Ultra-broadband pulsar observations at the Effelsberg 100m: impact on the EPTA

Ramesh Karuppusamy, Max-Planck-Institut für Radioastronomie, Bonn, Germany

Outline

EPTA

- Pulsar signals and processing
- UBB system at Effelsberg 100m
- UBB impact on the EPTA

Telescope	Diameter (m)	e	$T_{ m sys}$	Alloc. time (h/mo)	Dec. range (deg)	
Effelsberg	100	0.54	24	24	> -30	
Lovell	76.2	0.55	30	48	> -35	
Nançay	94	0.48	35	250	> -39	
Sardinia	64	0.6	25	30	> -46	
WSRT	96	0.54	29	32	> -30	
LEAP	200	0.54	30	24	> -39	
from Ferdman et al. 2010, Class. Quantum Grav. 27, 084014						

Large European Array for Pulsars
 phase coherent summing
 "leap" in collecting area ~200m dish

Max-Planck-Institut

für Radioastronomie

European Pulsar Timing Array (EPTA)

- 30-50 sources are monitored
 - cadence 7d(NRT), 10d (Lovell) and 30d
 - 30-60 min. per source
 - good frequency coverage
 - remove interstellar weather

- check on systematic errors
- 25yr baseline on many pulsars
- current best limit on GWB from EPTA data
- Major hardware upgrade is nearly complete

Pulsars signals

- Pulsar signals are
 - a product of radio emission along NS magnetic axis
 - extremely periodic rivals atomic clocks
 - dispersed and scattered by propagation in ISM
 - wideband signals
 - In display steep spectrum $\sim
 u^{-1.8}$
 - scintillates intensity varies with time/frequency
 - ... and they are <u>weak</u>

Trenemis Dany Page

Image credit: Dany Page

Pulsar signals - dispersion

- higher frequencies travel faster
- results in freq-dependent arrival time
- smearing depends on pulsar's location
- If uncorrected, renders PSR undetectable

Incoherent dedispersion

- detect signal & correct channel delays
- limits time resolution

Max-Planck-Institut

für Radioastronomie

Incoherent dedispersion

- detect signal & correct channel delays
- limits time resolution
- Coherent dedispersion
 reverse ISM's effect by convolution
 need raw voltages large data rate
 computationally intensive

narrower profiles, higher S/Nimproved timing accuracy

Max-Planck-Institut

Pulsar signals - weak!

Eg. strong pulsar ~10 mJy@1400 MHz $1Jy = 10^{-26}W \cdot m^{-2} \cdot Hz^{-1}$

Minimum detectable signal in a telescope

 $S_{\min} = \frac{T_{\text{sys}}/G}{\sqrt{n_{\text{p}}t_{\text{int}}\Delta f}}$ and $G = \frac{A_{\text{eff}}}{2 \cdot k_{\text{B}}}$

- ideally T_{sys} → 2.7K
 large BW and telescope surface
 - Receiver feed with good illumination, low side lobes
 - Low noise amplifiers

Large BW feed horn + Low noise amplifier + Large collecting area

- Low noise amplifier
 - Design by S.Weinreb (CalTech)
 - SiGe, high-perf. bipolar transistors
 - 2-stage design

CITFL4

RF Frequency	~0.4 to 4.0 GHz	
Gain @20K	36dB ± 3 dB	
Noise Temp. @20K	< 8K in 0.5-4GHz	
Operating Temp.	4K - 320 K	
IdB compression @	-3dBm	

Flared quad-ridged feed horn

- broad band 5:1
- based on numerical simulations from S.Weinreb's Team (CalTech)
- exponential profile for ridges and the wall
- ~800mm diameter and length
- radiation pattern is asymmetric

Feed horn near-field measurements
 E, H-plane beam patterns are non-identical
 ~ 50% under-illumination at some freqs.
 f/D=0.3 → ± 80° (12 dB edge taper)
 but ... much lower Tsys (<20K)

- Radio frequency interference ~ 70% useable band!
- Strong RFI @ 380-385, 390-395 MHz (new)
 - pre-LNA 400 MHz high pass filter > 30db suppression
 - ~IK loss in Trx = I7K
 - Other RFI rejected by post-LNA analog filterbank
 - signal processing in backends clean further RFI

- I5K cryogenic system
- calibration using noise diode
- no down conversion (mixers, LO etc.)
- 7+ filters to remove major RFI
- Signal transported by analog fibers

Signal processing

- Large BW increases sensitivity
- but ... also exacerbates dispersion smearing
 - remove dispersion by coherent dedispersion
- issues
 - wide-band ~2.5 GHz ~ 96 Gbits/sec!
 - Coherent dedispersion is formidable ~ multi-gigapoint FFT in ms

Solution

- use smaller bands, each ~10's MHz wide
- reduces FFTs to < ~128 Kpts.</p>

Processing: stop-gap solution

ROACH-based PFB

- flexible instrument
- Any IF from 0.6 to 20GHz
- 4 high performance nodes

- 608 CPU cores
- ✓ 308 TB total storage

Processing: stop-gap solution

ROACH board

- Xilinx Virtex-5 FPGA + CASPER DSP library
- I GSPS, dual 8-bit Atmel ADC
- I6/32 channel polyphase filter bank
- 4x10GbE

ROACH: Reconfigurable Open Architecture Computing Hardware CASPER: Centre for Astronomy Signal Processing and Electronics Research

- First results June/July 2012
 - Could have been better
- RFI was a major issue mild saturation of LNA
- under-illumination of the dish
- phase-centre issues with wide-band feed

UBB's Impact on EPTA

- Current state of EPTA
 - Over 40 pulsars are being timed at the different European observatories.
 - Aim is to achieve sub-100ns timing accuracy for several pulsars

UBB's impact

- high-quality TOAs for the EPTA
- sensitive, better handle on DM
- Tame scintillation : at the least catch more scintiles
- improved timing precision errors on residuals go down

scintiles -- blobs in time-frequency space
 scintillation can push signal out of band
 solution is to use very large bandwidths
 scattering - arise from diffraction/refraction
 can be used to model the ISM

Better DM estimates ...

- 274 pulsars, over 25yrs of data
- DM does change for some pulsars
 - empirical fit ~ 0.57

High precision timing

current best limit on GWB $h_c = 6 \times 10^{-15}$ many more pulsars with < 100ns residuals plus other tests of gravity!

A

Conclusions

UBB receiver and backend are nearly complete

- System shows a great promise
- more issues are under control RFI/Tsys
- At least ~2-3 improvement in EPTA residuals

Full Digital Approach

