Banysics @ Belle I

https://www.facebook.com/belle2collab/ https://twitter.com/belle2collab

Phillip Urquijo XIIth B Physics Workshop, Naples May 2017

Australian Government

Australian Research Council

Senator Arthur Sinodinos AO, Ambassador H. E Pier Francesco Zazo **Australia strengthens science and innovation ties with Italy, 22 May 2017** *Australia and Italy have signed an agreement that will further strengthen scientific, technological and innovation co-operation between both nations.* Present: Prof. Enrico Cappellaro INAF, Prof. Antonio Masiero INFN etc.

Outline

1.Belle II Status

2.Anomalies b→sll, b→cтv

3.Time Dep. CP Violation4.UT Precision Tests5.Early physics in 2018

The case for new physics manifesting in Belle II

Issues (addressable at a Flavour factory)

- Baryon asymmetry in cosmology
 → New sources of CPV in quarks and charged leptons
- Quark and Lepton flavour & mass hierarchy
 → L-R symmetry, extended gauge sector, charged Higgs
- Finite neutrino masses
 → Tau LFV.
- 19 free parameters
 - → Extensions of SM relate some, (GUTs)
- Puzzling nature of exotic "new" QCD states.
- The hidden universe (dark matter)

B-physics @ Belle II

Observables	Expected th. accuracy	Expected exp. uncer- tainty	Facility (2025)
UT angles & sides		tanity	
$\phi_1 [^\circ]$	***	0.4	Belle II
$\phi_2 [\circ]$	**	1.0	Belle II
$\phi_3 [°]$	***	1.0	Belle II/LHCb
$ V_{cb} $ incl.	***	1%	Belle II
$ V_{cb} $ excl.	***	1.5%	Belle II
$ V_{ub} $ incl.	**	3%	Belle II
$ V_{ub} $ excl.	**	2%	Belle II/LHCb
CPV			T
$S(B \to \phi K^0)$	***	0.02	Belle II
$S(B \to \eta' K^{0})$	***	0.01	Belle II
$\mathcal{A}(B \to K^0 \pi^0)[10^{-2}]$	***	4	Belle II
$\mathcal{A}(B \to K^+ \pi^-) \ [10^{-2}]$	***	0.20	LHCb/Belle II
(Semi-)leptonic			1
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	**	3%	Belle II
$\mathcal{B}(B \to \mu \nu)$ $[10^{-6}]$	**	7%	Belle II
$R(B \to D\tau\nu)$	***	3%	Belle II
$R(B \to D^* \tau \nu)$	***	2%	Belle II/LHCb
Radiative & EW Penguins	5		1
$\mathcal{B}(B \to X_s \gamma)$	**	4%	Belle II
$A_{CP}(B \to X_{s,d}\gamma) \ [10^{-2}]$	***	0.005	Belle II
$S(B \to K_S^0 \pi^0 \gamma)$	***	0.03	Belle II
$S(B \to \rho\gamma)$	**	0.07	Belle II
$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	**	0.3	Belle II
$\mathcal{B}(B \to K^* \nu \overline{\nu}) \ [10^{-6}]$	***	15%	Belle II
$\mathcal{B}(B \to K\nu\overline{\nu}) \ [10^{-6}]$	***	20%	Belle II
$\frac{\mathcal{B}(B \to K^*\ell\ell)}{R(B \to K^*\ell\ell)}$	**	0.03	Belle II/LHCb

Accelerator & Detector status

by Evolution over 50 rears

Phillip URQUIJO

SuperKEKB

<u> Uth</u> B/<u>B</u>∗ysic<u>s</u>, Napoli

- Compared to KEKB
 - 20x smaller vertical beam size
 - 2x current

BEAST II, Phase I commissioning

XIIth B physics, Napoli

Phillip URQUIJO

First operation of SuperKEKB (4 GeV e+'s & 7 GeV e-'s)

Feb 16 2016 Start

Red: total beam current Purple: vacuum pressure

LER: 1010 mA, HER 870 mA

5 Months operation

Phillip URQUIJO

Beam background (Simulation)

- Increases occupancy in inner Si layers can degrade tracking.
- Increases off-time energy deposition in the calorimeter.

type	source	rate [MHz]	component	background	generic $B\overline{B}$
radiative Bhabha	HER	1320	PXD	10000(580)	23
radiative Bhabha	LER	1294	SVD	284(134)	108
radiative Bhabha (wide angle)	HER	40	CDC	654	810
radiative Bhabha (wide angle)	LER	85			
Touschek scattering	HER	31	TOP	150	205
Touschek scattering	LER	83	ARICH	191	188
beam-gas interactions	HER	1	ECL	3470	510
beam-gas interactions	LER	156	BKLM	484	33
two-photon QED	-	206	EKLM	142	34

Beam background (Simulation)

- Increases occupancy in inner Si layers can degrade tracking.
- Increases off-time energy deposition in the calorimeter.

Figure does not include ECL timing or energy threshold requirements

type	source	rate [MHz]	component	background	generic $B\overline{B}$
radiative Bhabha	HER	1320	PXD	10000(580)	23
radiative Bhabha	LER	1294	SVD	284 (134)	108
radiative Bhabha (wide angle)	HER	40	CDC	654	810
radiative Bhabha (wide angle)	LER	85			
Touschek scattering	HER	31	TOP	150	205
Touschek scattering	LER	83	ARICH	191	188
beam-gas interactions	HER	1	ECL	3470	510
beam-gas interactions	LER	156	BKLM	484	33
two-photon QED	_	206	EKLM	142	34

Latest SuperKEKB Luminosity Profile

Latest SuperKEKB Luminosity Profile

 \mathcal{B}

Belle II Detector [735 collaborators, 101 institutes, 23 nations]

Belle II Detector [735 collaborators, 101 institutes, 23 nations]

Electromagnetic Calorimeter (ECL) endcap installation

Electromagnetic Calorimeter (ECL) endcap installation

CDC fully instrumented

- CDC backward view on Jan 10th, 2017. After all cables, cooling pipe and distance a
- Smaller segments \rightarrow better mass resolution.

CDC fully instrumented

- CDC backward view on Jan 10th, 2017. After all cables, cooling pipe and dry air are connected.
- Smaller segments \rightarrow better mass resolution.

CDC (Central Drift Chamber) Fully instrumented

Cosmic run (Feb 7, 2017)

Single cosmic ray track

Multiple tracks (showering cosmic ray event)

Time-of-Propagation Cherenkov Detector

Belle II in place

April 1, Belle II "roll-in"

XIIth B physics, Napoli

Vertex Detector

IP resolution much better

Carbon fiber

(CF) cone

Outer CF shell

18

MELBOURNE

End fl

XIIth B physics, Napoli

Electromagnetic interactions

- Far fewer background & pileup photons than hadron collider
- Higher performance calorimeter
- Much less material in front (important for electrons)

BEAST PHASE I: Feb-June 2016 (Belle II roll-in in March 2017).

PHASE II Operation: Starts in ~Jan 2018 [Begin with damping ring commissioning; First collisions; *limited physics without vertex detectors*]

Phase III: Belle II Physics Running: late 2018 [vertex detectors in]

QCSL at the IP, Aug 2016

Anomalies in $b \rightarrow s I I$ & $b \rightarrow c \tau v$

BDT based hadronic+semileptonic tag reconstruction implemented.

- **BDT** based hadronic+semileptonic tag reconstruction implemented.
- Niversity of Zurich, 2016, May 9 XIIth B physics, Napo
 - XIIth B physics, Napoli

"Missing Energy Decay" in a Belle II GEANT4 simulation

Signal $B \rightarrow K \vee V$ tag mode: $B \rightarrow D\pi$; $D \rightarrow K\pi$

Zoomed view of the vertex region in r--phi

View in r-z

 \mathcal{B}

Phillip URQUIJO

$B \rightarrow \tau (\rightarrow | v v) v$ with FEI

$B \rightarrow D^{(*)} \tau v$

- Belle has 4 approaches
 - $\tau \rightarrow I v v$ [had tag, SL tag, untagged]
 - τ → h ∨ [had tag]
- First application of semileptonic tagging for $B \rightarrow D(*)\tau v$

 $R(D^*) = 0.302 \pm 0.030 \pm 0.011$

P

Dbillip LIDOLILIO χ^2 /ndf = 36.6/19, p = 0.88 %

$B \rightarrow D^{(*)} \tau v$

 $\mathcal{O}_{V_1}^{(q,\nu_\ell)} = (\bar{q}\gamma^{\mu}P_Lb)(\bar{\tau}\gamma_{\mu}P_L\nu_\ell),$ $\mathcal{O}_{V_2}^{(q,\nu_\ell)} = (\bar{q}\gamma^{\mu}P_Rb)(\bar{\tau}\gamma_{\mu}P_L\nu_\ell),$ $\mathcal{O}_{S_1}^{(q,\nu_\ell)} = (\bar{q}P_Rb)(\bar{\tau}P_L\nu_\ell),$ $\mathcal{O}_{S_2}^{(q,\nu_\ell)} = (\bar{q}P_Lb)(\bar{\tau}P_L\nu_\ell),$ $\mathcal{O}_T^{(q,\nu_\ell)} = (\bar{q}\sigma^{\mu\nu}P_Lb)(\bar{\tau}\sigma_{\mu\nu}P_L\nu_\ell),$

 Reaching this goal needs focus on B→D**Iv background.
 See: <u>https://agenda.hepl.phys.nagoya-u.ac.jp/indico/conferenceDisplay.py?</u> confld=702

Polarisation

• $P(\tau)$ measured.

- Strongly stat. limited. & only done in hadronic tag.
- P(D*) possible too

$$R(D^*) = 0.270 \pm 0.035(\text{stat.}) \stackrel{+0.028}{-0.025}(\text{syst.})$$

$$P_{\tau}(D^*) = -0.38 \pm 0.51(\text{stat.}) \stackrel{+0.21}{-0.16}(\text{syst.})$$

pojection
bination Signal ICHEF 016 Bretimina Fake D* end q q
 $\tau \text{ cross feed}$ $\overrightarrow{B} \rightarrow D^{**/\overline{y}}$ and τ Data

$$from Fake D^* end q q$$

$$from Fake D^* end q$$

-0.5

<u>d.2</u>

Phillip URQUIJO

$$\begin{array}{c} & & & \\ & &$$

B→τ Nagoya 2017

 \mathcal{B}

0.3

0.25

0.4

 $R(D^*)$

0.35

29

 \rightarrow K* e+ e-

Belle PRL. 118 (2017) no.11, 111801 LHCb, arXiv:1705.05802 LHCb, PRL 113, 151601 (2014)

Belle (II) Electron reconstruction is minimally affected by material effects and pile-up

 \mathcal{B}

Lepton Flavour Universality Violation

R {K,K*,Xs}: Expect 3-4% precision in each bin.

Phillip URQUIJO

 \mathcal{B}

LHCb & Belle results on $B \rightarrow K^* I^+I^- (q^2)$

q ² GeV ² /c ²	Belle	LHCb 3fb ⁻¹	Belle II 50 ab ⁻¹
0.1-4	0.416	0.109	-
4.00-8.00	0.277	0.099	0.024
10.09-12.0	0.344	0.155	-
14.18-19.00	0.248	0.092	0.027

LHCb & Belle results on $B \rightarrow K^* I^+I^- (q^2)$

q ² GeV ² /c ²	Belle	LHCb 3fb ⁻¹	Belle II 50 ab ⁻¹
0.1-4	0.416	0.109	_
4.00-8.00	0.277	0.099	0.024
10.09-12.0	0.344	0.155	_
14.18-19.00	0.248	0.092	0.027

E _{ECL} (Ge	V)
----------------------	----

Observables	Belle 0.71 ab^{-1}	Belle II 5 ab^{-1}	Belle II 50 ab^{-1}
$\overline{B(B^+ \to K^+ \nu \bar{\nu})}$	< 450%	38%	12%
$B(B^0 \to K^{*0} \nu \bar{\nu})$	< 180%	35%	11%
$F_L(B^0 \to K^{*0} \nu \bar{\nu})$	_	_	0.11
$B(B^0 \to \nu \bar{\nu}) \times 10^6$	< 14	< 5.0	< 1.5
$B(B^+ \to K^+ \tau^+ \tau^-) \times 10^5$	< 32	< 6.5	< 2.0
$B(B^0\to\tau^+\tau^-)\times 10^5$	< 140	< 30	< 9.6

$B \rightarrow K v v$: Do not expect large loss of resolution in E_{ECL} with background.

Observables	Belle 0.71 ab^{-1}	Belle II 5 ab^{-1}	Belle II 50 ab^{-1}
$\overline{B(B^+ \to K^+ \nu \bar{\nu})}$	< 450%	38%	12%
$B(B^0 \to K^{*0} \nu \bar{\nu})$	< 180%	35%	11%
$F_L(B^0 \to K^{*0} \nu \bar{\nu})$	_	_	0.11
$B(B^0 \to \nu \bar{\nu}) \times 10^6$	< 14	< 5.0	< 1.5
$B(B^+ \to K^+ \tau^+ \tau^-) \times 10^5$	< 32	< 6.5	< 2.0
$B(B^0\to\tau^+\tau^-)\times 10^5$	< 140	< 30	< 9.6

 $B \rightarrow K \vee V$

b→d couplings: B→ $\rho\gamma$

 Without K/π ID 		Belle II K/π II)
900 800 700 400 300 200 100 90.4 -0.3 -0.2 -0.1 0 0.1		40 35 30 25 20 15 10 5 0 -0.4 -0.3 -0.2 -0.1 -0	Stat FoM optimised 0 0.1 0.2 0.3
	Δ E (GeV)		Δ E (GeV)
Observables	Belle 0.71 ab^{-1}	Belle II 5 ab^{-1}	Belle II 50 ab^{-1}
$\Delta_{0+}(B \to \rho \gamma)$	39%	12%	3.9%
$A_{CP}(B^+ \to \rho^+ \gamma)$	30%	9.6%	3.0%
$S_{CP}(B^0 \to \rho^0 \gamma)$	63%	19%	6.4%
$A_{CP}(B^0 \to \rho^0 \gamma)$	44%	12%	3.8%
$\Delta A_{CP}(B \to \rho \gamma)$	77%	16%	4.8%

XIIth B physics, Napoli

b→d couplings: B→ $\rho\gamma$

34

MELBOURNE

K/ π fake rates < 2x smaller in Belle II: separates b \rightarrow d from b \rightarrow s

XIIth B physics, Napoli

Time dependent CP violation

Belle II Analysis

• Tree

 Gluonic Penguin (NP sensitive)

S

S

 \overline{d}

W-

~~~~

g

Phillip URQUIJO

u,c,t

b

 $\overline{d}$ 



XII<sup>th</sup> B physics, Napoli

| B→J/ψ Ks | В <sub>СР</sub><br>µm | B <sub>tag</sub><br>µm | ∆t<br>ps |
|----------|-----------------------|------------------------|----------|
| Belle II | 22                    | 52                     | 0.71     |
| Belle    | 63                    | 89                     | 0.92     |

THE UNIVE

MELBOURNE

36



## Flavour Tagging

Categories based on different signatures



| Categories            | $\varepsilon_{\rm eff}(\%)$ | $\Delta \varepsilon_{\rm eff}(\%)$ |
|-----------------------|-----------------------------|------------------------------------|
| Electron              | 5.26                        | -0.05                              |
| IntermediateElectron  | 1.06                        | -0.02                              |
| Muon                  | 5.55                        | -0.02                              |
| IntermediateMuon      | 0.17                        | -0.01                              |
| KinLepton             | 10.86                       | -0.07                              |
| IntermediateKinLepton | 0.98                        | -0.04                              |
| Kaon                  | 21.83                       | -1.72                              |
| KaonPion              | 15.12                       | -0.87                              |
| SlowPion              | 7.96                        | -0.23                              |
| FSC                   | 13.11                       | -0.33                              |
| MaximumPstar          | 13.24                       | 0.39                               |
| FastPion              | 2.58                        | -0.06                              |
| Lambda                | 1.98                        | 0.36                               |







0.5

 $\overset{\mathrm{OW}}{_{\star}} 0.25$ 

0.1

0

0.1

0.25

||

input

0.5

- Belle II: 35% (varies with release) 103
  - few% less w/ beam bkg
- Belle (this algo): 32%
- Belle (old algo):29%

XII<sup>th</sup> B physics, Napoli

 $\mathcal{B}$ 

Phillip URQUIJO

 $\substack{\text{Number } 0^2 \\ 10^1 } 10^1$ 

 $10^{0}$ 

-0.5

0

 $(q_{ ext{track}} \cdot \overset{\circ}{y}_{ ext{cat}})_w^{ ext{Kaon}}$ 



0.75

1.0

0.5

 $\langle r_{\rm FBDT} \rangle$ 

### ime dependent CP Violation with Penguins

#### Belle II Full Simulation B2TiP Theory



# **UT Precision Tests**

## The IV<sub>ub</sub>I puzzle



- Critical input on inclusive B→
   Xu I v comes from
  - $M_X^2$  fit for  $m_b/\mu_{\pi}^2/V_{ub}$
  - Fitting for fragmentation of X<sub>u</sub>
  - ∆~3%





Phillip URQUIJO



40

### IV<sub>ub</sub>I Exclusive

#### Belle II Full Simulation and B2TiP Lattice



|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Belle MC                      | )<br>"བྲ          |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------|
| O     O     Continuum     S     S     Continuum     BBX     Bg     Bg     Signal     I.8     Signal     I.6 | eless 1.8<br>Base 1.6<br>Base | s                             |                   |
| E E                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                   |
| 1.4<br>1.2                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ſ                             |                   |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                   |
| 0.4<br>0.4<br>0.2                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                   |
| 0<br>5.1 5.15 5.2 5.2                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               | <br>2             |
|                                                                                                             | M <sub>BC</sub> [GeV/c <sup>2</sup> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ΔE [Ge                        | eV]               |
| $\mathcal{L} [ab^{-1}]$                                                                                     | $\sigma_{\mathcal{B}} \text{ (stat}\pm \text{sys)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\sigma_{LQCD}^{ m forecast}$ | $\sigma_{V_{ub}}$ |
| 1 tagge                                                                                                     | d $3.6 \pm 4.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               | 6.2               |
|                                                                                                             | ed $1.3\pm3.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | current                       | 3.6               |
| 5                                                                                                           | $1.6\pm2.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | in 5 ura                      | 3.2               |
| 0                                                                                                           | $0.6 \pm 2.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | in 5 yrs                      | 2.1               |
| 10                                                                                                          | $1.2 \pm 2.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               | 2.7               |
| 10                                                                                                          | $0.4 \pm 1.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | in 5 yrs                      | 1.9               |
| 50                                                                                                          | $0.5 \pm 2.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | in $10 \text{ wrg}$           | 1.7               |
|                                                                                                             | $0.2 \pm 1.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | in 10 yrs                     | 1.3               |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                   |
| $\mathcal{L} [ab^{-1}]$                                                                                     | $\sigma_{\mathcal{B}} \text{ (stat}\pm \text{sys)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\sigma_{LQCD}^{ m forecast}$ | $\sigma_{V_{ub}}$ |
| 1                                                                                                           | $6.5\pm3.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | current                       | 6.5               |
| 5                                                                                                           | $2.9 \pm 2.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | in 5 yrs                      | 4.7               |



XII<sup>th</sup> B physics, Napoli



## $\Phi_3$ from $B \rightarrow DK$

 $V_{us}^*$ 

 $V_{cb}$ 

• Phase between  $b \rightarrow u$  and  $b \rightarrow c$ 

 $K^{-}$ 

 $e^{i\delta_B} e^{-i\gamma}$ 

 $B^{-}$ 

Strong phase differences can be measured at a charm factory





Year

 $\Phi_3$  Belle = (73 + 13 - 15)°

 $\Phi_3$  WA = (72.2 + 5.3 - 5.8)°

- 1.6° expected at Belle II
- Include neutral D modes
- Assume BES III collects 10 fb<sup>-1</sup>



Phillip URQUIJO

 $V_{ub}$ 

 $V_{cs}^*$ 

 $\overline{D}^{\mathsf{0}}$ 

B

### CKMFitter: 2016 Vs 2025

|                                              | World average               |             |  |  |  |  |
|----------------------------------------------|-----------------------------|-------------|--|--|--|--|
| Input                                        | 2016                        | Belle II    |  |  |  |  |
|                                              |                             | (+LHCb)     |  |  |  |  |
|                                              |                             | 2025        |  |  |  |  |
| $ V_{ub} $ (semileptonic)[10 <sup>-3</sup> ] | $4.01 \pm 0.08 \pm 0.22$    | ±0.10       |  |  |  |  |
| $ V_{cb} $ (semileptonic)[10 <sup>-3</sup> ] | $41.00 \pm 0.33 \pm 0.74$   | $\pm 0.57$  |  |  |  |  |
| $\mathcal{B}(B \to \tau \nu)$                | $1.08\pm0.21$               | $\pm 0.04$  |  |  |  |  |
| $\sin 2\beta$                                | $0.691\pm0.017$             | $\pm 0.008$ |  |  |  |  |
| $\gamma [^{\circ}]$                          | $73.2_{-7.0}^{+6.3}$        | $\pm 1.5$   |  |  |  |  |
|                                              |                             | $(\pm 1.0)$ |  |  |  |  |
| $\alpha[^{\circ}]$                           | $87.6^{+3.5}_{-3.3}$        | $\pm 1.0$   |  |  |  |  |
| $\Delta m_d$                                 | $0.510\pm0.003$             | -           |  |  |  |  |
| $\Delta m_s$                                 | $17.757 \pm 0.021$          | -           |  |  |  |  |
| $\mathcal{B}(B_s \to \mu \mu)$               | $2.8^{+0.7}_{-0.6}$         | $(\pm 0.5)$ |  |  |  |  |
| $f_{B_s}$                                    | $0.224 \pm 0.001 \pm 0.002$ | 0.001       |  |  |  |  |
| $B_{B_s}$                                    | $1.320 \pm 0.016 \pm 0.030$ | 0.010       |  |  |  |  |
| $f_{B_s}/f_{B_d}$                            | $1.205 \pm 0.003 \pm 0.006$ | 0.005       |  |  |  |  |
| $B_{B_s}/B_{B_d}$                            | $1.023 \pm 0.013 \pm 0.014$ | 0.005       |  |  |  |  |

Expect substantial improvements to tree constraints!





### NP in B<sub>d</sub> mixing: Fit results

### By Stage II,

- Λ ~ 20 TeV (tree)
- Mixing 2 TeV (loop)
- $i\frac{d}{dt}\left(\begin{array}{c}|B_q(t)\rangle\\|\bar{B}_q(t)\rangle\end{array}\right) = \left(M^q \frac{i}{2}\Gamma^q\right)\left(\begin{array}{c}|B_q(t)\rangle\\|\bar{B}_q(t)\rangle\end{array}\right)$
- Parameterise NP.

$$M_{12} = M_{12}^{SM} \times (1 + he^{2i\sigma})$$



•95% CL, NP $\leq$ (many × SM)  $\implies$  NP $\leq$ (0.05 × SM)

$$h \simeq 1.5 \frac{|C_{ij}|^2}{|\lambda_{ij}^t|^2} \frac{(4\pi)^2}{G_F \Lambda^2} \simeq \frac{|C_{ij}|^2}{|\lambda_{ij}^t|^2} \left(\frac{4.5 \text{ TeV}}{\Lambda}\right)^2$$
$$\sigma = \arg(C_{ij} \lambda_{ij}^{t*})$$



# Physics in 2018

### Phase II: First collision Run, Feb-Jun 2018

Phase 1 2016

"BEAST"/SuperKEKB & cosmics

Phase 2 Feb 2018- July 2018

### Full physics Dec 2018-

Belle II no VXD, commissioning data

Vertex detectors in

4-5 months of machine study, 1~2 months may contain usable data.

Target luminosity 1 x 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>





XII<sup>th</sup> B physics, Napoli

Phillip URQUIJO



Final Focus

Quads

Beam Transport

(magnet)

## Phase II Unique data sets

### Only ~20-40 fb<sup>-1</sup> in Phase II

- Unique E<sub>CM</sub>, e.g. Y(6S) for bottomonium - strong interaction studies
- New trigger menu to greatly enhance low multiplicity & dark sector physics



| Experiment | Scans     | $\Upsilon(6S)$ |               | $\Upsilon(5S)$          | $\Upsilon(4)$ | (4S)     | $\gamma(3$ | BS)      | $\Upsilon(2$ | (S)      | $\Upsilon(1)$ | (S)      |
|------------|-----------|----------------|---------------|-------------------------|---------------|----------|------------|----------|--------------|----------|---------------|----------|
|            | Off. Res. | $fb^{-1}$      | <b>ī</b> b⁻   | $^{-1}$ 10 <sup>6</sup> | $fb^{-1}$     | $10^{6}$ | $fb^{-1}$  | $10^{6}$ | $fb^{-1}$    | $10^{6}$ | $fb^{-1}$     | $10^{6}$ |
| CLEO       | 17.1      | -              | 0.            | 1 0.4                   | 16            | 17.1     | 1.2        | 5        | 1.2          | 10       | 1.2           | 21       |
| BaBar      | 54        | $R_{b}$        | , <b>s</b> ca | an                      | 433           | 471      | 30         | 122      | 14           | 99       | _             |          |
| Belle      | 100       | $\sim 5.5$     | 3             | 6 121                   | 711           | 772      | 3          | 12       | 25           | 158      | 6             | 102      |
|            |           |                |               |                         |               |          |            |          |              |          |               |          |





## **Exotic 4-quark States**

Bottomonium - atomic-like bound bb states Bottomonium-like - additional quark pair

 $Z_{b}$ ,  $W_{bx}$  — postulated states



### Bottomonium-like resonances above open B threshold

- Y(6S)→ h<sub>b</sub>(mP)ππ vs CMS energy, <u>evidence</u> for Z<sub>b</sub>→ h<sub>b</sub> π,
- ππ tagged, analyse missing mass



### σ(Y(nS)ππ), σ(bb) vs CMS





49

### Dark Sector in phase II

• ee  $\rightarrow \gamma$  a [a $\rightarrow \gamma \gamma$ ] \*New\*

### Dark photon search with NN.







### Triggering dark sector physics



|          | Hardware<br>Trigger<br>accept | Physics<br>output<br>rate | Raw<br>event<br>size |
|----------|-------------------------------|---------------------------|----------------------|
| Belle    | 500 Hz                        | 90 Hz                     |                      |
| Belle II | 30 kHz                        | 3-10kHz                   | ~200 kB              |
| ATLAS    | 100 kHz                       | 1 kHz                     | 1.6MB                |

| Physics process                                     | Cross section (nb) | Rate (Hz)       |  |
|-----------------------------------------------------|--------------------|-----------------|--|
| $\Upsilon(4S) \to B\bar{B}$                         | 1.2                | 960             |  |
| $e^+e^- \rightarrow \text{continuum}$               | 2.8                | 2200            |  |
| $\mu^+\mu^-$                                        | 0.8                | 640             |  |
| $\tau^+ \tau^-$                                     | 0.8                | 640             |  |
| Bhabha ( $\theta_{\text{lab}} \ge 17^{\circ}$ )     | 44                 | 350 a           |  |
| $\gamma\gamma~(\theta_{\rm lab} \ge 17^\circ)$      | 2.4                | 19 <sup>a</sup> |  |
| $2\gamma$ processes $^b$                            | $\sim 80$          | $\sim 15000$    |  |
| Total                                               | $\sim 130$         | $\sim 20000$    |  |
| $^{a}$ The rate is pre-scaled by a factor of 1/100. |                    |                 |  |

<sup>b</sup>  $\theta_{\text{lab}} \ge 17^{\circ}, p_t \ge 0.1 \text{GeV}/c$ 



 $\mathcal{Z}$ 

Phillip URQUIJO

51

### Summary

- SuperKEKB has been brought to life.
- Phase II collisions start January 2018, Phase III Late 2018
- Rich physics program at SuperKEKB/Belle II
  - New sources of CPV, New gauge bosons, Lepton Flavour Violation, Dark Sectors.
  - Numerous anomalies to probe with the first 5 ab<sup>-1</sup>
- Strong case for phase II physics.
- The Belle II physics book to be published in 2017 (ed. PU & E. Kou)





Backup

## Belle II Physics Book

- B2TiP Report (600p)
  - <u>https://confluence.desy.de/</u> <u>display/BI/B2TiP+ReportStatus</u>
- To be published in PTEP / Oxford University Press & printed.
  - Belle II Detector, Simulation, Reconstruction, Analysis tools
  - Physics working groups
  - New physics prospects and global fit code

### PTEP

Prog. Theor. Exp. Phys. **2015**, 00000 (319 pages) DOI: 10.1093/ptep/0000000000

#### The Belle II Physics Book

Emi Kou<sup>1</sup>, Phillip Urquijo<sup>2</sup>, The Belle II collaboration<sup>3</sup>, and The B2TiP theory community<sup>4</sup>

 $^{1}LAL$ 

- \*E-mail: kou@lal.in2p3.fr
- $^{2}Melbourne$
- \*E-mail: purquijo@unimelb.edu.au
- <sup>3</sup>Addresses of authors
- <sup>4</sup>Addresses of authors

The report of the Belle II Theory Interface Platform is presented in this document.

|   |              | Contents                                                         | PAGE  |
|---|--------------|------------------------------------------------------------------|-------|
| 1 | Introduction |                                                                  | 6     |
|   | 1.1          | Goals                                                            | 6     |
|   | 1.2          | Particle physics after the B-factories and LHC run I (and run II | first |
|   | data)        |                                                                  | 7     |
|   | 1.3          | Flavour physics questions to be addressed by Belle II            | 7     |
|   | 1.4          | Advantages of SuperKEKB and Belle II                             | 8     |
|   | 1.5          | Overview of SuperKEKB                                            | 9     |
|   | 1.6          | Data taking overview                                             | 10    |
|   | 1.7          | The Belle II Golden channels                                     | 10    |
| 2 | Belle        | II Simulation                                                    | 11    |
|   | 2.1          | Introduction                                                     | 11    |
|   | 2.2          | Cross Sections                                                   | 11    |
|   | 2.3          | Generators                                                       | 11    |
|   | 2.4          | Beam-induced background                                          | 15    |
|   | 2.5          | Detector Simulation                                              | 17    |
|   |              |                                                                  |       |





### Schedule as of Feb 2017



### February 13, **QCSR** arrived in **Tsukuba Hall**





Phillip URQUIJO



THE UNIVERSITY OF

### $\sigma_{total}^{O} \neq \sqrt{(\sigma (stat)_{Belle}^{2} + \sigma (systRed)_{Belle}^{2}) \times L_{Belle} / L + \sigma (systNonRed)_{Belle}^{2}}$

