Entropy production under non-Markovian dynamical maps

Stefano Marcantoni

Dipartimento di Fisica, Università degli Studi di Trieste, Italy stefano.marcantoni@ts.infn.it

Introduction

Consider an open quantum system undergoing a **non-Markovian** timeevolution such that the unique asymptotic state is a Gibbs state ϱ_{β} . Let us construct the internal **entropy production** as in the Markovian case [1, 2]

$$\boldsymbol{\sigma_t} := \partial_t S_t - \beta \partial_t Q_t, \tag{1}$$

where the heat flux and the entropy variation are defined as follows

$$\partial_t S_t := -\text{Tr} \left[\partial_t \varrho_t \log \varrho_t \right], \tag{2}$$

$$\partial_t Q_t := \text{Tr} \left[\partial_t \varrho_t H \right]. \tag{3}$$

QUESTIONS:

- 1. Is the inequality $\sigma_t \ge 0$ true under non-Markovian dynamics?
- 2. Is $\sigma_t \geq 0$ a proper statement of the second law of thermodynamics in a non-Markovian scenario?

Non-Markovian dynamics

There are many different approaches to non-Markovianity in the quantum domain. In the following we adopt that one based on divisibility of the dynamical map.

A one-parameter family of dynamical maps Λ_t ,

$$\Lambda_t = V_{t,s} \Lambda_s, \qquad t \ge s \ge 0, \tag{4}$$

is called

- (i) **CP-divisible** if $V_{t,s}$ is completely positive (CP) for all t, s,
- (ii) **P-divisible** if $V_{t,s}$ is positive (P) for all t,s.

Following the classification given in Ref. [3] one can say

- Λ_t non-Markovian := Λ_t non CP-divisible
- Λ_t essentially non-Markovian := Λ_t non P-divisible

Qubit in a thermal bath

Consider the following master equation describing the evolution of a qubit interacting with a thermal bath of harmonic oscillators:

$$\partial_t \varrho_t = -i \left[\frac{\omega}{2} \sigma_z, \varrho_t \right] + \frac{\gamma_t}{2} (n+1) \left(2\sigma_- \varrho_t \sigma_+ - \{ \sigma_+ \sigma_-, \varrho_t \} \right) + \frac{\gamma_t}{2} n \left(2\sigma_+ \varrho_t \sigma_- - \{ \sigma_- \sigma_+, \varrho_t \} \right), \tag{5}$$

where $n = (e^{\beta\omega} - 1)^{-1}$, γ_t is a time-dependent damping rate, and σ_a $(a \in \{x, y, z\})$ are the Pauli matrices (with $\sigma_{\pm} = \sigma_x \pm i\sigma_y$).

- 1. This dynamics is both P-divisible and CP-divisible iff $\gamma_t \geq 0 \ \forall t$.
- 2. The internal entropy production (1) becomes negative when $\gamma_t < 0$.

One can find $\sigma_t < 0$ with a non-Markovian dynamics.

References

- [1] R. Alicki, J. Phys. A: Math. Gen. **12**, 103 (1979).
- [2] H. Spohn and J. L. Lebowitz, Adv. Chem. Phys. 38, 109 (1979).
- [3] D. Chruściński and S. Maniscalco, Phys. Rev. Lett. 112, 120404 (2014).
- [4] M. Esposito, K. Lindenberg, and C. Van den Broeck, New J. Phys. 12, 013013 (2010).
- [5] S. Alipour, F. Benatti, F. Bakhshinezhad, M. Afsary, S. Marcantoni, and A. T. Rezakhani, Sci. Rep. 6, 35568 (2016).
- [6] S. Alipour, F. Benatti, R. Floreanini, S. Marcantoni, and A. T. Rezakhani, in preparation

General form of the second law

TWO POSSIBLE CONCLUSIONS:

- (i) The second law of thermodynamics can be violated by physically legitimate dynamical maps,
- (ii) A more careful formulation of the second law should be given.

WE CHOOSE (ii): One can prove a very general statement considering explicitly both system S and bath B in the entropy balance [4, 5], namely

$$\Delta S_S(t) + \Delta S_B(t) \ge 0. \tag{6}$$

This inequality is true provided that the **initial state** of the composite system SB is **factorized**, without particular restrictions on the reduced dynamics of both S and B.

Heuristically, one can think of obtaining $\sigma_t \geq 0$ as a particular case of relation (6) under three assumptions [6]

- $\partial_t S_S(t) + \partial_t S_B(t) \ge 0$ (differential form)
- $\partial_t S_B(t) = \beta \partial_t Q_B(t)$
- $\partial_t Q_B(t) = -\partial_t Q_S(t)$

These assumptions, though reasonable, can be violated if the system and the bath are strongly coupled and correlated.

Thus one should not consider $\sigma_t \geq 0$ as an a priori valid formulation of the second law.

Qubit dephasing

The three assumptions in the previous section can be violated, as we show in the following example. Consider a total Hamiltonian given by $H_{\text{tot}} = H_S + H_B + H_{\text{int}}$ with

$$H_S = \frac{\omega_0}{2}\sigma_z, \quad H_B = \sum_{k=1}^{\infty} \omega_k \mathbf{a}_k^{\dagger} \mathbf{a}_k , \quad H_{\mathrm{int}} = \lambda \sigma_z \otimes \sum_{k=1}^{\infty} \left(f_k^* \mathbf{a}_k + f_k \mathbf{a}_k^{\dagger} \right),$$

where a_k is the bosonic annihilation operator of mode k, satisfying the canonical commutation relations $[a_k, a_l^{\dagger}] = \delta_{kl}$, and the complex parameters f_k are such that $\sum_{k=1}^{\infty} |f_k|^2 < \infty$.

- Initial state: $\varrho_{SB}(0) = \varrho_{S}(0) \otimes \varrho_{B}^{(\beta)}$, where $\varrho_{S}(0)$ is the initial state of the qubit and $\varrho_{B}^{(\beta)}$ is the Gibbs state of the thermal bath at inverse temperature β
- The **dynamics** of the total system can be **analytically solved** (see Ref. [5] for the details) and by partial tracing one can obtain the reduced density matrices of the two subsystems at any time $\varrho_S(t)$ and $\varrho_B(t)$.
- ullet Thermodynamic quantities computed for both S and B

RESULTS:

- \times $\partial_t S_S(t) + \partial_t S_B(t) \ngeq 0$ depending on the spectral density
- \checkmark $\partial_t S_B(t) = \beta \partial_t Q_B(t)$ up to leading order in λ
- \times $\partial_t Q_B(t) \neq -\partial_t Q_S(t)$ due to the correlations

Conclusions

- The internal entropy production defined as in the Markovian case can be negative for non-Markovian time-evolutions
- A more general statement of the second law of thermodynamics can be given considering both system and bath explicitly in the entropy balance
- The usual formulation ($\sigma_t \geq 0$) is recovered under three assumptions that can be violated in physically relevant models, as shown with an explicit example