L \to R) \right) \\ \mathbf{A}_{L/R \, MN} &= g_{MN} + w(\lambda, T) \mathbf{F}_{MN}^{(L/R)} + \\ &+ \frac{\kappa(\lambda, T)}{2} \left[(D_M T)^\dagger (D_N T) + (D_N T)^\dagger (D_M T) \right] \end{split}$$

Here T and $A^{(L/R)}$ matrices in flavor space

3. Compute vector-vector correlators using standard recipes $-i\langle J_{\mu}^{a(V)}J_{\nu}^{b(V)}\rangle \propto \delta^{ab}\left(q^{2}\eta_{\mu\nu}-q_{\mu}q_{\nu}\right)\Pi_{V}(q^{2})\\ -i\langle J_{\mu}^{a(A)}J_{\nu}^{b(A)}\rangle \propto \delta^{ab}\left[\left(q^{2}\eta_{\mu\nu}-q_{\mu}q_{\nu}\right)\Pi_{A}(q^{2})+q_{\mu}q_{\nu}\Pi_{L}(q^{2})\right]$

S-parameter

After adding gauge fields dual to vector operators in the DBI action

$$S = 4\pi \frac{\partial}{\partial q^2} \left[q^2 \Pi_V(q^2) - q^2 \Pi_A(q^2) \right]_{q^2 = 0}$$

$$S/(N_c N_f)$$

$$x_c \qquad x_{BZ}$$

$$m_q = 0$$

$$m_q = 10^{-6}$$

$$0.05$$

$$0.00$$

- ▶ Discontinuity at $m_q = 0$ in the conformal window
- Qualitative agreement with field theory expectations

[Sannino]

Scaling of the S-parameter

As $m_q \rightarrow 0$ in the conformal window,

$$S(m_q) \simeq S(0+) + c \left(rac{m_q}{\Lambda_{
m UV}}
ight)^{rac{\Delta_{FF}-4}{\Delta_*}}$$

- ▶ Limiting value $S(0+) = \lim_{m_q \to 0+} S(m_q)$ is finite and positive (while S(0) = 0)
- $ightharpoonup \Delta_{FF}$ is the dimension of ${\rm tr} F^2$ at the fixed point

How does the phase structure arise?

Turning on a tiny tachyon in the conformal window

$$\tau(r) \sim m_q r^{\Delta_*} + \sigma r^{4-\Delta_*}$$

Breitenlohner-Freedman (BF) bound

$$\Delta_*(4 - \Delta_*) = -m_{\tau}^2 \ell_*^2 \le 4$$

Violation of BF bound ⇒ instability

- ightharpoonup \Rightarrow bound saturated at the conformal phase transition $(x=x_c)$
- ▶ BF bound violation leads to a BKT transition quite in general

Consequences of the BKT transition

- 1. Miransky/BKT scaling as $x \rightarrow x_c$ from below
 - ightharpoonup E.g., The chiral condensate $\langle ar q q \rangle \propto \sigma$
- 2. Unstable Efimov vacua observed for $x < x_c$
- 3. Turning on the quark mass possible

The CP-odd term

Bulk axion a

- ▶ dual to $tr F \wedge F$
- ▶ background value identified as θ/N_c , where θ is the theta angle of QCD

Tachyon Ansatz $T = \tau e^{i\xi} \mathbb{I}$

String motivated CP-odd term added in the action

$$S_{a} = -\frac{M^{3} N_{c}^{2}}{2} \int d^{5}x \sqrt{-\det g} Z(\lambda)$$
$$\times \left[da - x \left(2V_{a}(\lambda, \tau) A - \xi dV_{a}(\lambda, \tau) \right) \right]^{2}$$

[Casero, Kiritsis, Paredes]

Symmetry

$$A_{\mu} \rightarrow A_{\mu} + \partial_{\mu} \epsilon$$
, $\xi \rightarrow \xi - 2\epsilon$, $a \rightarrow a + 2x V_a \epsilon$

reflects the axial anomaly in QCD (with $\epsilon = \epsilon(x_{\mu})$)

The mass of η'

Perturbative analysis of the coupled flavor singlet (pseudoscalar meson+glueball) fluctuation equations \Rightarrow The Witten-Veneziano relation: η' becomes light as $x \to 0$

$$m_{\eta'}^2 \simeq m_\pi^2 + x \frac{N_f N_c \chi}{f_\pi^2}$$

Finite T and μ – definitions

Add gauge field

$$S_{V-QCD} = N_c^2 M^3 \int d^5 x \sqrt{g} \left[R - \frac{4}{3} \frac{(\partial \lambda)^2}{\lambda^2} + V_g(\lambda) \right]$$
$$-N_f N_c M^3 \int d^5 x V_f(\lambda, \tau)$$
$$\times \sqrt{-\det(g_{ab} + \kappa(\lambda)\partial_a \tau \partial_b \tau + w(\lambda) F_{ab})}$$

$$F_{r0} = \partial_r \Phi$$
 $\Phi = \mu - nr^2 + \cdots$

A more general metric (A and f solved from EoMs)

$$ds^{2} = e^{2A(r)} \left(\frac{dr^{2}}{f(r)} - f(r)dt^{2} + d\mathbf{x}^{2} \right)$$

Nontrivial blackening factor f: black hole solutions possible

Various solutions

Two classes of IR geometries:

1. Black hole solutions \rightarrow temperature and entropy through BH thermodynamics

```
f'(r_h) = -4\pi T; s = 4\pi M^3 N_c^2 e^{3A(r_h)}
```

- 2. Thermal gas solutions $(f \equiv 1)$
 - Any T and μ , zero s

Two types of tachyon behavior ($\tau \leftrightarrow \bar{q}q$, quark mass and condensate from UV boundary behavior):

- 1. Vanishing tachyon chirally symmetric
- 2. Nontrivial tachyon chirally broken
- ⇒ four possible types of background solutions

Computation of pressure

Three phases turn out to be relevant (at small x)

- ► Tachyonic Thermal gas (chirally broken)
- ► Tachyonic BH (chirally broken)
- ► Tachyonless BH (chirally symmetric)

Nontrivial numerical analysis:

- 1. T, μ not input parameters, they need to be calculated first
- 2. Integrate numerically for each phase

$$dp = s dT + n d\mu$$

3. Phase with highest *p* dominates

Phase diagram: example at zero μ

Phases on the (x, T)-plane – as expected from QCD

Phase diagram at finite μ (example at fixed x)

First attempt: $x = N_f/N_c = 1$, Veneziano limit, zero quark mass

- ▶ $AdS_2 \times \mathbb{R}^3$ IR geometry as $T \to 0$
- ► Finite entropy at zero temperature ⇒ instability?

Fluctuation analysis

- 1. Meson spectra (at zero temperature and quark mass)
 - ▶ Implement (left and right handed) gauge fields in S_{V-QCD}
 - ► Four towers: scalars, pseudoscalars, vectors, and axial vectors
 - ▶ Flavor singlet and nonsinglet $(SU(N_f))$ states

In the region relevant for "walking" technicolor ($x \rightarrow x_c$ from below):

Possibly a light "dilaton" (flavor singlet scalar): Goldstone mode due to almost unbroken conformal symmetry. Could the dilaton be the 125 GeV Higgs?

Meson masses

Flavor nonsinglet masses (Example: Potl)

► Miransky scaling:

$$m_n \sim \exp\left(-\frac{\kappa}{\sqrt{x_c - x}}\right)$$

▶ Radial trajectories $m_n^2 \sim n$ or $m_n^2 \sim n^2$ depending on potentials

Scalar singlet masses

Scalar singlet (0^{++}) spectrum (Potl):

In log scale

Normalized to the lowest state

▶ No light dilaton state as $x \to x_c$?

Meson mass ratios

Mass ratios (PotII): Lowest states normalized to ho

All ratios tend to constants as $x \to x_c$: indeed no dilaton

S-parameter

$$S \sim rac{d}{dq^2} q^2 \left[\Pi_V(q^2) - \Pi_A(q^2) \right]_{q^2=0}$$

where (at zero quark mass)

$$\Pi_{V/A}(q^2) \left(q^2 g^{\mu
u} - q^\mu q^
u
ight) \delta^{ab} \propto \langle J^{\mu\,a}_{V/A} J^{
u\,b}_{V/A}
angle$$

in terms of the vector-vector and axial-axial correlators

► The S-parameter might be reduced in the walking regime

Results:

The S-parameter increases with x: expected suppression absent

Jumps discontinuously to zero at $x = x_c$

QCD at finite T (and x)

Expected phase structure at finite temperature (and x)

Potentials I

$$V_{g}(\lambda) = 12 + \frac{44}{9\pi^{2}}\lambda + \frac{4619}{3888\pi^{4}} \frac{\lambda^{2}}{(1+\lambda/(8\pi^{2}))^{2/3}} \sqrt{1 + \log(1+\lambda/(8\pi^{2}))}$$

$$V_{f}(\lambda,\tau) = V_{f0}(\lambda)e^{-a(\lambda)\tau^{2}}$$

$$V_{f0}(\lambda) = \frac{12}{11} + \frac{4(33-2x)}{99\pi^{2}}\lambda + \frac{23473-2726x+92x^{2}}{42768\pi^{4}}\lambda^{2}$$

$$a(\lambda) = \frac{3}{22}(11-x)$$

$$\kappa(\lambda) = \frac{1}{\left(1 + \frac{115-16x}{288\pi^{2}}\lambda\right)^{4/3}}$$

In this case the tachyon diverges exponentially:

$$au(r) \sim au_0 \exp\left[rac{81\ 3^{5/6}(115 - 16x)^{4/3}(11 - x)}{812944\ 2^{1/6}} rac{r}{R}
ight]$$

Potentials II

$$V_g(\lambda) = 12 + \frac{44}{9\pi^2}\lambda + \frac{4619}{3888\pi^4} \frac{\lambda^2}{(1+\lambda/(8\pi^2))^{2/3}} \sqrt{1 + \log(1+\lambda/(8\pi^2))}$$

$$V_f(\lambda,\tau) = V_{f0}(\lambda)e^{-a(\lambda)\tau^2}$$

$$V_{f0}(\lambda) = \frac{12}{11} + \frac{4(33-2x)}{99\pi^2}\lambda + \frac{23473-2726x+92x^2}{42768\pi^4}\lambda^2$$

$$a(\lambda) = \frac{3}{22}(11-x)\frac{1+\frac{115-16x}{216\pi^2}\lambda + \lambda^2/(8\pi^2)^2}{(1+\lambda/(8\pi^2))^{4/3}}$$

$$\kappa(\lambda) = \frac{1}{(1+\lambda/(8\pi^2))^{4/3}}$$

In this case the tachyon diverges as

$$au(r) \sim rac{27 \ 2^{3/4} 3^{1/4}}{\sqrt{4619}} \sqrt{rac{r-r_1}{R}}$$