Measurement of $\pi\pi$ Scattering Lengths from K_{e4} and $K_{3\pi}$ Decays

Rainer Wanke University of Mainz

BEACH 2010, 24th June 2010, Perugia

ππ Scattering Lengths

At low energy kr << 1: S-wave dominates scattering amplitude. Isospin l = 0,2 because of Bose statistics.

Scattering matrix $S|\pi\pi\rangle = e^{2i\delta}|\pi\pi\rangle$ parametrized by two phases:

$$\delta_{\mathbf{0},\mathbf{2}} = \mathbf{a}_{\mathbf{0},\mathbf{2}} \cdot \mathbf{k} + \mathcal{O}(\mathbf{k}^2)$$

At low energy S-wave scattering lengths a₀, a₂ are essential parameters of Chiral Perturbation Theory (ChPT).

(In the following: $a_{0,2}$ quoted in units of m_{π})

Theory predictions for ao and a2

Universal band (from Roy equations)

Scattering lengths a_0 , a_2 are directly connected to m_{π} :

$$egin{align} {
m a_0} \; \sim \; rac{7\,{
m m}_\pi^2}{32\pi\,{
m F}_\pi^2} \; = \; 0.16 \ \ {
m a_2} \; \sim \; rac{-\,{
m m}_\pi^2}{16\pi\,{
m F}_\pi^2} \; = \; -0.045 \ \end{align}$$

(Weinberg, PRL 17 (1996) 216)

Precise prediction within Chiral Perturbation Theory:

$$egin{array}{lll} a_0 &=& 0.220\,\pm\,0.005 \\ a_2 &=& -0.0444\,\pm\,0.0010 \end{array}$$

(Colangelo, Gasser, Leutwyler, PRL 86 (2001) 5008)

ChPT constraint:

 $a_2 = -0.0444(8) + 0.236(a_0 - 0.22) - 0.61(a_0 - 0.22)^2 - 9.9(a_0 - 0.22)^3$

Measuring $\pi\pi$ Scattering Lengths

Three kinds of measurements have been performed:

- Pionium lifetime $(\pi^+\pi^-)_{atom}$: Measurement of $|a_2 a_0|$
 - → DIRAC experiment
- Cusp in $K \rightarrow \pi\pi\pi$ ($K_{3\pi}$) decays: Measurement of a_2 - a_0 , a_2
 - $\mathbf{K}^{\pm} \to \pi^{\pm} \pi^{0} \pi^{0} \to \mathbf{NA48/2}$: ~60 million events
 - $K_L \rightarrow \pi^0 \pi^0 \pi^0$ → KTeV + NA48/2: (70+100) million events
- $K^{\pm} \rightarrow \pi^{+} \pi^{-} e^{\pm} v$ (K_{e4}) decays: Measurement of a_0 , a_2
 - → S118 (Geneva-Saclay, 1977): ~30 000 events BNL E685 (2003): ~400 000 events

NA48/2 (2009): ~1.1 million events

NA48/2 in 2003/2004

■ Simultaneous K^+ and K^- beams with $p_{K^{\pm}} = (60 \pm 3)$ GeV/c.

Trigger: 3 charged tracks or

■ 1 charged track + missing p_T

→ Efficiencies > 99 %

NA48 Detector

Main detector components:

Magnet spectrometer

Two drift chambers each before and after spectrometer magnet.

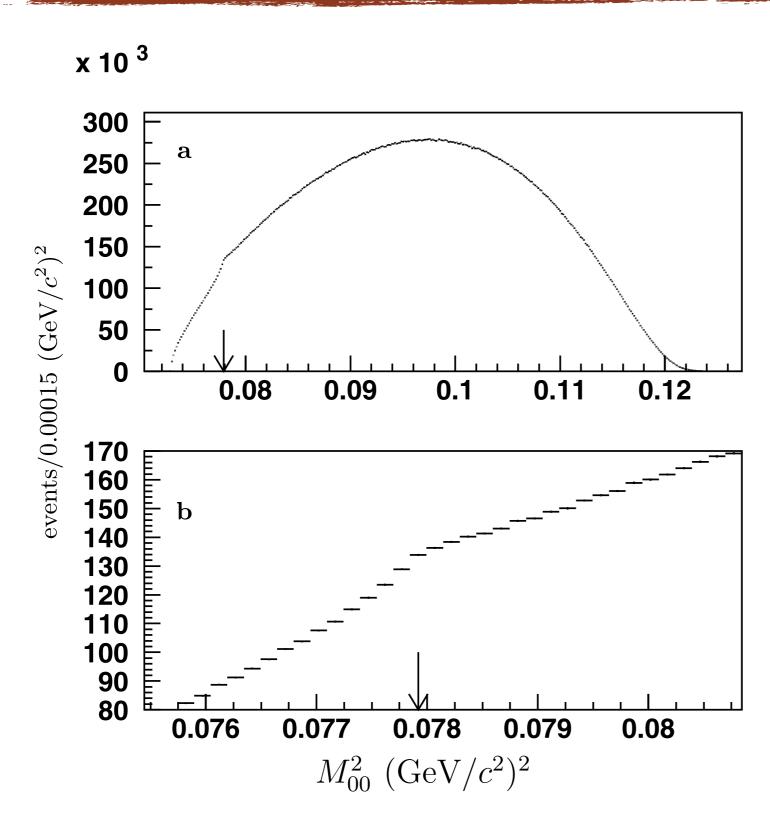
Momentum resolution:

 $\leq 1\%$ for 20 GeV/c tracks.

- Anti-counters for photons, muons
- Liquid Krypton Calorimeter

$$\frac{\Delta E}{E} = \frac{3.2\%}{\sqrt{E[\text{GeV}]}} \oplus \frac{90 \text{ MeV}}{E} \oplus 0.42\%$$

Reconstruction of $K \to \pi^{\pm} \pi^{0} \pi^{0}$ Decays


$K \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$ selection:

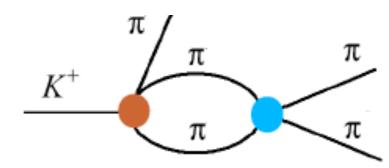
- 1 charged track +4 e.m. calorimeter clusters
- π⁰ → γγ selection:
 consider all 3 pairings and
 minimize vertex difference Δz
- invariant π⁰ π⁰ mass M(π⁰π⁰):
 only calorimeter and vertex information used
- → 100 million events (mass resolution 1.3 MeV, negligible background)

Cusp in $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$ Decays

$M(\pi^0\pi^0)$ distribution:

Clear cusp at

$$M(\pi^0\pi^0) = 2 m(\pi^{\pm})$$


(were expecting peak from pionium formation

$$K \rightarrow \pi^{\pm} (\pi \pi)_{atom} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$$

Theoretical Approach (CI)

Explanation:

- $\pi^+\pi^- \rightarrow \pi^0\pi^0$ rescattering amplitude
- depends on a₀ a₂

(Cabibbo, PRL 93 (2004) 121801, but predicted earlier: Budini, Fonda, PRL 6 (1961) 419)

More complete computation:

(Cabibbo, Isidori, JHEP03 (2005) 21)

- rescattering corrections from $\pi^+ \pi^- \rightarrow \pi^0 \pi^0$, $\pi^+ \pi^0 \rightarrow \pi^+ \pi^0$, ...
- two-loop level O(ai²) corrections

- ⇒ sensitivity to a₂ alone
- \blacksquare no O(a_i^3), no radiative corrections

Theoretical Approach (BB)

Approach by the Bern-Bonn group:

- based on an effective non-relativistic lagrangian
- different structure of the expansion (w.r.t. CI)

- (Colangelo, Gasser, Kubis, Rusetsky, PLB 638 (2006) 187;
- Bissinger, Fuhrer, Gasser, Kubis, Rusetsky, PLB 659 (2008) 576; NPH B806 (2009) 178)

- simultaneous fitting of neutral and charged amplitudes to extract Dalitz plot slope parameters (modified w.r.t. PDG parametrization)
- electromagnetic effects and radiative corrections outside the cusp point are included
 - → provides so far most complete description of rescattering effect

Fit to the $M(\pi^0\pi^0)$ Spectrum (BB Model)

Free fit parameters: a_0 - a_2 , a_2 , Dalitz plot parameters, normalizations (fit also includes $K \to \pi^{\pm} \pi^{+} \pi^{-}$ decays)

7 bins around cusp/pionium excluded

pionium fraction f_{atom} left free in the fit

Fit Results on a₀ - a₂ and a₂

fit	χ^2 /ndf	a ₀ -a ₂	a_2	f atom
CI	206.3/195	0.2727(46)	-0.0392(80)	0.0533(91)
CI (a)	201.6/189	0.2689(50)	-0.0344(86)	0.0533
CI (c)	210.6/196	0.2749(21)	-0.0413	0.0441(76)
CI (a,c)	207.6/190	0.2741(21)	-0.0415	0.0441
BB (a) BB (c) BB (a,c)	462.9/452	0.2815(43)	-0.0693(136)	0.0530(95)
	458.5/446	0.2775(48)	-0.0593(142)	0.0542
	467.3/453	0.2737(26)	-0.0417	0.0647(76)
	459.8/447	0.2722(27)	-0.0421	0.0647
CI	205.6/195	0.2483(45)	-0.0092(91)	0.0625(92)
CI (a)	202.9/189	0.2461(49)	-0.0061(98)	0.0625
CI (c)	222.1/196	0.2646(21)	-0.0443	0.0420(77)
CI (a,c)	219.7/190	0.2645(22)	-0.0444	0.0420
BB (a) BB (c) BB (ac)	477.4/452	0.2571(48)	-0.0241(129)	0.0631(97)
	474.4/446	0.2544(51)	-0.0194(132)	0.0631
	479.8/453	0.2633(24)	-0.0447	0.0538(77)
	478.1/447	0.2627(25)	-0.0449	0.0538

Rad. corr. off

a: pionium fatom fixed

c: with ChPT constraint

a,c: both

(...): statistical error

Rad. corr. on

← final result

(f_{atom}, a₀-a₂, a₂) free in the fit)

Cusp Results on a₀ - a₂ and a₂

(only statistical uncertainties shown)

Final result: (EPJC 64 (2009) 589)

 $a_0-a_2 = 0.257(5)_{stat}(3)_{sys}(1)_{ext}$

 $a_2 = -0.024(13)_{stat}(9)_{sys}(2)_{ext}$

(statistical correlation -0.839)

With ChPT constraint:

 a_0 - a_2 = 0.2633(24)_{stat}(14)_{sys}(19)_{ext}

ChPT prediction:

 a_0 - a_2 = 0.265(4)

Rescattering in $K_L \rightarrow \pi^0 \pi^0 \pi^0$ (NA48/2)

NA48/2 data taking in 2000:

⇒ Evidence for a change in slope near the cusp point.

Rescattering in $K_L \rightarrow \pi^0 \pi^0 \pi^0$ (KTeV)

(PRD 78 (2008) 032009)

$$m_{\pi^+}(a_0 - a_2) = 0.215 \pm 0.014_{\text{stat}} \pm 0.025_{\text{syst}} \pm 0.006_{\text{ext}}$$

 $h_{000} = (-2.09 \pm 0.62_{\text{stat}} \pm 0.72_{\text{syst}} \pm 0.28_{\text{ext}}) \times 10^{-3}$

ππ Scattering Lengths from Ke4 Decays

K_{e4} decay:

- $K_{e4} = K^{\pm} \rightarrow \pi^{+} \pi^{-} e^{\pm} v$
- Very rare: Br(K_{e4}) ~ 4 x 10⁻⁵

Measurement of $\pi\pi$ scattering in $\mathbf{K_{e4}}$:

- $lacktriangleq K_{e4}$ decay amplitude depends on two complex phases:
 - $-\delta_0 = \pi\pi$ scattering phase shift for I=0, l=0 (S-wave)
 - $\delta_1=\pi\pi$ scattering phase shift for I=1, l=1 (P-wave) (I=2 suppressed by $\Delta I=\frac{1}{2}$ rule)
- Decay rate depends on difference $\delta = \delta_0 \delta_1$, with $\delta = \delta(m_{\pi\pi})$.
- $\delta \neq 0$ implies asymmetric distribution of lepton w.r.t. $\pi\pi$ plane.

Ke4 Selection

K_{e4} selection:

- 3 charged tracks and 1 good vertex
- 2 opposite-sign pions, 1 electron $(E/p \sim 1)$
- missing transverse momentum
- kaon momentum close to 60 GeV/c

Background:

- $\mathbf{K}^{\pm} \to \pi^{\pm} \pi^{+} \pi^{-}$ with $\pi \to \text{ev}$ or mis-identified pion
- **K**[±] $\rightarrow \pi^{\pm} \pi^{0} (\pi^{0})$ with $\pi^{0} \rightarrow e^{+} e^{-} \nu$ and mis-identified electron
- **Background estimation** from wrong-sign $\pi^+\pi^+e^-$ events
 - → Background ~ 0.6 %

Kinematic Variables in Ke4

 $\mathbf{K_{e4}}$ is 4-body decay \implies 5 independent kinematic variables. (Cabibbo-Maksymowicz variables)

 $\mathbf{s}_{\pi} = \mathbf{M}_{\pi\pi}^{\mathbf{2}}$ Invariant di-pion mass squared.

 $\mathbf{s_e} = \mathbf{M_{e\nu}^2}$ Invariant di-lepton mass squared.

 θ_{π} Angle of π^{+} w.r.t. $\pi\pi$ direction of flight in $\pi\pi$ rest frame.

 $\theta_{\mathbf{e}}$ Angle of e^+ w.r.t. $e\nu$ direction of flight in $e\nu$ rest frame.

 ϕ Angle of $\pi\pi$ decay plane w.r.t. $e\nu$ decay plane.

Ke4 Fitting Procedure

- Full event sample (2003+2004): 1.13 million K_{e4} decays
- Fit in *iso-populated boxes* in the 5-dim. CM variables:

```
\mathbf{10}(\mathbf{M}_{\pi\pi}) \times \mathbf{5}(\mathbf{M}_{\mathbf{e}\nu}) \times \mathbf{5}(\cos\theta_{\mathbf{e}}) \times \mathbf{5}(\cos\theta_{\pi}) \times \mathbf{12}(\phi) = \mathbf{15000} Boxes
```

Assuming constant form factors, K^+ and K^- samples fitted separately in **10 independent M_{\pi\pi} bins** and then combined in each $M_{\pi\pi}$ bin.

Data: K+ sample: 726 400 events → 48 events/box

K⁻ sample: 404 400 events → 27 events/box

MC: K^+ sample: 17.4 x 10⁶ events \rightarrow 1160 events/box

K⁻ sample: 9.7 x 10⁶ events → 650 events/box

Ke4 Fit Results

Ke4 Form Factor Results

Partial wave expansion of form factors:

$$F = F_s e^{i\delta_s} + F_p e^{i\delta_p} \cos \theta_{\pi} + d \text{ wave } \dots$$

$$G = G_p e^{i\delta_g} + d \text{ wave } \dots$$

$$H = H_p e^{i\delta_h} + d \text{ wave } \dots$$

Single form factors parametrized in Taylor expansion:

$$F_{s} = f_{s} + f'_{s}q^{2} + f''_{s}q^{4} + f'_{e}S_{e}/4m_{\pi}^{2} + \dots$$

$$F_{p} = f_{p} + f'_{p}q^{2} + \dots$$

$$G_{p} = g_{p} + g'_{p}q^{2} + \dots$$

$$H_{p} = h_{p} + h'_{p}q^{2} + \dots$$

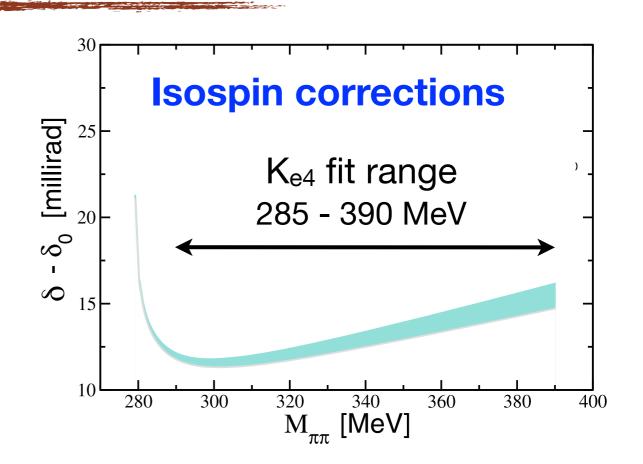
$$\delta(q^{2}) = \delta_{s} - \delta_{p}.$$

$$q^{2} = (S_{\pi}/4m_{\pi}^{2}) - 1$$

- All form factors measured w.r.t. f_s
- Systematics from acceptance and background control

$$f'_s/f_s = 0.152 \pm 0.007_{\rm stat} \pm 0.005_{\rm syst}$$
 $f''_s/f_s = -0.073 \pm 0.007_{\rm stat} \pm 0.006_{\rm syst}$
 $f'_e/f_s = 0.068 \pm 0.006_{\rm stat} \pm 0.007_{\rm syst}$
 $f_p/f_s = -0.048 \pm 0.003_{\rm stat} \pm 0.004_{\rm syst}$
 $g_p/f_s = 0.868 \pm 0.010_{\rm stat} \pm 0.010_{\rm syst}$
 $g'_p/f_s = 0.089 \pm 0.017_{\rm stat} \pm 0.013_{\rm syst}$
 $h_p/f_s = -0.398 \pm 0.015_{\rm stat} \pm 0.008_{\rm syst}$

→ First evidence of non-zero f'_e and f_p!


From phase shifts to scattering lengths

Corrections to be applied:

- Radiative effects: Included in the simulation (Coulomb attraction, IB).
- Mass effects:
 Isospin corrections have to be applied to δ.
 Developed in close collaboration with NA48/2.
 (Colangelo, Gasser, Rusetsky, EPJC 59 (2009) 777)

Effect of 10-15 mrad on δ (stat. precision ~7-8 mrad)

NA48/2 Fit of Phase Shift $\delta = \delta_0 - \delta_1$

Two-parameter fit:

$$\begin{array}{ll} a_0 = & 0.2220 \pm 0.0128_{\rm stat} \pm 0.0050_{\rm syst} \pm 0.0037_{\rm theo} \\ a_2 = -0.0432 \pm 0.0086_{\rm stat} \pm 0.0034_{\rm syst} \pm 0.0028_{\rm theo} \end{array}$$

One-parameter fit: (with ChPT constraint)

$$a_0 = 0.2206 \pm 0.0049_{\rm stat} \pm 0.0018_{\rm syst} \pm 0.0064_{\rm theo}$$

Comparison with previous Ke4 Results

Comparison of K_{e4} measurements (without ChPT constraint, old experiments isospin corrected):

- NA48/2 dominates K_{e4} measurements
- Perfect agreement with ChPT prediction!

Yellow lines: Theory prediction

(not combination of measurements)

Combination of Cusp and Ke4

Two independent measurements with different samples, different systematics and different theory:

$$egin{aligned} \mathbf{a_0} &= & 0.2210 \pm 0.0047_{\mathrm{stat}} \pm 0.0040_{\mathrm{syst}} \ & \mathbf{a_2} &= -0.0429 \pm 0.0044_{\mathrm{stat}} \pm 0.0028_{\mathrm{syst}} \ & \mathbf{a_0} - \mathbf{a_2} &= & 0.2639 \pm 0.0020_{\mathrm{stat}} \pm 0.0015_{\mathrm{syst}} \end{aligned}$$

 $a_0 - a_2$

Combination with other Measurements

Experimental data has reached theoretical precision

Perfect agreement with ChPT prediction

Yellow line: Theory prediction (not combination of measurements)

(no uncertainty from theory on cusp result)

Conclusions

- Kaon decays give unique possibility to study low-energy hadronic interactions with high precision
- Due to very high statistics, NA48/2 can check ChPT predictions with high accuracy using both $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$ and $K^{\pm} \rightarrow \pi^{+} \pi^{-} e^{\pm} v$ (K_{e4}) decays.
- Achieved experimental precision has reached theoretical precision.
 - → very strong test of the theory
- Very good agreement with theoretical prediction from ChPT.

Spares

$K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0}$: $M(\pi^{0}\pi^{0})$ Reconstruction

Decays in two photons: (z.B. $\pi^0 \rightarrow \gamma \gamma$)

$$m_{\pi^0}^2 = 2 E_1 E_2 (1 - \cos \theta) = E_1 E_2 \frac{d_{12}^2}{d_{LKB}^2}$$

If mass m_{π^0} known:

$$d_{\rm LKR} = \frac{1}{m_{\pi^0}} \sqrt{E_1 E_2 d_{12}^2}$$

Decays in many photons: (z.B. $\pi^0\pi^0 \rightarrow 4\gamma$)

$$d_{\text{LKR}} = \frac{1}{m_{\pi^0 \pi^0}} \sqrt{\sum_{i,j;i>j} E_i E_j d_{ij}^2}$$

 $\mathbf{m}_{\pi^0\pi^0}$

Turning it around:

Vertex d_{LKR} always the same!

 \implies Invariant mass $m_{\pi^0\pi^0}$ only from LKr information:

$$m_{\pi^0 \pi^0} = m_{\pi^0} \sqrt{\sum_{i,j;i>j} E_i E_j d_{ij}^2} / \frac{1}{2} \left(\sqrt{E_1 E_2 d_{12}^2} + \sqrt{E_3 E_4 d_{34}^2} \right)$$

$K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0}$ Acceptance and Resolution

Resolution on $m_{\pi^0\pi^0}^2$:

- Determined by LKR resolution.
- Best at low $m_{\pi^0\pi^0}^2$ (due to kinematical constraints).
- At $m_{\pi^0\pi^0}^2 = (2 \, m_{\pi^+})^2$: $\sigma = 0.0031 \, \text{GeV}^2$

Acceptance:

- Acceptance \approx linearly varying around $(2 m_{\pi^+})^2$.
- Modelled by Monte Carlo simulation.

Rescattering in $K_L \rightarrow \pi^0 \pi^0 \pi^0$

NA48/2 data taking in 2000:

