Theory overview on $\mathrm{P} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$decays

Pere Masjuan Johannes Gutenberg-Universität Mainz (masjuan@kph.uni-mainz.de)

Work done in collaboration with Pablo Sanchez-Puertas

THE LOW-ENERGY FRONTIER OF THE STANDARD MODEL

Outline

- Warm up: short walk through the 3σ puzzle
- Dissection of $\Pi^{0} \rightarrow \mathrm{e}^{+} e^{-}$(unitary bound and transition form factor)
- Current situation from proper names
- Dubna + Prague + Mainz(?)
- Relation to HLBL of g-2
- Conclusions

Introduction and Motivation

Experiment

$$
\frac{B R(P \rightarrow \bar{\ell} \ell)}{B R(P \rightarrow \gamma \gamma)}=2\left(\frac{\alpha m_{\ell}}{\pi m_{P}}\right)^{2} \beta_{\ell}\left(m_{P}^{2}\right)\left|\mathcal{A}\left(m_{P}^{2}\right)\right|^{2}
$$

Introduction and Motivation
 Experiment

$$
\begin{aligned}
\frac{B R(P \rightarrow \bar{\ell} \ell)}{B R(P \rightarrow \gamma \gamma)}= & \left.\frac{2\left(\frac{\alpha m_{\ell}}{\pi m_{P}}\right)^{2} \beta_{\ell}\left(m_{P}^{2}\right)}{}\right)\left.\mathcal{A}\left(m_{P}^{2}\right)\right|^{2} \\
& \sim 1.5 \cdot 10^{-10}
\end{aligned}
$$

KTeV '07:

$$
B R\left(\pi^{0} \rightarrow e^{+} e^{-}(\gamma), x>0.95\right)=(6.44 \pm 0.25 \pm 0.22) \times 10^{-8}
$$

$$
x \equiv \frac{(p+q)^{2}}{M^{2}} \text { momentum of e+e-, and so to extract } \mathrm{BR} \text { we want } \mathrm{x} \text { large, i.e.,no photon }
$$

$\mathrm{x}<0.95$ but still is $\pi^{0} \rightarrow e^{+} e^{-}$

Introduction and Motivation
 Experiment

$$
\begin{aligned}
\frac{B R(P \rightarrow \bar{\ell} \ell)}{B R(P \rightarrow \gamma \gamma)}= & \left.\frac{2\left(\frac{\alpha m_{\ell}}{\pi m_{P}}\right)^{2} \beta_{\ell}\left(m_{P}^{2}\right)}{}\right)\left.\mathcal{A}\left(m_{P}^{2}\right)\right|^{2} \\
& \sim 1.5 \cdot 10^{-10}
\end{aligned}
$$

KTeV '07:

$$
B R\left(\pi^{0} \rightarrow e^{+} e^{-}(\gamma), x>0.95\right)=(6.44 \pm 0.25 \pm 0.22) \times 10^{-8}
$$

Extrapolation to $\mathrm{x}=\mathrm{I}+$ radiative correction + Dalitz decay background

$$
B R_{\mathrm{KTeV}}^{w / \text { orad }}\left(\pi^{0} \rightarrow e^{+} e^{-}\right)=(7.48 \pm 0.29 \pm 0.25) \times 10^{-8}
$$

(dominates de PDG)

Introduction and Motivation Theory

$$
\frac{B R(P \rightarrow \bar{\ell} \ell)}{B R(P \rightarrow \gamma \gamma)}=2\left(\frac{\alpha m_{\ell}}{\pi m_{P}}\right)^{2} \beta_{\ell}\left(m_{P}^{2}\right)\left|\mathcal{A}\left(m_{P}^{2}\right)\right|^{2}
$$

The only unknown $\mathcal{A}\left(m_{P}^{2}\right)$ from loop calculation where the TFF enters.

$$
\mathcal{A}\left(q^{2}\right)=\frac{2 i}{\pi^{2}} \int d^{4} k \frac{q^{2} k^{2}-(k \cdot q)^{2}}{k^{2}(k-q)^{2}\left((p-k)-m_{\ell}^{2}\right)} \frac{F_{P \gamma^{*} \gamma^{*}}\left(k^{2},(q-k)^{2}\right)}{F_{P \gamma \gamma}(0,0)}
$$

Introduction and Motivation Theory

$$
\frac{B R(P \rightarrow \bar{\ell} \ell)}{B R(P \rightarrow \gamma \gamma)}=2\left(\frac{\alpha m_{\ell}}{\pi m_{P}}\right)^{2} \beta_{\ell}\left(m_{P}^{2}\right)\left|\mathcal{A}\left(m_{P}^{2}\right)\right|^{2}=7.5(5) \cdot 10^{-8}
$$

$B R_{\mathrm{SM}}\left(\pi^{0} \rightarrow e^{+} e^{-}\right)=\left(6.23^{\text {Year }} \pm 0.09\right) \times 10^{-8}$

Dissection of $\Pi^{0} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$

As model independent as possible:
Cutcosky rules provides the imaginary part

Dissection of $\Pi^{0} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$

As model independent as possible:

Cutcosky rules provides the imaginary part

$$
\begin{array}{r}
\operatorname{Im} \mathcal{A}\left(q^{2}\right)=\frac{\pi}{2 \beta_{l}\left(q^{2}\right)} \ln \left(\frac{1-\beta_{l}\left(q^{2}\right)}{1+\beta_{l}\left(q^{2}\right)}\right) ; \quad \beta_{l}\left(q^{2}\right)=\sqrt{1-\frac{4 m_{l}^{2}}{q^{2}}} \\
q^{2}=m_{P}^{2}
\end{array}
$$

Assuming $|\mathcal{A}|^{2} \geq(\operatorname{Im} \mathcal{A})^{2}$

$$
B\left(\pi^{0} \rightarrow e^{+} e^{-}\right) \geq B^{\text {unitary }}\left(\pi^{0} \rightarrow e^{+} e^{-}\right)=4.69 \cdot 10^{-8}
$$

Dissection of $\Pi^{0} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$

As model independent as possible:
Cutcosky rules provides the imaginary part

$$
\begin{gathered}
\operatorname{Im} \mathcal{A}\left(q^{2}\right)=\frac{\pi}{2 \beta_{l}\left(q^{2}\right)} \ln \left(\frac{1-\beta_{l}\left(q^{2}\right)}{1+\beta_{l}\left(q^{2}\right)}\right) ; \quad \beta_{l}\left(q^{2}\right)=\sqrt{1-\frac{4 m_{l}^{2}}{q^{2}}} \\
q^{2}=m_{P}^{2}
\end{gathered}
$$

Use dispersion relations to get the real part

$$
\operatorname{Re}\left(\mathcal{A}\left(q^{2}\right)\right)=\frac{1}{\pi} \int_{0}^{\infty} d s \frac{\operatorname{lm}(\mathcal{A}(s))}{s-q^{2}}
$$

Dissection of $\Pi^{0} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$

As model independent as possible:
Cutcosky rules provides the imaginary part

$$
\begin{array}{r}
\operatorname{Im} \mathcal{A}\left(q^{2}\right)=\frac{\pi}{2 \beta_{l}\left(q^{2}\right)} \ln \left(\frac{1-\beta_{l}\left(q^{2}\right)}{1+\beta_{l}\left(q^{2}\right)}\right) ; \quad \beta_{l}\left(q^{2}\right)=\sqrt{1-\frac{4 m_{l}^{2}}{q^{2}}} \\
q^{2}=m_{P}^{2}
\end{array}
$$

Use dispersion relations to get the real part
$\operatorname{Re}\left(\mathcal{A}\left(q^{2}\right)\right)=\frac{1}{\pi} \int_{0}^{\infty} d s \frac{\operatorname{lm}(\mathcal{A}(s))^{\text {divergent }}}{s-q^{2}} \rightarrow \mathcal{A}(0)+\frac{q^{2}}{\pi} \int_{0}^{\infty} \frac{d s}{s} \frac{\operatorname{Im}(\mathcal{A}(s))}{s-q^{2}}$

Dissection of $\Pi^{0} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$

As model independent as possible:
Cutcosky rules provides the imaginary part

$$
\begin{array}{r}
\operatorname{Im} \mathcal{A}\left(q^{2}\right)=\frac{\pi}{2 \beta_{l}\left(q^{2}\right)} \ln \left(\frac{1-\beta_{l}\left(q^{2}\right)}{1+\beta_{l}\left(q^{2}\right)}\right) ; \quad \beta_{l}\left(q^{2}\right)=\sqrt{1-\frac{4 m_{l}^{2}}{q^{2}}} \\
q^{2}=m_{P}^{2}
\end{array}
$$

Use dispersion relations to get the real part

$$
\operatorname{Re}\left(\mathcal{A}\left(q^{2}\right)\right)=\mathcal{A}(0)+\frac{q^{2}}{\pi} \int_{0}^{\infty} \frac{d s}{s} \frac{\operatorname{Im}(\mathcal{A}(s))}{s-q^{2}}
$$

Dissection of $\Pi^{0} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$

As model independent as possible:
Cutcosky rules provides the imaginary part

$$
\begin{aligned}
& \operatorname{ImA}\left(q^{2}\right)=\frac{\pi}{2 \beta_{l}\left(q^{2}\right)} \ln \left(\frac{1-\beta_{l}\left(q^{2}\right)}{1+\beta_{l}\left(q^{2}\right)}\right) ; \quad \beta_{l}\left(q^{2}\right)=\sqrt{1-\frac{4 m_{I}^{2}}{q^{2}}} \\
& q^{2}=m_{P}^{2}
\end{aligned}
$$

Use dispersion relations to get the real part

$$
\operatorname{Re}\left(\mathcal{A}\left(q^{2}\right)\right)=\mathcal{A}(0)+\frac{1}{\beta_{l}\left(q^{2}\right)}\left(\frac{\pi^{2}}{12}+\frac{1}{4} / n^{2}\left(\frac{1-\beta_{l}\left(q^{2}\right)}{1+\beta_{l}\left(q^{2}\right)}\right)+L_{i}\left(\frac{1-\beta_{l}\left(q^{2}\right)}{1+\beta_{l}\left(q^{2}\right)}\right)\right)
$$

Dissection of $\Pi^{0} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$

As model independent as possible:
Cutcosky rules provides the imaginary part

$$
\begin{array}{r}
\operatorname{Im} \mathcal{A}\left(q^{2}\right)=\frac{\pi}{2 \beta_{l}\left(q^{2}\right)} \ln \left(\frac{1-\beta_{l}\left(q^{2}\right)}{1+\beta_{l}\left(q^{2}\right)}\right) ; \quad \beta_{l}\left(q^{2}\right)=\sqrt{1-\frac{4 m_{l}^{2}}{q^{2}}} \\
q^{2}=m_{P}^{2}
\end{array}
$$

Use dispersion relations to get the real part
$\operatorname{Re}\left(\mathcal{A}\left(m_{P}^{2}\right)\right)=\left(-\frac{5}{4}+\int_{0}^{\infty} d Q^{2} \operatorname{Kernel}\left(Q^{2}\right)\right)+\frac{\pi^{2}}{12}+\ln ^{2}\left(\frac{m_{l}}{m_{P}}\right)$
$\mathcal{O}\left(\frac{m_{e}}{m_{\pi}}\right)^{2}+$ subtraction contains all the information from TFF

Dissection of $\pi^{0} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$

$$
\begin{gathered}
\operatorname{Re}\left(\mathcal{A}\left(m_{P}^{2}\right)\right)=\left(-\frac{5}{4}+\int_{0}^{\infty} d Q^{2} \operatorname{Kerne}\left(\left(Q^{2}\right)\right)+\frac{\pi^{2}}{12}+\ln ^{2}\left(\frac{m_{l}}{m_{P}}\right)\right. \\
\operatorname{Re}\left(\mathcal{A}\left(m_{P}^{2}\right)\right)=\int_{0}^{\infty} d Q^{2} \operatorname{Kernel}\left(Q^{2}\right)+30.7
\end{gathered}
$$

Dissection of $\Pi^{0} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$

$$
\begin{aligned}
& \operatorname{Re}\left(\mathcal{A}\left(m_{P}^{2}\right)\right)=\left(-\frac{5}{4}+\int_{0}^{\infty} d Q^{2} \operatorname{Kernel}\left(Q^{2}\right)\right)+\frac{\pi^{2}}{12}+\ln ^{2}\left(\frac{m_{l}}{m_{P}}\right) \\
& \operatorname{Re}\left(\mathcal{A}\left(m_{P}^{2}\right)\right)=\int_{0}^{\infty} d Q^{2} \operatorname{Kernel}\left(Q^{2}\right)+30.7
\end{aligned}
$$

Dissection of $\Pi^{0} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$

$$
\begin{gathered}
\operatorname{Re}\left(\mathcal{A}\left(m_{P}^{2}\right)\right)=\left(-\frac{5}{4}+\int_{0}^{\infty} d Q^{2} \operatorname{Kernel}\left(Q^{2}\right)\right)+\frac{\pi^{2}}{12}+\operatorname{In}^{2}\left(\frac{m_{I}}{m_{P}}\right) \\
\operatorname{Re}\left(\mathcal{A}\left(m_{P}^{2}\right)\right)=\int_{0}^{\infty} d Q^{2} \operatorname{Kernel}\left(Q^{2}\right)+30.7 \\
\operatorname{Im}\left(\mathcal{A}\left(m_{P}^{2}\right)\right) \sim 17.5 \quad \operatorname{Re}\left(\mathcal{A}\left(m_{P}^{2}\right)\right) \\
\sim \rightarrow 30.7 \\
\left.\begin{array}{c}
\text { (Kernel=0) } \\
\frac{B R(P \rightarrow \bar{\ell} \ell)}{B R(P \rightarrow \gamma \gamma)}
\end{array}\right)=2\left(\frac{\alpha m_{\ell}}{\pi m_{P}}\right)^{2} \beta_{\ell}\left(m_{P}^{2}\right)\left|\mathcal{A}\left(m_{P}^{2}\right)\right|^{2}=19 \cdot 10^{-8} \\
\int_{0}^{\infty} d Q^{2} \operatorname{Kernel}\left(Q^{2}\right) \sim-17 \rightarrow \operatorname{KTeV} \sim 7.5 \cdot 10^{-8}
\end{gathered}
$$

Dissection of $\pi^{0} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$

$$
\operatorname{Re}\left(\mathcal{A}\left(m_{P}^{2}\right)\right)=\int_{0}^{\infty} d Q^{2} \operatorname{Kernel}\left(Q^{2}\right)+30.7
$$

- Its contribution is negative: lowers the BR.
- Peaks at $\sim 2 m_{e}$ and
$\langle Q\rangle=0.09 \mathrm{GeV}$.
- Low energies relevant only: slope is enough.

Dissection of $\pi^{0} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$

$$
\operatorname{Re}\left(\mathcal{A}\left(m_{P}^{2}\right)\right)=\int_{0}^{\infty} d Q^{2} \operatorname{Kernel}\left(Q^{2}\right)+30.7
$$

Dissection of $\pi^{0} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$

$$
\operatorname{Re}\left(\mathcal{A}\left(m_{P}^{2}\right)\right)=\int_{0}^{\infty} d Q^{2} \operatorname{Kernel}\left(Q^{2}\right)+30.7
$$

Dissection of $\pi^{0} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$

$$
\operatorname{Re}\left(\mathcal{A}\left(m_{P}^{2}\right)\right)=\int_{0}^{\infty} d Q^{2} \operatorname{Kernel}\left(Q^{2}\right)+30.7
$$

Dissection of $\pi^{0} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$

$\operatorname{Re}\left(\mathcal{A}\left(m_{P}^{2}\right)\right)=\int_{0}^{\infty} d Q^{2} \operatorname{Kernel}\left(Q^{2}\right)+30.7$

all in all, old the models give the same value

$$
\int_{0}^{\infty} d Q^{2} \operatorname{Kernel}\left(Q^{2}\right) \sim-20 \rightarrow B R \sim 6.3 \cdot 10^{-8}
$$

Current situation with Proper Names

Dubna+Prague+Mainz(?)

- Ways to improve from theory side:
- Dubna (Dorokhov, Ivanov,...): Include all kind of corrections $m_{e} / m_{\pi}, m_{e} / \Lambda$ (which also means not using DR)
- Prague (Novotny, Kampf, Husek...): Improve on radiative corrections
- Mainz (Masjuan, Sanchez-Puertas...): Improve on the implementation of the TFF
- Consider New Physics contributions

Current situation with Proper Names

Dubna+Prague+Mainz(?)

- Ways to improve from theory side:
- Dubna (Dorokhov, Ivanov,...): Include all kind of corrections $m_{e} / m_{\pi}, m_{e} / \wedge$ (which also means not using DR)
- Prague (Novotny, Kampf, Husek...): Improve on radiative corrections
- Mainz (Masjuan, Sanchez-Puertas...): Improve on the implementation of the TFF
- Consider New Physics contributions

Dubna contribution: corrections $\mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\pi}, \mathrm{m}_{\mathrm{e}} / \Lambda$

Dorokhov and Ivanov, '07

$$
\mathcal{O}\left(\frac{m_{e}}{m_{\pi}}\right)^{2}
$$

UsedVMD to confront KTeV measurement (also compare different models for TFF)

$$
F_{\pi \gamma^{*} \gamma^{*}}\left(Q^{2}, Q^{2}\right)=F \pi \gamma \gamma(0,0) \frac{1}{1+Q^{2} / Q_{0}^{2}}
$$

with Q_{0} from a monopole fit to CLEO+CELLO data

Dubna contribution: corrections $\mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\pi}, \mathrm{m}_{\mathrm{e}} / \Lambda$

Dorokhov and Ivanov, '08

$$
\mathcal{O}\left(\frac{m_{e}}{\Lambda}\right)^{2} \quad \mathcal{O}\left(\frac{m_{e}}{\Lambda} \log \frac{m_{e}}{\Lambda}\right)^{2}
$$

Dorokhov, Ivanov and Kovalenko '09

$$
\mathcal{O}\left(\frac{m_{\pi}}{\Lambda}\right)^{2} \quad \mathcal{O}\left(\frac{m_{e}}{m_{\pi}}\right)^{2}
$$

Resummation of power corrections using Mellin-Barnes techniques. Conclusion: corrections negligible!

$$
B R_{\mathrm{SM}}\left(\pi^{0} \rightarrow e^{+} e^{-}\right)=(6.23 \pm 0.09) \times 10^{-8} \sim 3 \sigma
$$

Current situation with Proper Names

Dubna+Prague+Mainz(?)

- Ways to improve from theory side:
- Dubna (Dorokhov, Ivanov,...): Include all kind of corrections $m_{e} / m_{\pi}, m_{e} / \wedge$ (which also means not using DR)
- Prague (Novotny, Kampf, Husek...): Improve on radiative corrections
- Mainz (Masjuan, Sanchez-Puertas...): Improve on the implementation of the TFF
- Consider New Physics contributions

Prague contribution: Radiative corrections

Before Prague:

Bergstrom '83: approach (soft-photon+cut-off) to two-loop QED radiative correction + Dalitz decay interference

Correction: $\sim-13 \%$

Prague contribution: Radiative corrections

Vasko, Novotny 'II + Husek, Kampf, Novotny'|4

Include more diagrams which are subleading but numerically important

Fig. 2 Two-loop virtual radiative corrections for $\pi^{0} \rightarrow e^{+} e^{-}$process

Prague contribution: Radiative corrections

Vasko, Novotny 'II + Husek, Kampf, Novotny'|4

(a)

(c)
(e)

(b)

(d)

(f)

Calculate the Bremsshtralung in the softphoton limit

Fig. 2 Two-loop virtual radiative corrections for $\pi^{0} \rightarrow e^{+} e^{-}$process

Prague contribution: Radiative corrections

Vasko, Novotny 'II + Husek, Kampf, Novotny'l4

Calculate the Bremsshtralung without the soft-photon limit

Fig. 2 Two-loop virtual radiative corrections for $\pi^{0} \rightarrow e^{+} e^{-}$process

Prague contribution: Radiative corrections

Vasko, Novotny 'II + Husek, Kampf, Novotny'l4

$$
\begin{aligned}
& \frac{\operatorname{BR}\left(\pi^{0} \rightarrow e^{+} e^{-}(\gamma), x>0.95\right)}{\operatorname{BR}\left(\pi^{0} \rightarrow \gamma \gamma\right)}= \\
& \quad \frac{\Gamma\left(\pi^{0} \rightarrow e^{+} e^{-}\right)}{\Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)}\left[1+\delta^{(2)}(0.95)+\Delta^{B S}(0.95)+\delta^{D}(0.95)\right]
\end{aligned}
$$

$\delta^{(2)}(0.95) \equiv \delta^{\text {virt. }}+\delta_{\text {soft }}^{\mathrm{BS}}(0.95)$
$\Delta^{\mathrm{BS}}\left(x^{\mathrm{cut}}\right) \equiv \delta^{\mathrm{BS}}\left(x^{\mathrm{cut}}\right)-\delta_{\text {soft }}^{\mathrm{BS}}\left(x^{\mathrm{cut}}\right) \quad$ soft-photon correction
$\delta^{D}(0.95)$
complete QED two-loop corr. including soft-photon BS

Dalitz decay background (omitted in KTeV)

Prague contribution: Radiative corrections

Vasko, Novotny 'II + Husek, Kampf, Novotny'l4

$$
\begin{aligned}
& \frac{\operatorname{BR}\left(\pi^{0} \rightarrow e^{+} e^{-}(\gamma), x>0.95\right)}{\operatorname{BR}\left(\pi^{0} \rightarrow \gamma \gamma\right)}= \\
& \quad \frac{\Gamma\left(\pi^{0} \rightarrow e^{+} e^{-}\right)}{\Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)}\left[1+\delta^{(2)}(0.95)+\Delta^{B S}(0.95)+\delta^{D}(0.95)\right] \\
& \delta^{(2)}(0.95) \equiv \delta^{\text {virt. }}+\delta_{\text {soft }}^{\mathrm{BS}}(0.95)=(-5.8 \pm 0.2) \% \quad \text { vS } \sim-13 \% \\
& \Delta^{\mathrm{BS}}(0.95)=(0.30 \pm 0.01) \% \quad \delta^{D}(0.95)=\frac{1.75 \times 10^{-15}}{\left[\Gamma^{\mathrm{LO}}\left(\pi^{0} \rightarrow e^{+} e^{-}\right) / \mathrm{MeV}\right]}
\end{aligned}
$$

$$
B R_{\text {"KTeV" }}^{w / o \text { rad }}\left(\pi^{0} \rightarrow e^{+} e^{-}\right)=(6.87 \pm 0.36) \times 10^{-8}
$$

Current situation with Proper Names

Dubna+Prague+Mainz(?)

- Ways to improve from theory side:
- Dubna (Dorokhov, Ivanov,...): Include all kind of corrections $m_{e} / m_{\pi}, m_{e} / \wedge$ (which also means not using DR)
- Prague (Novotny, Kampf, Husek...): Improve on radiative corrections
- Mainz (Masjuan, Sanchez-Puertas...): Improve on the implementation of the TFF
- Consider New Physics contributions

Mainz contribution:TFF parameterization

Use data from
the Transition Form Factor
for numerical integral

$$
F_{P \gamma^{*} \gamma^{*}}\left(m_{P}^{2}, q_{1}^{2}, q_{2}^{2}\right) \quad \text { double-tag method }
$$

Remember: only low-energy region is needed

Mainz contribution:TFF parameterization

Use data from the Transition Form Factor for numerical integral

double-tag method

Use data from the Transition Form Factor to constrain your hadronic model

$$
F_{P \gamma^{*} \gamma}\left(m_{P}^{2}, q_{1}^{2}, 0\right) \quad \text { single-tag method }
$$

Mainz contribution:TFF parameterization

Use data from the Transition Form Factor for numerical integral

Use data from
the Transition Form Factor to constrain your hadronic model

$$
F_{P \gamma^{*} \gamma}\left(m_{P}^{2}, q_{1}^{2}, 0\right)
$$

single-tag method

How??

Nice synergy between experiment and theory

Our proposal: use Padé Approximants

[P.M.'I2; R. Escribano, P.M., P. Sanchez-Puertas, 'I3]
We need low-energy region (data driven) + high-energy tail we don't want a model rather a method providing systematics

Our proposal: use Padé Approximants

[P.M.'I2; R. Escribano, P.M., P. Sanchez-Puertas,'I3]
We need low-energy region (data driven) + high-energy tail we don't want a model rather a method providing systematics

$$
\begin{gathered}
F_{P \gamma * \gamma}\left(Q^{2}, 0\right)=a_{0}^{P}\left(1+b_{P} \frac{Q^{2}}{m_{P}^{2}}+\underset{\varlimsup_{P \rightarrow \gamma \gamma}}{c_{P}} \frac{Q^{4}}{m_{P}^{4}}+\ldots\right) \\
\Gamma_{P l o p e}^{\uparrow}{ }_{\text {curvature }}
\end{gathered}
$$

We have published space-like data for $Q^{2} F_{P \gamma * \gamma}\left(Q^{2}, 0\right)$

$$
\begin{aligned}
& Q^{2} F_{P \gamma * \gamma}\left(Q^{2}, 0\right)=a_{0} Q^{2}+a_{1} Q^{4}+a_{2} Q^{6}+\ldots \\
& P_{M}^{N}\left(Q^{2}\right)=\frac{T_{N}\left(Q^{2}\right)}{R_{M}\left(Q^{2}\right)}=a_{0} Q^{2}+a_{1} Q^{4}+a_{2} Q^{6}+\cdots+\mathcal{O}\left(\left(Q^{2}\right)^{N+M+1}\right)
\end{aligned}
$$

Our proposal: use Padé Approximants

[P.M.'I2; R. Escribano, P.M., P. Sanchez-Puertas,'I3]
We need low-energy region (data driven) + high-energy tail we don't want a model rather a method providing systematics

$$
\begin{gathered}
F_{P \gamma * \gamma}\left(Q^{2}, 0\right)=a_{0}^{P}\left(1+b_{P} \frac{Q^{2}}{m_{P}^{2}}+\underset{\varlimsup_{P \rightarrow \gamma \gamma}}{c_{P}} \frac{Q^{4}}{m_{P}^{4}}+\ldots\right) \\
\Gamma_{P l o p e}^{\uparrow}{ }_{\text {curvature }}
\end{gathered}
$$

We have published space-like data for $Q^{2} F_{P \gamma * \gamma}\left(Q^{2}, 0\right)$

$$
Q^{2} F_{P \gamma * \gamma}\left(Q^{2}, 0\right)=a_{0} Q^{2}+a_{1} Q^{4}+a_{2} Q^{6}+\ldots
$$

$$
P_{1}^{1}\left(Q^{2}\right)=\frac{a_{0} Q^{2}}{1-a_{1} Q^{2}} \longrightarrow \begin{aligned}
& P_{1}^{N}\left(Q^{2}\right)=P_{1}^{1}\left(Q^{2}\right), P_{1}^{2}\left(Q^{2}\right), P_{1}^{3}\left(Q^{2}\right), \ldots \\
& P_{N}^{N}\left(Q^{2}\right)=P_{1}^{1}\left(Q^{2}\right), P_{2}^{2}\left(Q^{2}\right), P_{3}^{3}\left(Q^{2}\right), \ldots
\end{aligned}
$$

sequence of approximations, i.e., theoretical error

Our proposal: use Padé Approximants

[P.M.'I2; R. Escribano, P.M., P. Sanchez-Puertas, 'I3]
Fit to Space-like data: CELLO'9I, CLEO'98, BABAR'09 and Belle'I2

$$
\begin{equation*}
P_{1}^{N}\left(Q^{2}\right) \text { up to } \mathrm{N}=5 \tag{P.M,'12}
\end{equation*}
$$

$$
P_{N}^{N}\left(Q^{2}\right) \text { up to } \mathrm{N}=3
$$

Accurate description of the low-energy region making full use of available experimental data

Doubly virtual $\Pi^{0}-$ TFF

[P.M., P. Sanchez-Puertas, in preparation]
For $B R_{S M}\left(\pi^{0} \rightarrow e^{+} e^{-}\right)$we need $F_{\pi^{0} \gamma^{*} \gamma^{*}}\left(Q^{2}, Q^{2}\right)$

Proposal: bivariate PA

Chisholm '73

$$
\begin{gathered}
P_{M}^{N}\left(Q_{1}^{2}, Q_{2}^{2}\right)=\frac{T_{N}\left(Q_{1}^{2}, Q_{2}^{2}\right)}{R_{M}\left(Q_{1}^{2}, Q_{2}^{2}\right)}=a_{0}+a_{1}\left(Q_{1}^{2}+Q_{2}^{2}\right)+a_{1,1} Q_{1}^{2} Q_{2}^{2}+a_{2}\left(Q_{1}^{4}+Q_{2}^{4}\right)+\cdots \\
P_{1}^{0}\left(Q_{1}^{2}, Q_{2}^{2}\right)=\frac{a_{0}}{1+a_{1}\left(Q_{1}^{2}+Q_{2}^{2}\right)+\left(2 a_{1}^{2}-a_{1,1}\right) Q_{1}^{2} Q_{2}^{2}}
\end{gathered}
$$

Doubly virtual $\Pi^{0}-$ TFF

Proposal: bivariate PA
Chisholm '73

$$
P_{1}^{0}\left(Q_{1}^{2}, Q_{2}^{2}\right)=\frac{a_{0}}{1+a_{1}\left(Q_{1}^{2}+Q_{2}^{2}\right)+\left(2 a_{1}^{2}-a_{1,1}\right) Q_{1}^{2} Q_{2}^{2}}
$$

a_{1} from accurate study of space-like data
$a_{1,1}$ from a systematic fit to doubly virtual SL data

Doubly virtual $\Pi^{0}-$ TFF

Proposal: bivariate PA
Chisholm '73

$$
P_{1}^{0}\left(Q_{1}^{2}, Q_{2}^{2}\right)=\frac{a_{0}}{1+a_{1}\left(Q_{1}^{2}+Q_{2}^{2}\right)+\left(2 a_{1}^{2}-a_{1,1}\right) Q_{1}^{2} Q_{2}^{2}}
$$

a_{1} from accurate study of space-like data
$a_{1,1}$ from a systematic fit to doubly virtual SL data

OPE indicates: $\lim _{Q^{2} \rightarrow \infty} P_{1}^{0}\left(Q^{2}, Q^{2}\right) \sim Q^{-2}$ i.e., $a_{1,1}=2 a_{1}^{2}$

Doubly virtual Π^{0}-TFF

Proposal: bivariate PA

Chisholm '73

$$
P_{1}^{0}\left(Q_{1}^{2}, Q_{2}^{2}\right)=\frac{a_{0}}{1+a_{1}\left(Q_{1}^{2}+Q_{2}^{2}\right)+\left(2 a_{1}^{2}-a_{1,1}\right) Q_{1}^{2} Q_{2}^{2}}
$$

a_{1} from accurate study of space-like data

$$
\begin{gathered}
0 \leq a_{1,1} \leq 2 a_{1}^{2} \\
B R_{S M}^{P A}\left(\pi^{0} \rightarrow e^{+} e^{-}\right)=(6.22-6.36)(4) \times 10^{-8} \\
\text { statistics+theoretical error } \\
\text { + to shrink the checked for different models data (data-driven approach) }- \text {-- see apendix }
\end{gathered}
$$

Doubly virtual $\Pi^{0}-$ TFF

$$
B R_{" \mathrm{KTeV} "}^{w / \operatorname{orad}^{2}}\left(\pi^{0} \rightarrow e^{+} e^{-}\right)=(6.87 \pm 0.36) \times 10^{-8}
$$

$$
B R_{S M}^{P A}\left(\pi^{0} \rightarrow e^{+} e^{-}\right)=(6.22-6.36)(4) \times 10^{-8}
$$

Naive New Physics contributions

$$
\begin{gathered}
\frac{\operatorname{BR}\left(\pi^{0} \rightarrow e^{+} e^{-}\right)}{\operatorname{BR}\left(\pi^{0} \rightarrow \gamma \gamma\right)}=2\left(\frac{\alpha m_{e}}{\pi m_{\pi}}\right)^{2} \beta_{e}\left|\mathcal{A}\left(q^{2}\right)+\frac{\sqrt{2} F_{\pi} G_{F}}{4 \alpha^{2} F_{\pi \gamma \gamma}}\left(\frac{4 m_{W}}{m_{A(P)}}\right)^{2} \times f^{A(P)}\right|^{2} \\
f^{A}=c_{e}^{A}\left(c_{u}^{A}-c_{d}^{A}\right) \quad f^{P}=\frac{1}{4} c_{e}^{P}\left(c_{u}^{P}-c_{d}^{P}\right) \frac{m_{\pi}^{2}}{m_{\pi}^{2}-m_{P}^{2}} \quad c \sim \mathcal{O}\left(\frac{g}{g_{S U(2)_{L}}}\right) \\
\frac{\mathrm{BR}\left(\pi^{0} \rightarrow e^{+} e^{-}\right)}{\mathrm{BR}\left(\pi^{0} \rightarrow \gamma \gamma\right)}=\mathrm{SM}\left(1+\epsilon_{Z, N P} \times 5 \%\right) \\
\text { Z contribution (Arnellos, Marciano, Parsa ‘82) } \quad \epsilon_{Z} \sim 0.3 \% \\
\text { Our estimate based on existing exp. constrains: } \quad \epsilon_{N P} \sim 0.3 \%
\end{gathered}
$$

negligible!

Impact of $\pi^{0} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$on HLBL

-500	Model	Published model		Modified model	
		$\pi^{0} \rightarrow e^{+} e^{-}$ $\left(\times 10^{8}\right)$	$H L B L$ $\left(\times 10^{10}\right)$	$\pi^{0} \rightarrow e^{+} e^{-}$ $\left(\times 10^{8}\right)$	$H L B L$ $\left(\times 10^{10}\right)$
	LMD+V	6.33	6.29	6.47	5.22
Dorokhov et al '09	VMD	6.34	5.64	6.87	2.44
- Our proposal '14	PA	6.36	5.53	6.87	2.85

$$
\begin{aligned}
& \Delta a_{\mu}^{S M} \sim 6 \times 10^{-10} \\
& \Delta a_{\mu}^{H L B L} \sim 4 \times 10^{-10} \\
& \Delta a_{\mu}^{H L B L} ; \pi^{0} \rightarrow e^{+} e^{-} \sim(2-3) \times 10^{-10} \\
&+ \text { similar effect for the } \eta \text { decay! }
\end{aligned}
$$

Conclusions

$-\Pi^{0} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$is an interesting process

- hadronic effects are important at all energies
- but the scale is at the electron mass
- Standard approaches fail to reproduce the KTeV experimental measurement
- something to be understood: corrections known, radiative known, TFF-data driven, no NP, ...?
- Its impact in the HLBL cannot be forgotten, it might be one of the largest uncertainties if the puzzle persists

back-up

Dissection of the HLBL contribution

$$
a_{\mu}^{L b L ; P}=-e^{6} \int \frac{d^{4} q_{1}}{(2 \pi)^{4}} \int \frac{d^{4} q_{2}}{(2 \pi)^{4}} \frac{1}{q_{1}^{2} q_{2}^{2}\left(q_{1}+q_{2}\right)^{2}\left[\left(p+q_{1}\right)^{2}-m^{2}\right]\left[\left(p-q_{2}\right)^{2}-m^{2}\right]}
$$

$$
\times\left(\frac{F_{P^{*} \gamma^{*} \gamma^{*}}\left(q_{2}^{2}, q_{1}^{2},\left(q_{1}+q_{2}\right)^{2}\right) F_{P^{*} \gamma^{*} \gamma^{*}}\left(q_{2}^{2}, q_{2}^{2}, 0\right)}{q_{2}^{2}-M_{P}^{2}} T_{1}\left(q_{1}, q_{2} ; p\right)\right.
$$

Use data from
the Transition Form Factor

$$
\left.+\frac{F_{P^{*} \gamma^{*} \gamma^{*}}\left(\left(q_{1}+q_{2}\right)^{2}, q_{1}^{2}, q_{2}^{2}\right) F_{P^{*} \gamma^{*} \gamma^{*}}\left(\left(q_{1}+q_{2}\right)^{2},\left(q_{1}+q_{2}\right)^{2}, 0\right)}{\left(q_{1}+q_{2}\right)^{2}-M_{P}^{2}} T_{2}\left(q_{1}, q_{2} ; p\right)\right)
$$

Dissection of the HLBL contribution

- Extraction of meson TFF and HLBL

- Using CLEO, CELLO, BaBar and Belle to obtain the TFF Low-energy Constants, constrain hadronic model and estimation of $\pi^{0}-\mathrm{HLBL}$
$a_{\mu}^{\text {Lby } L ; \pi^{0}}=e^{6} \int \frac{d^{4} Q_{1}}{(2 \pi)^{4}} \int \frac{d^{4} Q_{2}}{(2 \pi)^{4}} K\left(Q_{1}^{2}, Q_{2}^{2}\right)$

Using $F_{\pi^{0} \gamma^{*} \gamma^{*}}\left(Q_{1}^{2}, Q_{2}^{2}\right) \sim P_{1}^{0}\left(Q_{1}^{2}, Q_{2}^{2}\right)$
(main energy range from 0 to $\mathrm{I} \mathrm{GeV}^{2}$)

The role of doubly virtual TFF data

