

Nucleosynthesis of 60 Fe and constraints on the nuclear level density and γ -ray strength function

D. Richman^{*a*}, A. Spyrou^{*b*} and A. Couture^{*c*}

^aMichigan State University, NSCL, ^bNSCL, MSU, ^cLos Alamos National Laboratory

⁶⁰Fe is created by neutron capture in massive stars prior to core collapse supernova. This isotope is one of only a handful whose gamma-rays from β-decay indicate ongoing nucleosynthesis in the Galaxy. For this reason the reactions involved for the creation and destruction of ⁶⁰Fe in this environment must be well understood. Due to the short half-life of ⁵⁹Fe it is challenging to perform a direct capture reaction experiment to determine the cross section of ⁵⁹(n, γ)⁶⁰Fe. Instead we used the β-decay of ⁶⁰Mn to populate states at all energies in the ⁶⁰Fe nucleus. The resulting γ -rays were collected using a 4π total-absorption spectrometer, SuN (Summing Nal(Tl) detector), at the NSCL. With this data the β-Oslo method can be applied to extract the nuclear level density and gamma-strength function needed for statistical models to calculate the reaction rate using experimentally constrained nuclear structure parameters. Preliminary results from the ongoing analysis will be presented.