

DAMPE: status and results after two years in space

G. Ambrosi, on behalf of the DAMPE Collaboration

La Thuile 2018

The collaboration

• CHINA

- Purple Mountain Observatory, CAS, Nanjing
- Institute of High Energy Physics, CAS, Beijing
- National Space Science Center, CAS, Beijing
- University of Science and Technology of China, Hefei
- Institute of Modern Physics, CAS, Lanzhou

• ITALY

- INFN Perugia and University of Perugia
- INFN Bari and University of Bari
- INFN Lecce and University of Salento

• SWITZERLAND

- University of Geneva

Prof. Jin Chang

The physics goals

High energy particle detection in space

- Study of the cosmic electron and photon spectra
- Study of <u>cosmic ray protons and nuclei</u>: spectrum and composition
- High energy gamma ray astronomy
- Search for dark matter signatures in lepton spectra

Detection of 2 GeV - 10 TeV e/γ 50 GeV - 500 TeV protons and nuclei with excellent energy resolution , tracking precision and particle identification capabilities

- Exotica and "unexpected", e.g. GW e.m. counterpart in the FoV

All particle spectrum

The quest for dark matter

The detector during tests on ground

The detector final integration

The detector

- Charge measurement (dE/dx in PSD, STK and BGO)
- Tungsten converter (pair production)
- Precise tracking (silicon strips)
- Thick calorimeter (BGO bars)
- Hadron rejection (neutron detector)

γ-ray, electron and cosmic ray telescope

Expected performance

Parameter	Value
Energy range of gamma rays/electrons	5GeV to 10 TeV
Energy resolution (e and gamma)	1.5% at 800 GeV
Energy range of protons/heavy nuclei	50 GeV to 500 TeV
Energy resolution of protons	40% at 800 GeV
Eff. area at normal incidence (γ -rays)	1100 cm ² at 100 GeV
Geometric factor for electrons	$0.3 \text{ m}^2 \text{ sr above } 30 \text{ GeV}$
Photon angular resolution	0.1 degree at 100 GeV
Field of View	1.0 sr

Astroparticle Physics 95 (2017) 6

Beam test @ CERN

- 14days@PS, 29/10-11/11 2014
 - e @ 0.5GeV/c, 1GeV/c, 2GeV/c, 3GeV/c, 4GeV/c, 5GeV/c
 - p @ 3.5GeV/c, 4GeV/c, 5GeV/c, 6GeV/c, 8GeV/c, 10GeV/c
 - π-@ 3GeV/c, 10GeV/c
 - γ @ 0.5-3GeV/c
- 8days@SPS, 12/11-19/11 2014
 - e @ 5GeV/c, 10GeV/c, 20GeV/c, 50GeV/c, 100GeV/c, 150GeV/c, 200GeV/c, 250GeV/c
 - p @ 400GeV/c (SPS primary beam)
 - γ @ 3-20GeV/c
 - μ@ 150GeV/c,
- 17days@SPS, 16/3-1/4 2015
 - Fragments: 66.67-88.89-166.67GeV/c
 - Argon: 30A- 40A- 75AGeV/c
 - Proton: 30GeV/c, 40GeV/c
- 21days@SPS, 10/6-1/7 2015
 - Primary Proton: 400GeV/c
 - Electrons @ 20, 100, 150 GeV/c
 - g @ 50, 75 , 150 GeV/c
 - m @ 150 GeV /c
 - p+@10, 20, 50, 100 GeV/c

Expected performance

DAMPE mission

- Launch: December 17th 2015, CZ-2D rocket
 - Total weight ~1850 kg, power consumption ~640 W
 - Scientific payload ~1400 kg, ~400 W
 - Lifetime > 3 year
- Altitude: 500 km
- Inclination: 97.4065°
- Period: 95 minutes
- Orbit: sunsynchronous
- 16 GB/day downlink

Launch on 17th Dec. 2015

Signals for different particles

electron

gamma

proton

Instrument development: STK

Si Layers X (top)-Si Layers Y (bottom)

RTICLE EXP

• 12 layers (6x, 6y) of single-sided Si strip detector mounted on 7 support trays

• Tungsten plates (1mm thick) integrated in trays 2, 3, 4 (from the top)

- Total 0.85 X₀ for photon conversion

Charge and track measurement

Tungsten converter

STK noise

STK resolution

STK tracking efficiency

 $\zeta = \mathcal{F}_{\text{last}} \times (\Sigma_i RMS_i/\text{mm})^4 / (8 \times 10^6)$

Electron flux

DAMPE Collaboration 2017 Nature 552, 63

BGO energy lin. and res., beam test

Absolute energy scale

Electron spectrum

Proton analysis

Proton spectrum

(three independent analyses ongoing)

Helium analysis

Helium spectrum

(three independent analyses ongoing)

Gamma-ray sky

DAMPE Gamma-Ray Sky 21 Months

- ~160 photons/day observed
- Electron contamination rate still compatible with that of an isotropic diffuse extra-galactic emission
- Healpix map with N_{side} = 128

Conclusions

- The detector performance in flight are almost perfect
- The understanding of the detector behavior and calibration (alignments, gains, charge ID etc) is improving with the consequent improvements in reconstruction and simulation software
- Physics important results (CRE spectrum) have been published, more to come ...

CRE flux in the future?

Electron spectrum

- 14 layers of 22 BGO crystals
 - Dimension of BGO bar: 2.5×2.5×60cm³
 - Hodoscopic stacking alternating orthogonal layers
 - r.l.: ~32X₀, NIL:1.6
- Two PMTs coupled with each BGO crystal bar in two ends
- Electronics boards attached to each side of module

