Phase (like) Transitions in Active Driven Systems.

Quantitative Life Sciences Group

The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy

Example of Active Driven Systems.

- Living Systems
- ▶ Flock of Birds
- ▶ School of Fish
- Bacterial Colonies
- Non-Living systems
- ▶ Janus Particles
- ▶ Rods on a

vibrating table.

Features of Active Driven Systems

- ► Collective behavior
- ▶ Forging.
- Self-defense.
- ▶ Social behavior.
- ► Far from Equilibrium.
- ▶ No momentum conservation.
- ▶ Self-Propelled
- Spontaneous symmetry breaking

Study of Active Driven Systems

- ► Mean field approximations.
- ► Hydrodynamic description.
- ► Simulation study.

Vicsek Model

- ightharpoonup 'N' particles are placed randomly and uniformly in a box of L imes L.
- ► All the particles initially have random velocity.
- ightharpoonup All the particles move with a constant speed \mathbf{v}_0
- ► Neighborhood of interaction is a circle centered on the particle.

- After every time interval all the particles adjust their direction to the average velocity of the particles in their neighborhood of interaction.
- ► This adjustment is imperfect due to presence of noise.

Features of Vicsek Model

- ► System undergoes second order phase transition with the noise.
- ► Second order phase transition with density.

Figure : $\mathbf{v}_{\mathsf{a}} \ \mathsf{Vs} \ \boldsymbol{\eta}$

Figure : $\mathbf{v_a}$ Vs ho

Modification to Vicsek Model

- ► Usually agents in biological systems do not have full **360**° view. For example;
 - \triangleright Cyclopean View of grey-headed Albatross $\approx 270^\circ$ in horizontal plane.
 - ▶ Cyclopean View of humans is **180**° in horizontal plane.
 - \triangleright Cyclopean View of Dasyatis sabina fish is $\approx 327^\circ$ in horizontal plane.

Modification to the Vicsek Algorithm.

Interaction neighborhood is a sector of a circle of radius R enclosing an angle (2ϕ) . We call angle ϕ as 'view-angle'

Figure: The neighborhood S_i of the red particle.

Results

Role of anisotropy

Conclusions

- We find that, for this modified model and for the given parameter set, system undergoes a phase transition as the view-angle(ϕ) is varied and we establish that its of first order.
- As we reduce the view-angle(ϕ), order parameter(ψ) varies non-monotonically and it can have highest value for $\phi < 2\pi$.
- We find that ordered motion, even in the presence of the noise (i.e. $\eta > 0$), can persists down to remarkably small view-angle, up to $(\phi \approx 0.2\pi)$.
- ► The exists directional anisotropy in the modified model and that plays a role in determining the nature of the phase transition.

References

- T. Vicsek et al. Phys. Rev. Lett. 75, 1226 (1995).
- T. Vicsek and A. Zafeiris, Phys. Rep. 517, 71 (2012)
- ► M. Durve and A. Sayeed Phys Rev E 93, 052115 (2016)