

The cosmologically relevant 7 Be(n, α) 4 He reaction in view of the recent THM investigations

L. Lamia^{*a,b*}, C. Spitaleri^{*a,b*}, C.A. Bertulani^{*c*}, S.Q. Hou^{*c,d*}, M. La Cognata^{*b*}, R.G. Pizzone^{*b*}, S. Romano^{*a,b*}, M.L. Sergi^{*b*}, and A. Tumino^{*b,e*}

^aDipartimento di Fisica e Astronomia-Universita' di Catania (Catania, Italy),
^bLaboratori Nazionali del Sud, INFN-LNS (Catania, Italy),
^c Department of Physics and Astronomy, Texas A&M University-Commerce (TX),
^dInstitute of modern Physics, Chinese Academy of Science (Lanzhou, China),
^e Facolta' di Ingegneria e Architettura, Universit degli Studi di Enna "Kore" (Enna, Italy)

The role of the unstable ⁷Be during the early epoch of the Big Bang Nucleosynthesis is currently matter of study in view of the long-standing ⁷Li cosmological problem [1]. Recently, the Trojan Horse Method (THM) [2] have been applied for measuring the cross section of the (n, α) reaction channel on ⁷Be by means of charge-symmetry hypothesis applied to the previous ⁷Li(p, α)⁴He THM data corrected for Coulomb effects. The deduced ⁷Be(n, α)⁴He data overlap with the Big Bang nucleosynthesis energies and the deduced reaction rate allows us to evaluate the corresponding cosmological implications [3].

References

- [1] C. Bertulani & T. Kajino, Progress in Particle and Nuclear Physics 89, 56 (2016)
- [2] R.E. Tribble et al., Report on Progress Physics 77, 106901 (2014)
- [3] L. Lamia et al., The Astrophysical Journal 850, 175 (2017)