

Status and perspectives of the DarkSide experiment at the LNGS

Paolo Agnes

University of Houston for the **DarkSide** Collaboration

Les Rencontres de Physique de la Vallée d'Aoste

7 March 2017 *La Thuile*

Direct detection of WIMPs

The WIMP properties:

- It is stable
- It interacts through gravitational force
- It is electrically neutral
- It does not interact strongly
- It should have preferential direction
- It may interact weakly

Direct Detection in Noble Liquids

Dense and easy to purify

High **ionisation** yield (W ~ 10-20 eV) High **scintillation** yield (> 50,000 photons/MeV) **Transparent** to their own scintillation High electron mobility and low electron diffusion **Discrimination** electron/nuclear recoils (**ER/NR**) with **ionisation/scintillation ratio**

120

140

160

180

100

Liquid Xenon (LUX, XENON, PandaX) $\sigma_0 = 10^{-37} \text{ cm}^2$ Higher sensitivity to low masses at low thresh Xe, $m_{\gamma} = 100 \text{ GeV/c}^2$ 10³ More dense (self-shielded) day⁻¹ Ar, $m_{z} = 33 \text{ GeV/c}^{2}$ High intrinsic radio-purity - Ar, $m_{z}=100 \text{ GeV/c}^2$ [counts kg⁻¹ 10² Ar, $m_v = 300 \text{ GeV/c}^2$ F, $m_{\gamma} = 100 \text{ GeV/c}^2$ **Liquid Argon** (DarkSide, DEAP, ArDM) **Better ER discrimination:** 10 ionisation/scintillation + **PSD** rate Intrinsic contamination from ³⁹Ar 1 e 0 10⁻¹ (it can be depleted)

0

20

40

60

80

220

200

 E_{R} [keV]

Dual-phase TPC

3D position reconstruction

Ionization/Scintillation

Pulse Shape Discrimination

Underground Argon

³⁹Ar, cosmic ray produced, first forbidden β decay: endpoint at 565 keV, $t_{1/2}$ = 269 years **Pile up in large TPC** (drift time: acquisition window of the order of 1 ms) ~150 kg successfully extracted from a **CO₂ well in Colorado**, detector **filled in April 2015** __10^{__1} AAr Data at 200 V/cm (LSV Anti-coinc.) \times UAr Data at 200 V/cm പ്പ0_5 (LSV Anti-coinc.) AAr: ~1Bq/kg \times ⁸⁵Kr (Global Fit) 변10⁻³ ³⁹Ar (Global Fit) 50 UAr: <1 mBq/kg **-10**⁻⁴ Events 10-₂ **10**⁻⁶ 10^{-7} 10^{-8} 1000 2000 3000 4000 5000 6000 0 **S**1 [PE]

The DarkSide program

Dual phase liquid argon TPC, through a **staged** approach:

Main goal: a bg-free experiment ER background: β 's and γ 's NR background: neutrons

Background suppression

- Ultra-low background materials
- Depleted Liquid Argon
- Low background photo-detectors
- Low background material components

Background identification

- Pulse Shape Discrimination (PSD)
- Ionization/scintillation ratio
- Position reconstruction (surface events)
- Multiple scatters within the TPC

Active Shielding

- Liquid Scintillator Veto (LSV)
- Water Cherenkov against muons (WCD)

DarkSide-10

Background identification

Multiple S2 signal

time

Paolo Agnes

Background identification

Scintillator cocktail: PC +**10-50% TMB** + PPO (wls) (Trimethylborane, B(CH₃)₃. [¹⁰B] in natural B ~ 20%)

$${}^{10}\text{B} + n \to \begin{cases} {}^{7}\text{Li} (1015 \text{ keV}) + \alpha (1775 \text{ keV}) & (6.4\%) \\ {}^{7}\text{Li}^{*} + \alpha (1471 \text{ keV}), {}^{7}\text{Li}^{*} \to {}^{7}\text{Li} (839 \text{ keV}) + \gamma (478 \text{ keV}) & (93.6\%) \end{cases}$$

The DarkSide-50 layout

At Laboratori Nazionali del Gran Sasso (LNGS), Italy

Liquid argon TPC

36 cm x 18 cm radius **50 kg LAr (36.9 kg fiducial mass) 19 + 19 3'' PMTs**

Cold pre-amplifiers Uniform Electric Field (200 V/cm) ~ 1 cm Gas Pocket Extraction Electric Field (2.8 kV/cm) Reflectors and TPB coating

Liquid Scintillator Veto (LSV)

30 tons, 2 m radius Liquid Scintillator (1:1 TMB + PC) 110 PMTs (LY = 0.52 pe/keV)

Water Cherenkov Detector (WCD)

1 kt water, 5.5 m radius 80 PMTs

Operations and Stability

Data taking started Commissioning run end **50 days of AAr dataset** Filling with UAr **70 days of UAr dataset** 1 yr lifetime collected

Paolo Agnes

Oct 2013 June 2014 Jul 2014 to Sept 2014 Phys. Lett. B 743, 456 (2015) April 2015 April 2015 to Jul 2015 Phys. Rev. D 93, 081101(R) Jan 2017

Electron Lifetime:> 5 msMaximum drift time atnominal field:375 µs

Calibrations

CALIS (articulated arm for source insertion) arXiv: 1611.02750

Internal ^{83m}Kr (41.5 keV)

LY at null field: 8.1 ± 0.2 pe/keV LY at 200 V/cm: 7.3 ± 0.1 pe/keV

External

ER calibration: ⁵⁷Co, ¹³³Ba, ¹³⁷Cs NR calibration: AmBe (with γ's), AmC (no γ's)

f⁹⁰

G4DS, the DarkSide Simulation

Geant-4 based simulation of detectors geometry, TPC response

Tuning of the **optics** (no energy assumption) at the %level

Calibration of the **energy scale (S1 and S2)**

- Effective parameterization of recombination probability of ions (E)

Pulse Shape Discrimination

Simulation of the **vetoes**

Some results:

Depletion factor (1400±200) and discovery of ⁸⁵Kr contamination with spectral fit

Quenching factor for NR with AmBe

Paper in preparation, soon ready!

A background free search

Removed events with a **coincidence in the vetoes** (expected ~1). **Radial** and **S2/S1 cut NOT applied**.

DS50 Exclusion

AAr: Phys. Lett. B 743, 456 (2015) UAr: Phys. Rev. D 93, 081101(R) (2016)

Best limit to date obtained with a LAr target (50 + 70 days) combined exposure.
> 1 year lifetime statistics accumulated so far with UAr (blind analysis ongoing).

DarkSide-20k

Goals:

bg-free search with **exposure of 100 t.y** (possibly 200 t.y)

start taking data by 2021

Same detector concept:

Larger TPC (**20 t fiducial**)

Larger LSV (8m diameter)

Larger WT (14 m diameter)

Different readout system

14 m² SiPM array (grouped)

Same need for low-background

UAr procurement

URANIA (Colorado) goal: 100 kg/day

ARIA (>300 m distillation column for even larger detector) ense calibration and prototyping purification

Intense calibration and prototyping

DSProto: 1 m³ TPC to test SiPM

Neutron calibrations:

ARIS (pulsed neutron beam, single phase) **ReD** (dual-phase TPC, directionality)

Photodetectors and Simulation

Proposed layout in DS20k

grouped in 5x5 cm² tiles (~5k channels) readout currently being optimized:

single pe regime for S1 (timing) full charge integration for S2 (energy)

G4DS is tuned to reproduce **DS50 TPC response**

Requirements:

Low DCR (10⁻¹ Hz/mm²) 40% PDE (QE x Fill Factor) Dynamic Range > 50 pe Time resolution < 10 ns Power < 250 mW /tile

DarkSide-20k Projected Sensitivity

Simulation of several millions of events (ER and NR) to determine **the acceptance to WIMPs,** assuming NR + ER background < 0.1 events.

+ Nuclear recoil quenching from DS50

Optimization of PSD parameter for the best sensitivity.

Expected >200x10⁶ events (1400 depletion) from ³⁹Ar only in [0,50] keV. A simulation of the **full** statistics is ongoing.

1.6 CNNS events expected, likelihood approach in progress.

Paolo Agnes

The DS50 experiment obtained the **most sensitive limit on the WIMP-nucleon cross** section (bg-free) ever obtained with a liquid argon target.

A (**blind**) data taking is currently ongoing and the accumulated lifetime now exceeds **one year (>13 000 kg.day)**

The DS50 results demonstrated

the feasibility of a dual-phase LAr TPC

the exceptional rejection power guaranteed by the PSD

the **depletion factor** measured in UAr (**1400**) is large enough to build a >ton scale detector

Design studies for DS20k almost completed

technological challenges (SiPM - 400x TPC scaling - UAr procurement)

background level goal: < 0.1 evts in the full exposure

design exposure: 100 t.y

start with data taking by 2021

Backup

Backgrounds and Simulation

Background level goal: 0.1 evts in 100 t.y

Geant4 simulation of the DS20k geometry

(alpha,n) neutrons γ's from detector components Internal ER Cosmogenics

WIMP-like events defined by:

single scatter in FV 10 keV < Energy < 70 keV f90 compatible with NR

No Energy in Vetoes

		D 1 1
Background	Events in ROI	Background
Dackground	$[100 \mathrm{t} \mathrm{yr}]^{-1}$	$[100 \mathrm{t}\mathrm{yr}]^{-1}$
Internal β/γ 's	$1.8 imes 10^8$	0.06
Internal NRs	negligible	negligible
$e^{-}-\nu_{pp}$ scatters	$2.0 imes 10^4$	negligible
External β/γ 's	10^{7}	< 0.05
External NRs	$<\!\!154$	< 0.12
Cosmogenic β/γ 's	$3 imes 10^5$	$\ll 0.01$
Cosmogenic NRs	_	< 0.1
$\nu\text{-Induced NR}$	1.6	—

PRELIMINARY

Source	Neutrons produced in $5 \mathrm{yr}$ years	Fraction passing TPC cuts	Fraction passing LSV cuts	Surviving n background in 100 t yr
Teflon reflector panels Stainless steel cryostat Total	$<\!\!\!\!\begin{array}{c} <\!\!\!1717 \\ 981 \end{array}$	$\begin{array}{c} 0.015\\ 0.009\end{array}$	$0.0037 \\ 0.0029$	$< 0.095 \\ 0.026 \pm 0.002 \\ < 0.12$

⁸⁵Kr

Unexpected contamination (no specific purification procedure put in place). Two independent measurements: MC spectra fit and beta+gamma coincidence (0.04% BR)

S1 and optics calibration in G4DS

WIMPs acceptance in DS50

Cut	Acceptance	
CUT 6: prompt LSV	0.95	204
CUT 7: delayed LSV and WCD	0.94	+
CUT 8: single scatters	$0.95^{+0.00}_{-0.01}$	
CUT 9: first pulse time	$1.00^{+0.00}_{-0.01}$	
CUT 10: no S1 saturation	1.00	
CUT 11: max S1 fraction per PMT	0.99	
CUT 12: S2 pulse shape	1.00	
CUT 13: mimum S2	$0.99^{+0.01}_{-0.04}$	
CUT 14: S1 range	1.00	
Total	$0.82\substack{+0.01 \\ -0.04}$	

Tab. 2.4 Cuts acceptance for the AAr data-set. Errors are systematics, since the statistical error is negligible.

The UAr dataset

