Coulomb excitation of nuclei around ¹³²Sn

Angela Gargano, INFN Napoli

Outline

- Physics cases
- Theoretical framework
- Results

Conclusions

Region of interest

Z\N	76	78	80	82	84	86
50	¹²⁶ Sn	¹²⁸ Sn	¹³⁰ Sn	¹³² Sn	¹³⁴ Sn	¹³⁶ Sn
51	¹²⁷ Sb	¹²⁹ Sb	¹³¹ Sb	¹³³ Sb	¹³⁵ Sb	¹³⁷ Sb
52	¹²⁸ Te	¹³⁰ Te	¹³² Te	¹³⁴ Te	¹³⁶ Te	¹³⁸ Te

Region of interest

Z\N	76	78	80	82	84	86
50	126 S n	¹²⁸ Sn	¹³⁰ Sn	¹³² Sn	¹³⁴ Sn	136 S n
51	¹²⁷ Sb	¹²⁹ Sb	¹³¹ Sb	¹³³ Sb	¹³⁵ Sb	¹³⁷ Sb
52	¹²⁸ Te	¹³⁰ Te	132Te	¹³⁴ Te	¹³⁶ Te) ¹³⁸ Te

Region of interest

Data from CE experiments @HRIBF

Pioneering CE experiments with RIBs in inverse kinematics @ HRIBF

VOLUME 88, NUMBER 22

PHYSICAL REVIEW LETTERS

3 June 2002

Coulomb Excitation of Radioactive 132,134,136 Te Beams and the Low B(E2) of 136 Te

D. C. Radford, ¹ C. Baktash, ¹ J. R. Beene, ¹ B. Fuentes, ^{1,2} A. Galindo-Uribarri, ¹ C. J. Gross, ^{1,3} P. A. Hausladen, ¹ T. A. Lewis, ¹ P. E. Mueller, ¹ E. Padilla, ^{1,4} D. Shapira, ¹ D. W. Stracener, ¹ C.-H. Yu, ¹ C. J. Barton, ⁵ M. A. Caprio, ⁵ L. Coraggio, ⁶ A. Covello, ⁶ A. Gargano, ⁶ D. J. Hartley, ⁷ and N. V. Zamfir^{5,8}

E(2+) and B(E2; $2+\rightarrow 0+$) for 124,126,128,130,132,134 Sn & 132,134,136 Te

Quadrupole moments in 124,126,128Sn by CE

PHYSICAL REVIEW C 84, 061303(R) (2011)

Coulomb excitation of ^{124,126,128}Sn

J. M. Allmond, D. C. Radford, C. Baktash, J. C. Batchelder, A. Galindo-Uribarri, C. J. Gross, P. A. Hausladen, K. Lagergren, Y. Larochelle, E. Padilla-Rodal, and C.-H. Yu

High-precision measurements of $\langle 0_1||M(E2)||2_1\rangle$ matrix elements from the Coulomb excitation of 124,126,128 Sn on a 12 C target are presented. The extracted B(E2) values decrease monotonically from the neutron midshell toward the 132 Sn double-shell closure, despite a near constancy in the first 2^+ level energy. Furthermore, Coulomb excitation of 124,126,128 Sn on an enriched 50 Ti target, combined with the results from the 12 C target, provide a measure of the static quadrupole moments, $Q(2_1^+)$ (expected to be zero for a spherical shape). These new results confirm that the unstable neutron-rich 126,128 Sn isotopes have deformations consistent with zero. The present study marks the first report on measured 2_1^+ static quadrupole moments for unstable closed-shell nuclei.

Z = 50	N	$B(E2; 0_1^+ \to 2_1^+)^b$ [in e ² b ²]	$Q(2_1^+)^c$ [in eb] without high-lying	P_3	$Q(2_1^+)^{a,c}$ with high-lying
¹²⁴ Sn	74	0.162(6)	+0.03(7)	+	-0.06(8)
				_	-0.04(8)
¹²⁶ Sn	76	0.127(8)	+0.08(11)	+	-0.02(11)
				-	+0.01(11)
¹²⁸ Sn	78	0.080(5)	-0.02(18)	+	-0.13(19)
				_	-0.08(19)

Experimental identification of the 2⁺ MSS in ¹³²Te

RAPID COMMUNICATION

PHYSICAL REVIEW C 84, 061306(R) (2011)

One-phonon isovector $2^+_{1.MS}$ state in the neutron-rich nucleus 132 Te

M. Danchev, G. Rainovski, N. Pietralla, A. Gargano, A. Covello, C. Baktash, J. R. Beene, C. R. Bingham, A. Galindo-Uribarri, K. A. Gladnishki, C. J. Gross, V. Yu. Ponomarev, D. C. Radford, L. L. Riedinger, M. Scheck, A. E. Stuchbery, J. Wambach, C.-H. Yu, and N. V. Zamfir

The 2_2^+ state in 132 Te is identified as the one-phonon mixed-symmetry state in a projectile Coulomb excitation experiment presenting a firm example of a mixed-symmetry state in unstable, neutron-rich nuclei. The results of shell-model calculations based on the low-momentum interaction $V_{\text{low}-k}$ are in good agreement with experiment demonstrating the ability of the effective shell-model interaction to produce states of mixed-symmetry character.

Signatures of the MS 2⁺ state:

- ♦ strong M1 and weak E2 transition rates to the 2+_{FS} state
- ♦ weak E2 transition rate to the 0⁺ ground state

PHYSICAL REVIEW C **84**, 061306(R) (2011)

One-phonon isovector $2^+_{1,\mathrm{MS}}$ state in the neutron-rich nucleus $^{132}\mathrm{Te}$

M. Danchev, ¹ G. Rainovski, ^{1,2} N. Pietralla, ^{2,3} A. Gargano, ⁴ A. Covello, ^{4,5} C. Baktash, ⁶ J. R. Beene, ⁶ C. R. Bingham, ⁷ A. Galindo-Uribarri, ⁶ K. A. Gladnishki, ¹ C. J. Gross, ⁶ V. Yu. Ponomarev, ² D. C. Radford, ⁶ L. L. Riedinger, ⁷ M. Scheck, ² A. E. Stuchbery, ⁸ J. Wambach, ² C.-H. Yu, ⁶ and N. V. Zamfir ⁹

The 2_2^+ state in 132 Te is identified as the one-phonon mixed-symmetry state in a projectile Coulomb excitation experiment presenting a firm example of a mixed-symmetry state in unstable, neutron-rich nuclei. The results of shell-model calculations based on the low-momentum interaction $V_{\text{low}-k}$ are in good agreement with experiment demonstrating the ability of the effective shell-model interaction to produce states of mixed-symmetry character.

A. Gargano

Sezione di Napoli

TABLE I. Comparison of the available experimental data on the electromagnetic properties of the 2_1^+ and the 2_2^+ states in 132 Te with results of the shell-model calculations.

Observable	Unit	Experiment	Shell Model
$B(E2; 2_1^+ \to 0_1^+)$	W.u.	10(1) ^a	7.8
$\mu(2_1^+)$	$\mu_{ m N}$	$+0.92(10)^{b}$	0.68
$B(E2; 2_2^+ \to 0_1^+)$	W.u.	$0.5(1)^{c}$	0.21
$B(E2; 2_2^+ \rightarrow 2_1^+)$	W.u.	$0-20^{\circ}$	0.24
$B(M1; 2_2^+ \rightarrow 2_1^+)$	$\mu_{ m N}^2$	$5.4(3.5)^{\circ} (>0.23^{d})$	0.20
$\mu(2_2^+)$	• •		0.69

Shell model calculations

$$H = \sum_{i} \varepsilon_{i} a_{i}^{\dagger} a_{i} + \frac{1}{4} \sum_{ijkl} \langle ij | V_{eff} | kl \rangle a_{i}^{\dagger} a_{j}^{\dagger} a_{l} a_{k}$$

Main steps

- 1. Model space
- 2. Single-particle energies
- 3. Two-body matrix elements
- 4. Construction and diagonalization of the energy matrices

Realistic shell-model effective interaction

Understand the properties of nuclei starting from the forces between nucleons

No adjustable parameter in the calculation of two-body matrix elements

Derivation of V_{eff}

Two main ingredients

Nucleon-nucleon potential

Many-body theory

- L. Coraggio et al, Prog. Part. Nucl. Phys. 62, 135 (2009)
- L. Coraggio et al, Annals of Phys. 327, 2061 (2012)

Nucleon-nucleon potential

Potentials which reproduce the two-body data (deuteron properties and the NN scattering data up to the inelastic threshold) with $\chi^2/N_{data}\sim 1$

- Nijmegen II
- CD-Bonn
- Argonne V₁₈
- N³LO Chiral potential

Problem:

these potentials have a strongly repulsive short-range component

cannot be used directly in nucler structure perturbative calculations

Remedy:

V_{low-k} approach

construction of an NN potential confined within a low-momentum space (defined by a cutoff Λ)

Realistic shell-model effective interaction

Schrödinger equation for A nucleons

$$H\psi_{i} = (H_{0} + H_{1})\psi_{i} = E_{i}\psi_{i}$$

$$H_{1} = V_{NN} - U$$

$$H_{_{1}}=V_{_{NN}}-U$$

Shell-model equation for N-valence nucleons

$$PH_{eff}P\psi_{i}=P(H_{0}+V_{eff})P\psi_{i}=E_{i}P\psi_{i}$$

projection operator onto the chosen model space

V_{eff} different from V_{NN}

Defined

- > in the nuclear medium
- > in a subspace of the Hilbert space
- > accounts perturbatively
- for configurations beyond the chosen model space
- for core polarization effects

Many body theory

Q - box folded-diagram method

 V_{eff} is written as a perturbative expansion in terms of the

<u>Q-box</u>

→ collection of diagrams with V_{low-k} in the interaction vertices

Many body theory

Q - box folded-diagram method

V_{eff} is written as a perturbative expansion in terms of the "bubble" =1p-1h diagram

<u>Q-box</u>

collection of diagrams with the interaction vertices

¹³²Sn core

Single proton energies from 1335b

Single neutron energies from 1335n

Single neutron-hole energies from 1315n

 V_{NN} CD Bonn potential + Coulomb force for protons $V_{low-k} \text{ with } \Lambda = 2.2 \text{ fm}^{-1}$

2⁺ yrast state in Sn isotopes

4⁺ yrast state in Sn isotopes

6⁺ yrast state in Sn isotopes

6⁺ in ¹²⁶Sn Phys. Rev.C 85, 054316 (2012)

Diagonal matrix elements of the interaction for the $(vh_{11/2})^{-2}$ and $(vf_{7/2})^2$ configurations

0 -0 7 0	B(E2; $2^+ \rightarrow 0^+$) in W.u.			
e _n =0.7 e	Expt[1]	Expt[2]	Calc	
¹²⁶ Sn	6.8(4)	5.3(16)	3.6	
¹²⁸ Sn	4.2(3)	3.8(3)	2.6	
¹³⁰ Sn		1.2(3)	1.4	
¹³⁴ Sn		1.4(2)	1.6	
¹³⁶ Sn			2.8	

[1] Phys.Rev. C 84, 061303 (2011) [2] Nucl.Phys. A 746, 83c (2004); Nucl.Phys. A 752, 264c (2005)

Q(2⁺) for Sn isotopes [in eb]

	Ex	Calc	
	Without high lying states	With high lying states	
¹²⁶ Sn	+0.08(11)	-0.02(11) +0.01(11)	+0.02
¹²⁸ Sn	-0.02(18)	-0.13(19) -0.08(19)	-0.005
¹³⁰ Sn			-0.02
¹³⁴ Sn			-0.02
¹³⁶ Sn			-0.13

Expt from Phys.Rev. C 84, 061303 (2011)

Some	predic	ctions for	¹³⁴ Sn 8	ι ¹³⁶ Sn
		¹³⁴ Sn	¹³⁶ Sn	

Calc

1.6

1.7

0.82

0.35

2.93

0.23

0.02

-0.02

-0.03

-0.57

-0.25

0+

2+

4+

6+

22+

SPES /

134**S**n

 $80\% (f_{7/2})^2$

 $85\% (f_{7/2})^2$

94% $(f_{7/2})^2$

98% $(f_{7/2})^2$

80% $f_{7/2}p_{3/2}$ | 64% $(f_{7/2})^4$

Coulomb excitation with RiBs

Firenze, September 27-28, 2012

136**S**n

 $64\% (f_{7/2})^4$

 $66\% (f_{7/2})^4$

75% $(f_{7/2})^4$

83% $(f_{7/2})^4$

Calc

2.8

0.83

0.12

0.06

1.8

1.0

0.09 x

-0.13

+0.06

+0.46

+0.54

exotic beams for science

Expt

1.4(2)

0.89(17)

 $B(E2:2_1^+ \rightarrow 0^+)$ [in W.u.]

 $B(E2:4+ \rightarrow 2+)$

B(E2:6+ \rightarrow 4+)

 $B(E2:2_2^+ \rightarrow 0^+)$

 $B(E2:2_2^+ \rightarrow 2_1^+)$

 $B(E2:2_2^+ \rightarrow 4^+)$

 $Q(2_1^+)$ [in eb]

 $Q(2_2^+)$

 $\mu(2_1^+)$

 $\mu(2_2^+)$

 $B(M1:2_2^+ \rightarrow 2_1^+)$

[in nm]

A. Gargano

Sezione di Napoli

2+ MSS in 136Te

B(E2;
$$2_{2}^{+} \rightarrow 0_{1}^{+}) = 0.67$$
 W.u.

B(E2;
$$2_2^+ \rightarrow 2_1^+$$
) = 9.6 W.u.

B(M1;
$$2_{2}^{+} \rightarrow 2_{1}^{+}$$
) = 0.19 μ_{N}^{2}

2⁺ 1.88 MeV

B(E2;
$$2_3^+ \rightarrow 2_1^+) = 1.4$$
 W.u.

B(E2;
$$2_3^+ \rightarrow 0_1^+) = 1.04$$
 W.u.

B(M1;
$$2_3^+ \rightarrow 2_1^+) = 0.18 \mu_N^2$$

Wave functions of ¹³⁶Te

$$\left|0_{gs}^{+}\right\rangle = 0.85 \left|^{134}\text{Te};0_{gs}^{+}\right\rangle \left|^{134}\text{Sn};0_{gs}^{+}\right\rangle + \cdots$$

$$\left|2_{1}^{+}\right\rangle = 0.72\left|{}^{134}\text{Te};0_{gs}^{+}\right\rangle\left|{}^{134}\text{Sn};2_{1}^{+}\right\rangle + 0.36\left|{}^{134}\text{Te};2_{1}^{+}\right\rangle\left|{}^{134}\text{Sn};0_{gs}^{+}\right\rangle + \cdots$$

$$\left|2_{2}^{+}\right\rangle = 0.42\left|{}^{134}\text{Te};0_{gs}^{+}\right\rangle\left|{}^{134}\text{Sn};2_{1}^{+}\right\rangle + 0.60\left|{}^{134}\text{Te};0_{gs}^{+}\right\rangle\left|{}^{134}\text{Sn};2_{2}^{+}\right\rangle + \cdots$$

$$\left|2_{3}^{+}\right\rangle = 0.31\left|{}^{134}\text{Te};0_{gs}^{+}\right\rangle\left|{}^{134}\text{Sn};2_{1}^{+}\right\rangle - 0.78\left|{}^{134}\text{Te};2_{1}^{+}\right\rangle\left|{}^{134}\text{Sn};0_{gs}^{+}\right\rangle + \cdots$$

Conclusions

132Sn region is a quite interesting region to test the shell structure

CE in inverse kinematics is a proper technique to study the properties of these nuclei

- Future experiments
 - Missing data
 - Higher-precision measurements
 - Multipole Coulomb excitations

Naples group

L. Coraggio

A. Covello

A. G.

N. Itaco

Thanks for your attention

