

Senator Arthur Sinodinos AO, Ambassador H. E Pier Francesco Zazo Australia strengthens science and innovation ties with Italy, 22 May 2017 Australia and Italy have signed an agreement that will further strengthen scientific, technological and innovation co-operation between both nations. Present: Prof. Enrico Cappellaro INAF, Prof. Antonio Masiero INFN etc.

Outline

1.Belle II Status
 2.Anomalies $\mathrm{b} \rightarrow \mathrm{sll}, \mathrm{b} \rightarrow \mathbf{c t v}$

The case for new physics manifesting in Belle II

Issues (addressable at a Flavour factory)

- Baryon asymmetry in cosmology
\rightarrow New sources of CPV in quarks and charged leptons
- Quark and Lepton flavour \& mass hierarchy
\rightarrow L-R symmetry, extended gauge sector, charged Higgs
- Finite neutrino masses
\rightarrow Tau LFV.
- 19 free parameters
\rightarrow Extensions of SM relate some, (GUTs)
- Puzzling nature of exotic "new" QCD states.
- The hidden universe (dark matter)

B-physics @ Belle II

Observables	Expected th. accuracy	Expected exp. uncertainty	Facility (2025)
UT angles \& sides			
$\phi_{1}{ }^{\circ}{ }^{\circ}$	***	0.4	Belle II
$\left.\phi_{2}{ }^{[0}\right]$	**	1.0	Belle II
$\left.\phi_{3}{ }^{\circ}{ }^{\circ}\right]$	***	1.0	Belle II/LHCb
$\left\|V_{c b}\right\|$ incl.	***	1\%	Belle II
$\left\|V_{c b}\right\|$ excl.	***	1.5\%	Belle II
$\left\|V_{u b}\right\|$ incl.	**	3\%	Belle II
$\left\|V_{u b}\right\|$ excl.	**	2%	Belle II/LHCb
CPV			
$S\left(B \rightarrow \phi K^{0}\right)$	***	0.02	Belle II
$S\left(B \rightarrow \eta^{\prime} K^{0}\right)$	***	0.01	Belle II
$\mathcal{A}\left(B \rightarrow K^{0} \pi^{0}\right)\left[10^{-2}\right]$	***	4	Belle II
$\mathcal{A}\left(B \rightarrow K^{+} \pi^{-}\right)\left[10^{-2}\right]$	***	0.20	LHCb/Belle II
(Semi-)leptonic			
$\mathcal{B}(B \rightarrow \tau \nu)\left[10^{-6}\right]$	**	3\%	Belle II
$\mathcal{B}(B \rightarrow \mu \nu)\left[10^{-6}\right]$	**	7\%	Belle II
$R(B \rightarrow D \tau \nu)$	***	3%	Belle II
$R\left(B \rightarrow D^{*} \tau \nu\right)$	***	2\%	Belle II/LHCb
Radiative \& EW Penguins			
$\mathcal{B}\left(B \rightarrow X_{s} \gamma\right)$	**	4\%	Belle II
$A_{C P}\left(B \rightarrow X_{s, d} \gamma\right)\left[10^{-2}\right]$	***	0.005	Belle II
$S\left(B \rightarrow K_{S}^{0} \pi^{0} \gamma\right)$	***	0.03	Belle II
$S(B \rightarrow \rho \gamma)$	**	0.07	Belle II
$\mathcal{B}\left(B_{s} \rightarrow \gamma \gamma\right)\left[10^{-6}\right]$	**	0.3	Belle II
$\mathcal{B}\left(B \rightarrow K^{*} \nu \bar{\nu}\right)\left[10^{-6}\right]$	***	15\%	Belle II
$\mathcal{B}(B \rightarrow K \nu \bar{\nu})\left[10^{-6}\right]$	***	20\%	Belle II
$R\left(B \rightarrow K^{*} \ell \ell\right)$	**	0.03	Belle II/LHCb

Accelerator \& Detector status

SuperKEKB

Lorentz factor
beam current beam-beam parameter

beam size aspect ratio vertical β function geometric factors

- Compared to KEKB
- 20x smaller vertical beam size
- $2 x$ current

BEAST II, Phase I commissioning

First operation of SuperKEKB (4 GeV e+'s \& 7 GeV e-'s)

Feb 162016 Start

Red: total beam current Purple: vacuum pressure
LER: 1010 mA , HER 870 mA

5 Months operation

Beam background (Simulation)

- Increases occupancy in inner Si layers - can degrade tracking.
- Increases off-time energy deposition in the calorimeter.

type	source	rate [MHz]
radiative Bhabha	HER	1320
radiative Bhabha	LER	1294
radiative Bhabha (wide angle)	HER	40
radiative Bhabha (wide angle)	LER	85
Touschek scattering	HER	31
Touschek scattering	LER	83
beam-gas interactions	HER	1
beam-gas interactions	LER	156
two-photon QED	-	206

component	background	generic $B \bar{B}$
PXD	10000 (580)	23
SVD	284 (134)	108
CDC	654	810
TOP	150	205
ARICH	191	188
ECL	3470	510
BKLM	484	33
EKLM	142	34

Beam background (Simulation)

- Increases occupancy in inner Si layers - can degrade tracking.
- Increases off-time energy deposition in the calorimeter.

type	source	rate $[\mathrm{MHz}]$
radiative Bhabha	HER	1320
radiative Bhabha	LER	1294
radiative Bhabha (wide angle)	HER	40
radiative Bhabha (wide angle)	LER	85
Touschek scattering	HER	31
Touschek scattering	LER	83
beam-gas interactions	HER	1
beam-gas interactions	LER	156
two-photon QED	-	206

Figure does not include ECL timing or energy threshold requirements		
component	background	generic $B \bar{B}$
PXD	10000 (580)	23
SVD	284 (134)	108
CDC	654	810
TOP	150	205
ARICH	191	188
ECL	3470	510
BKLM	484	33
EKLM	142	34

Latest SuperKEKB Luminosity Profile

Latest SuperKEKB Luminosity Profile

Belle II Detector [735 collaborators, 101 institutes, 23 nations]

```
Belle II TDR, arXiv:
```

1011.0352

Belle II Detector [735 collaborators, 101 institutes, 23 nations]

Belle II TDR, arXiv: 1011.0352

KL and muon detector

Resistive Plate Counter (barrel outer layers)
Scintillator + WLSF + MPPC (end-caps , inner 2 barrel layers)

EM Calorimeter

CsI(TI), waveform sampling electronics (barrel) Pure CsI + waveform sampling (end-caps) later

Electromagnetic Calorimeter (ECL) endcap installation

Electromagnetic Calorimeter (ECL) endcap installation

CDC fully instrumented

- CDC backward view on Jan 10th, 2017. After all cables, cooling pipe and dry air are connected.
- Smaller segments \rightarrow better mass resolution.

J/ ψ Mass Vertex Fit - Belle

CDC fully instrumented

- CDC backward view on Jan 10th, 2017. After all cables, cooling pipe and dry air are connected.
- Smaller segments \rightarrow better mass resolution.

J / ψ Mass Vertex Fit

CDC (Central Drift Chamber) Fully instrumented

- Cosmic run (Feb 7, 2017)

Single cosmic ray track
Multiple tracks
(showering cosmic ray event)

Time-of-Propagation Cherenkov Detector

Belle II in place

April 1, Belle II "roll-in"

Vertex Detector

IP resolution much better than Belle \& Babar \rightarrow much better vertexing

Reconstruction fraction: Ks From B-> JpsiKs

Performance Snapshot: Reconstructed Particles

Tracking IP resolution, Rel7
Tracking efficiency vs Pt, Rel7
Photon energy resolution, Rel7

Muon ID efficiency, Rel7

KL ID ROC, Rel7

Electromagnetic interactions

- Far fewer background \& pileup photons than hadron collider
- Higher performance calorimeter
- Much less material in front (important for electrons)

Photon energy resolution, Rel7

LHCb upgrade full simulation (parametrisation)

So when do we start Belle II ?

BEAST PHASE I:
 Feb-June 2016
 (Belle II roll-in in March 2017).

PHASE II Operation: Starts in ~Jan 2018 [Begin with damping ring commissioning; First collisions; limited physics without vertex detectors]

Phase III: Belle II Physics Running: late 2018 [vertex detectors in]

QCSL at the IP, Aug 2016

Anomalies in $\mathrm{b} \rightarrow \mathrm{s}$ II

$\& b \rightarrow c$ T V

Missing energy decays an e+e- collider

BDT based
 hadronic+semileptonic
 tag reconstruction
 implemented.

Missing energy decays an e+e- collider

BDT based

hadronic+semileptonic
tag reconstruction implemented.

Missing energy decays an e+e- collider

Missing energy decays an e+e- collider

Missing energy decays an e+e- collider

Missing energy decays an e+e- collider

\bar{D}^{0}

BDT based

 hadronic+semileptonic tag reconstruction implemented.Semi-Inclusive
hadronic 'tagging' side
$e^{+}-\left(p_{e^{+} e^{-}}-p_{\mathrm{tag}}^{B}-p^{D^{*}}-p_{\ell}\right)^{2}=\left(p_{\nu}\right)^{2}=m_{\mathrm{miss}}^{2} \backsim 0-e^{-}$

"Missing Energy Decay" in a Belle II GEANT4 simulation

Signal $B \rightarrow K \vee v \quad$ tag mode: $B \rightarrow D \pi ; D \rightarrow K \pi$

Zoomed view of the vertex region in r--phi
View in r-z

$B \rightarrow T(\rightarrow \mid \vee v) \vee$ with FEI

- MC6, BDT Signal optimisation,
- Even with nominal beam background sensitivity comparable to Belle.

$\begin{gathered} \mathrm{E}_{\text {extra }}<1 \\ \mathrm{GeV} \end{gathered}$	$\begin{gathered} \text { Babar } \\ \text { PRD } 88, \\ 031102(2013) \\ \hline \end{gathered}$	$\begin{gathered} \text { Belle } \\ \underline{\text { PRL 110 }} \\ \underline{131801(2013)} \end{gathered}$	Belle II (this analysis)
Signal Efficiency (\%)	0.72	1.1	2.2

ab-1	$\mathbf{1}$		$\mathbf{5}$		$\mathbf{5 0}$	
Had SL				Had	SL	Had SL
Stat [\%]	29	19	13	9	4	3
Sys[\%]	13	18	$\mathbf{7}$	9	5	5
Total[\%]	32	26	15	12	$\mathbf{6}$	$\mathbf{5}$

$B \rightarrow D^{(*)} \tau v$

- Belle has 4 approaches
- $\tau \rightarrow$ I $\vee \vee$ [had tag, SL tag, untagged]
- $\tau \rightarrow h \vee$ [had tag]
- First application of semileptonic tagging for $\mathrm{B} \rightarrow \mathrm{D}\left(^{*}\right) \mathrm{tv}$

$$
R\left(D^{\star}\right)=0.302 \pm 0.030 \pm 0.011
$$

Limits on Type II 2HDM From Belle

Belle, Phys.Rev.D 94, 072007 (2016)

$$
B \rightarrow D^{*} \tau v
$$

$\chi^{2} / \mathrm{ndf}=20.3 / 19, \mathrm{p}=37.6 \%$

$\chi^{2} / \mathrm{ndf}=35.1 / 19, \mathrm{p}=1.4 \%$

$\left.B \rightarrow D^{(}\right) ~ \tau v$

$$
\begin{aligned}
& \mathcal{O}_{V_{1}}^{\left(q, \nu_{\ell}\right)}=\left(\bar{q} \gamma^{\mu} P_{L} b\right)\left(\bar{\tau} \gamma_{\mu} P_{L} \nu_{\ell}\right) \\
& \mathcal{O}_{V_{2}}^{\left(q, \nu_{\ell}\right)}=\left(\bar{q} \gamma^{\mu} P_{R} b\right)\left(\bar{\tau} \gamma_{\mu} P_{L} \nu_{\ell}\right) \\
& \mathcal{O}_{S_{1}}^{\left(q, \nu_{\ell}\right)}=\left(\bar{q} P_{R} b\right)\left(\bar{\tau} P_{L} \nu_{\ell}\right) \\
& \mathcal{O}_{S_{2}}^{\left(q, \nu_{\ell}\right)}=\left(\bar{q} P_{L} b\right)\left(\bar{\tau} P_{L} \nu_{\ell}\right) \\
& \mathcal{O}_{T}^{\left(q, \nu_{\ell}\right)}=\left(\bar{q} \sigma^{\mu \nu} P_{L} b\right)\left(\bar{\tau} \sigma_{\mu \nu} P_{L} \nu_{\ell}\right)
\end{aligned}
$$

Reaching this goal needs focus on $B \rightarrow D^{* *}$ lv background. See: https://agenda.hepl.phys.nagoyau.ac.jp/indico/conferenceDisplay.py? confld=702

Polarisation

- $\mathrm{P}(\mathrm{t})$ measured.
- Strongly stat. limited. \& only done in hadronic tag.
- $P\left(D^{*}\right)$ possible too

$$
\begin{gathered}
\left.R\left(D^{*}\right)=0.270 \pm 0.035 \text { (stat. }\right)_{-0.025}^{+0.028} \text { (syst.) } \\
\left.P_{\tau}\left(D^{*}\right)=-0.38 \pm 0.51 \text { (stat. }\right)_{-0.16}^{+0.21} \text { (syst.) }
\end{gathered}
$$

B \rightarrow т Nagoya 2017
Phillip URQUIJO

$B \rightarrow K^{*} e^{+} e^{-}$

Belle PRL. 118 (2017) no.11, 111801 LHCb, arXiv:1705.05802
LHCb, PRL 113, 151601 (2014)

Belle (II) Electron reconstruction is minimally affected by material effects and pile-up

Lepton Flavour Universality Violation

- $\mathrm{R}\left\{\mathrm{K}, \mathrm{K}^{*}, \mathrm{Xs}\right\}$: Expect $3-4 \%$ precision in each bin.

$\mathrm{q}^{2}\left[\mathrm{GeV}^{2} / \mathrm{c}^{2}\right]$

$\mathrm{q}^{2}\left[\mathrm{GeV}^{2} / \mathrm{c}^{2}\right]$

LHCb \& Belle results on $B \rightarrow K^{*}|+|-\left(q^{2}\right)$

$\mathbf{q}^{2} \mathbf{G e V}^{2} / \mathbf{c}^{2}$	Belle	LHCb 3fb $\mathbf{- 1}$	Belle II 50 ab-1
$\mathbf{0 . 1 - 4}$	0.416	0.109	-
$\mathbf{4 . 0 0 - 8 . 0 0}$	0.277	0.099	$\mathbf{0 . 0 2 4}$
$\mathbf{1 0 . 0 9 - 1 2 . 0}$	0.344	0.155	-
$\mathbf{1 4 . 1 8 - 1 9 . 0 0}$	0.248	0.092	$\mathbf{0 . 0 2 7}$

LHCb \& Belle results on $B \rightarrow K^{*}|+|-\left(q^{2}\right)$

Belle PRL. 118 (2017) no.11, 111801
\rightarrow Belle II will also study inclusive

$\mathbf{q}^{\mathbf{2}} \mathbf{G e V}^{2} / \mathbf{c}^{\mathbf{2}}$	Belle	LHCb 3fb ${ }^{-1}$	Belle II 50 $\mathbf{a b}^{\mathbf{- 1}}$
$\mathbf{0 . 1 - 4}$	0.416	0.109	-
$\mathbf{4 . 0 0 - 8 . 0 0}$	0.277	0.099	$\mathbf{0 . 0 2 4}$
$\mathbf{1 0 . 0 9 - 1 2 . 0}$	0.344	0.155	-
$\mathbf{1 4 . 1 8 - 1 9 . 0 0}$	0.248	0.092	$\mathbf{0 . 0 2 7}$

Observables	Belle $0.71 \mathrm{ab}^{-1}$	Belle II $5 \mathrm{ab}^{-1}$	${\text { Belle II } 50 \mathrm{ab}^{-1}}^{B\left(B^{+} \rightarrow K^{+} \nu \bar{\nu}\right)}$
$B\left(B^{0} \rightarrow K^{* 0} \nu \bar{\nu}\right)$	$<450 \%$	38%	12%
$F_{L}\left(B^{0} \rightarrow K^{* 0} \nu \bar{\nu}\right)$	$<180 \%$	35%	11%
$B\left(B^{0} \rightarrow \nu \bar{\nu}\right) \times 10^{6}$	-	-	0.11
$B\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right) \times 10^{5}$	<14	<5.0	<1.5
$B\left(B^{0} \rightarrow \tau^{+} \tau^{-}\right) \times 10^{5}$	<32	<6.5	<2.0

$B \rightarrow K v v$: Do not expect large loss of resolution in $E_{E C L}$ with background.

Observables	Belle $0.71 \mathrm{ab}^{-1}$	Belle II $5 \mathrm{ab}^{-1}$	${\text { Belle II } 50 \mathrm{ab}^{-1}}^{\bar{B}\left(B^{+} \rightarrow K^{+} \nu \bar{\nu}\right)}$
$B\left(B^{0} \rightarrow K^{* 0} \nu \bar{\nu}\right)$	$<450 \%$	38%	12%
$F_{L}\left(B^{0} \rightarrow K^{* 0} \nu \bar{\nu}\right)$	$<180 \%$	35%	11%
$B\left(B^{0} \rightarrow \nu \bar{\nu}\right) \times 10^{6}$	-	-	0.11
$B\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right) \times 10^{5}$	<14	<5.0	<1.5
$B\left(B^{0} \rightarrow \tau^{+} \tau^{-}\right) \times 10^{5}$	<32	<6.5	<2.0

$b \rightarrow d$ couplings: $B \rightarrow \rho \gamma$

- Without K/п ID

- Belle II K/ π ID

Observables	Belle $0.71 \mathrm{ab}^{-1}$	Belle II $5 \mathrm{ab}^{-1}$	Belle II 50 ab^{-1}
$\Delta_{0+}(B \rightarrow \rho \gamma)$	39%	12%	3.9%
$A_{C P}\left(B^{+} \rightarrow \rho^{+} \gamma\right)$	30%	9.6%	3.0%
$S_{C P}\left(B^{0} \rightarrow \rho^{0} \gamma\right)$	63%	19%	6.4%
$A_{C P}\left(B^{0} \rightarrow \rho^{0} \gamma\right)$	44%	12%	3.8%
$\Delta A_{C P}(B \rightarrow \rho \gamma)$	77%	16%	4.8%

$b \rightarrow d$ couplings: $B \rightarrow \rho \gamma$

K / π fake rates $<2 x$ smaller in Belle II: separates $b \rightarrow d$ from $b \rightarrow s$

- Without K/п ID

- Belle II K/п ID

Observables	Belle $0.71 \mathrm{ab}^{-1}$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
$\Delta_{0+}(B \rightarrow \rho \gamma)$	39%	12%	3.9%
$A_{C P}\left(B^{+} \rightarrow \rho^{+} \gamma\right)$	30%	9.6%	3.0%
$S_{C P}\left(B^{0} \rightarrow \rho^{0} \gamma\right)$	63%	19%	6.4%
$A_{C P}\left(B^{0} \rightarrow \rho^{0} \gamma\right)$	44%	12%	3.8%
$\Delta A_{C P}(B \rightarrow \rho \gamma)$	77%	16%	4.8%

Time dependent CP violation

Belle II Analysis

- Tree

Coherent B meson pair production

- Gluonic Penguin (NP sensitive)

Flavour Tagging

- Categnries based on different signatures

Categories	$\varepsilon_{\text {eff }(\%)}$	$\Delta \varepsilon_{\text {eff }}(\%)$
Electron	5.26	-0.05
IntermediateElectron	1.06	-0.02
Muon	5.55	-0.02
IntermediateMuon	0.17	-0.01
KinLepton	10.86	-0.07
IntermediateKinLepton	0.98	-0.04
Kaon	21.83	-1.72
KaonPion	15.12	-0.87
SlowPion	7.96	-0.23
FSC	13.11	-0.33
MaximumPstar	13.24	0.39
FastPion	2.58	-0.06
Lambda	1.98	0.36

- Belle II: 35% (varies with release)
- few\% less w/ beam bkg
- Belle (this algo): 32\%
- Belle (old algo):29\%

Time dependent CP Violation with Penguins

Belle II Full Simulation B2TiP Theory

Channel	$\int \mathcal{L}$	Event yield	$\sigma(S)$	$\sigma(S)_{2017}$	$\sigma(A)$	$\sigma(A)_{2017}$
$J / \psi K^{0}$	$50 \mathrm{ab}^{-1}$	$1.4 \cdot 10^{6}$	0.0052	0.022	0.0050	0.021
ϕK^{0}	$5 \mathrm{ab}^{-1}$	5590	0.048	0.12	0.035	0.14
$\eta^{\prime} K^{0}$	$5 \mathrm{ab}^{-1}$	27200	0.027	0.06	0.020	0.04
ωK_{S}^{0}	$5 \mathrm{ab}^{-1}$	1670	0.08	0.21	0.06	0.14
$K_{S} \pi^{0} \gamma$	$5 \mathrm{ab}^{-1}$	1400	0.10	0.20	0.07	0.12
$K_{S} \pi^{0}$	$5 \mathrm{ab}^{-1}$	5699	0.09	0.17	0.06	0.10

Error on $\sin (2 \beta)$ from $\mathrm{B} \rightarrow \mathrm{J} / \boldsymbol{\mathrm { K }} \mathrm{K}_{\mathrm{s}}$	tot.
LHCb 22/fb	$\mathbf{0 . 0 1 4}$
Belle ॥ $50 / \mathrm{ab}$	$\mathbf{0 . 0 0 7}$

Mode	QCDF [27]	QCDF (scan) [27]	$S U(3)$	Data
$\pi^{0} K_{S}$	$0.07_{-0.04}^{+0.05}$	$[0.02,0.15]$	$[-0.11,0.12][41]$	$-0.11_{-0.17}^{+0.17}$
$\rho^{0} K_{S}$	$-0.08_{-0.12}^{+0.08}$	$[-0.29,0.02]$		$-0.14_{-0.21}^{+0.18}$
$\eta^{\prime} K_{S}$	$0.01_{-0.01}^{+0.01}$	$[0.00,0.03]$	$(0 \pm 0.36) \times 2 \cos \left(\phi_{1}\right) \sin \gamma[42]$	-0.05 ± 0.06
ηK_{S}	$0.10_{-0.07}^{+0.11}$	$[-1.67,0.27]$		-
ϕK_{S}	$0.02_{-0.01}^{+0.01}$	$[0.01,0.05]$	$(0 \pm 0.25) \times 2 \cos \left(\phi_{1}\right) \sin \gamma[42]$	$0.06_{-0.13}^{+0.11}$
ωK_{S}	$0.13_{-0.08}^{+0.08}$	$[0.01,0.21]$		$0.03_{-0.21}^{+0.21}$

UT Precision Tests

The IVubl puzzle

- Critical input on inclusive $B \rightarrow$ Xu I v comes from
- Mx^{2} fit for $\mathrm{m}_{\mathrm{b}} / \mu_{\mathrm{r}^{2}}{ }^{2} \mathrm{~V}_{\mathrm{ub}}$
- Fitting for fragmentation of X_{u}
- $\Delta \sim 3 \%$

IVubl Exclusive

$\mathcal{L}\left[\mathrm{ab}^{-1}\right]$	$\sigma_{\mathcal{B}}($ stat \pm sys $)$	$\sigma_{L Q C D}^{\text {forecast }}$	$\sigma_{V_{u b}}$
tagged	3.6 ± 4.4	current	6.2
	1.3 ± 3.6		3.6
5	1.6 ± 2.7	in 5 yrs	3.2
	0.6 ± 2.2		2.1
10	1.2 ± 2.4	in 5 yrs	2.7
	0.4 ± 1.9		1.9
50	0.5 ± 2.1	in 10 yrs	1.7
	0.2 ± 1.7		1.3

$\mathcal{L}\left[\mathrm{ab}^{-1}\right]$	$\sigma_{\mathcal{B}}($ stat \pm sys $)$	$\sigma_{L Q C D}^{\text {forecast }}$	$\sigma_{V_{u b}}$
1	6.5 ± 3.6	current	6.5
5	2.9 ± 2.2	in 5 yrs	4.7

Φ_{3} from B \rightarrow DK

- Phase between $b \rightarrow u$ and $b \rightarrow c$

Strong phase differences can be measured at a charm factory

Φ_{3} Belle $=\left(73{ }^{+13}{ }_{-15}\right)^{\circ}$

$$
\Phi_{3} W A=\left(72.2^{+5.3-5.8}\right)^{0}
$$

- 1.6° expected at Belle II
- Include neutral D modes
- Assume BES III collects $10 \mathrm{fb}^{-1}$

CKMFitter: 2016 Vs 2025

Loop

Input	World average	
		Belle II $(+\mathrm{LHCb})$
		2025
$\left\|V_{u b}\right\|($ semileptonic $)\left[10^{-3}\right]$	$4.01 \pm 0.08 \pm 0.22$	± 0.10
$\left\|V_{c b}\right\|($ semileptonic $)\left[10^{-3}\right]$	$41.00 \pm 0.33 \pm 0.74$	± 0.57
$\mathcal{B}(B \rightarrow \tau \nu)$	1.08 ± 0.21	± 0.04
$\sin 2 \beta$	0.691 ± 0.017	± 0.008
$\gamma\left[^{\circ}\right]$	$73.2_{-7.0}^{+6.3}$	± 1.5
		(± 1.0)
$\alpha\left[^{\circ}\right]$	$87.6_{-3.3}^{+3.5}$	± 1.0
Δm_{d}	0.510 ± 0.003	-
Δm_{s}	17.757 ± 0.021	-
$\mathcal{B}\left(B_{s} \rightarrow \mu \mu\right)$	$2.8_{-0.6}^{+0.7}$	(± 0.5)
$f_{B_{s}}$	$0.224 \pm 0.001 \pm 0.002$	0.001
$B_{B_{s}}$	$1.320 \pm 0.016 \pm 0.030$	0.010
$f_{B_{s}} / f_{B_{d}}$	$1.205 \pm 0.003 \pm 0.006$	0.005
$B_{B_{s}} / B_{B_{d}}$	$1.023 \pm 0.013 \pm 0.014$	0.005

Expect substantial improvements to tree constraints!

Tree

CP violating

NP in B_{d} mixing: Fit results

By Stage II,

- $\wedge \sim 20 \mathrm{TeV}$ (tree)
- Mixing 2 TeV (loop)
$i \frac{d}{d t}\binom{\left|B_{q}(t)\right\rangle}{\left|\bar{B}_{q}(t)\right\rangle}=\left(M^{q}-\frac{i}{2} \Gamma^{q}\right)\binom{\left|B_{q}(t)\right\rangle}{\left|\bar{B}_{q}(t)\right\rangle}$
- Parameterise NP.
$M_{12}=M_{12}^{S M} \times\left(1+h e^{2 i \sigma}\right)$

LHCb Upg.+ Belle II

$\bullet 95 \% \mathrm{CL}, \mathrm{NP} \leq($ many $\times \mathrm{SM}) \Longrightarrow \mathrm{NP} \leq(0.05 \times \mathrm{SM})$

$$
\begin{array}{r}
h \simeq 1.5 \frac{\left|C_{i j}\right|^{2}}{\left|\lambda_{i j}^{t}\right|^{2}} \frac{(4 \pi)^{2}}{G_{\mathrm{F}} \Lambda^{2}} \simeq \frac{\left|C_{i j}\right|^{2}}{\left|\lambda_{i j}^{t}\right|^{2}}\left(\frac{4.5 \mathrm{TeV}}{\Lambda}\right)^{2} \\
\sigma=\arg \left(C_{i j} \lambda_{i j}^{t *}\right)
\end{array}
$$

Physics in 2018

Phase II: First collision Run, Feb-Jun 2018

Phase 12016

Phase 2 Feb 2018- July 2018
Full physics Dec 2018-
"BEAST"/SuperKEKB \& cosmics
Belle II no VXD, commissioning data
Vertex detectors in

- 4-5 months of machine study, 1~2 months may contain usable data.
- Target luminosity $1 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

Phase II Unique data sets

- Only ~20-40 fb-1 in Phase II
- Unique $\mathrm{E}_{\text {см }}$, e.g. $\mathrm{Y}(6 \mathrm{~S})$ for bottomonium - strong interaction studies
- New trigger menu to greatly enhance low multiplicity \& dark sector physics

Experiment	Scans Off. Res.	$\begin{gathered} \Upsilon(6 S) \\ \mathrm{fb}^{-1} \end{gathered}$	$\Upsilon(5 S)$		$\Upsilon(4 S)$		$\Upsilon(3 S)$		$\Upsilon(2 S)$		$\Upsilon(1 S)$	
			bb^{-1}	10^{6}	fb^{-1}	10^{6}	fb^{-1}	10^{6}	fb^{-1}	10^{6}	fb^{-1}	10^{6}
CLEO	17.1	-	0.1	0.4	16	17.1	1.2	5	1.2	10	1.2	21
BaBar	54	R_{b} ¢can			433	471	30	122	14	99	-	
Belle	100	~ 5.5	36	121	711	772	3	12	25	158	6	102

Exotic 4-quark States

Bottomonium - atomic-like bound bb states

Bottomonium-like - addilitional quark pair $\quad \mathrm{Z}_{\mathrm{b}}, \mathrm{W}_{\mathrm{bx}}$ - postulated states

Bottomonium-like resonances above open B threshold

- $\mathrm{Y}(6 \mathrm{~S}) \rightarrow \mathrm{h}_{\mathrm{b}}(\mathrm{mP}) \pi \pi \mathrm{r}$ vs CMS energy, evidence for $Z_{b} \rightarrow h_{b} \pi$,
- $\pi \mathrm{m}$ tagged, analyse missing mass

Belle PRL 117, 142001 (2016)

- $\sigma(\mathrm{Y}(\mathrm{nS}), \pi \mathrm{m}), \sigma(\mathrm{bb})$ vs CMS

Belle PRD 93, 011101 (2016)

Need to study dipion kinematics near $\mathrm{Zb} \pi$ treshold

Dark Sector in phase II

- Dark photon search with NN. • ee \rightarrow Y a [a \rightarrow Y Y] *New*

Triggering dark sector physics

the Uni	SITY OF	*
MELB	JRNE	
Physics process	Cross section (nb)	Rate (Hz)
$\Upsilon(4 \mathrm{~S}) \rightarrow B \bar{B}$	1.2	960
$e^{+} e^{-} \rightarrow$ continuum	2.8	2200
$\mu^{+} \mu^{-}$	0.8	640
$\tau^{+} \tau^{-}$	0.8	640
Bhabha ($\theta_{\text {lab }} \geq 17^{\circ}$)	44	$350{ }^{\text {a }}$
$\gamma \gamma\left(\theta_{\text {lab }} \geq 17^{\circ}\right)$	2.4	19^{a}
2γ processes ${ }^{b}$	~ 80	~ 15000
Total	~ 130	~ 20000

- 2 stage trigger: Hardware (L1) then Software.

	Hardware Trigger accept	Physics output rate	Raw event size
Belle	500 Hz	90 Hz	
Belle II	30 kHz	$3-10 \mathrm{kHz}$	$\sim 200 \mathrm{kB}$
ATLAS	100 kHz	1 kHz	1.6 MB

[^0]

Summary

- SuperKEKB has been brought to life.
- Phase II collisions start January 2018, Phase III Late 2018
- Rich physics program at SuperKEKB/Belle II
- New sources of CPV, New gauge bosons, Lepton Flavour Violation, Dark Sectors.
- Numerous anomalies to probe with the first 5 ab $^{-1}$
- Strong case for phase II physics.
- The Belle II physics book to be published in 2017 (ed. PU \& E. Kou)

Backup

Belle II Physics Book

- B2TiP Report (600p)
- https://confluence.desy.de/ display/BI/B2TiP+ReportStatus
- To be published in PTEP / Oxford University Press \& printed.
- Belle II Detector, Simulation, Reconstruction, Analysis tools
- Physics working groups
- New physics prospects and global fit code

PTEP

The Belle II Physics Book

Emi Kou ${ }^{1}$, Phillip Urquijo ${ }^{2}$, The Belle II collaboration ${ }^{3}$, and The B2TiP theory community ${ }^{4}$
${ }^{1} L A L$
*E-mail: kou@lal.in2p3.fr
${ }^{2}$ Melbourne
*E-mail: purquėjo@unimelb.edu.au
${ }^{3}$ Addresses of authors
${ }^{4}$ Addresses of authors

The report of the Belle II Theory Interface Platform is presented in this document.

Contents

PAGE

1 Introduction 6
1.1 Goals 6
1.2 Particle physics after the B-factories and LHC run I (and run II first
data)
1.3 Flavour physics questions to be addressed by Belle II 7
1.4 Advantages of SuperKEKB and Belle II 8
1.5 Overview of SuperKEKB 9
1.6 Data taking overview 10
1.7 The Belle II Golden channels 10

2 Belle II Simulation 11
2.1 Introduction 11
2.2 Cross Sections 11
2.3 Generators 11
2.4 Beam-induced background 15
2.5 Detector Simulation 17

Schedule as of Feb 2017

February 13, QCSR arrived in Tsukuba Hall

[^0]: ${ }^{a}$ The rate is pre-scaled by a factor of $1 / 100$.
 ${ }^{b} \theta_{\text {lab }} \geq 17^{\circ}, p_{t} \geq 0.1 \mathrm{GeV} / c$

