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Motivation

Motivation

Combine a powerful technique with the special properties of 1+1
dimensions.

Improve perturbative computations in integrable non-linear sigma
models.

Understand the connection between cut constructibility and
integrability.

Perform non-trivial checks of quantum integrability for classically
integrable string backgrounds.

Compute overall scalar functions for symmetry-determined S-matrices.

Moving towards the perturbative computation of off-shell quantities.
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Method

The method

Standard unitarity in 4d [Bern, Dixon, Dunbar, Kosower, 1994]

p1
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p3

p4

A(0) A(0)A|cut = +

p1

p2

p3

p4

A(1) A(0) +

p1

p2

p3

p4

A(0) A(0) + · · ·

Glue together the two amplitudes and uplift the integral with

iπδ+(p2 −m2)→ 1
p2−m2−iε
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Generalized unitarity in 4d [Bern, Dixon, Kosower, 1998; Britto, Cachazo, Feng, 2004]

AL =
∑
i

ci I(L)
i

Known basis of L-loop scalar integrals

For L=1 ⇒
T

T

T
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= cbox
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Method

The method

Standard unitarity in 2d [LB, Forini, Hoare, 2013]

p1

p2

p1

p2

A(0) A(0)A|cut = +

p1

p2

p1

p2

A(1) A(0) +

p1

p2

p1

p2

A(0) A(0) + · · ·

Glue together the two amplitudes and uplift the integral with

iπδ+(p2 −m2)→ 1
p2−m2−iε

Generalized unitarity in 2d [Engelund, McKeown, Roiban, 2013]

AL =
∑
i

ci I(L)
i

Known basis of L-loop scalar integrals

For L=1 ⇒ T T = cbub
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Method

s-channel t-channel u-channel
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Features

Yang-Baxter equation

S S

S
=

SS

S

Expanding the S-matrix perturbatively

S = + T + 1L + · · ·

Tree-level YB
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Features

The result

T (1) =
θ

2π
(T u T − T s T ) +

i

2
T s T +

1

16π
(

1

m2
T̃ t
← T +

1

m′2
T t
→ T̃ )

Satisfies the inhomogeneous YB
equation for any TL S-matrix
(proven).

Gives the one-loop rational terms up
to an overall phase (observed).

In all the cases we considered this
coefficient is ∝ 1, as required by
integrability.

It is a trivial solution of the
homogeneous part of YB.

For the full result to satisfy YB
equation it should be a solution to
the homogeneous part of YB.

It is again ∝ 1 in all the cases but
one: AdS3 × S3 × S3 × S1. Why?

Lorenzo Bianchi (HU) Unitarity techniques in 2D May 28th , 2014 7 / 11



Features

The result

T (1) =
θ

2π
(T u T − T s T ) +

i

2
T s T +

1

16π
(

1

m2
T̃ t
← T +

1

m′2
T t
→ T̃ )

Satisfies the inhomogeneous YB
equation for any TL S-matrix
(proven).

Gives the one-loop rational terms up
to an overall phase (observed).

In all the cases we considered this
coefficient is ∝ 1, as required by
integrability.

It is a trivial solution of the
homogeneous part of YB.

For the full result to satisfy YB
equation it should be a solution to
the homogeneous part of YB.

It is again ∝ 1 in all the cases but
one: AdS3 × S3 × S3 × S1. Why?

Lorenzo Bianchi (HU) Unitarity techniques in 2D May 28th , 2014 7 / 11



Features

The result

T (1) =
θ

2π
(T u T − T s T ) +

i

2
T s T +

1

16π
(

1

m2
T̃ t
← T +

1

m′2
T t
→ T̃ )

Satisfies the inhomogeneous YB
equation for any TL S-matrix
(proven).

Gives the one-loop rational terms up
to an overall phase (observed).

In all the cases we considered this
coefficient is ∝ 1, as required by
integrability.

It is a trivial solution of the
homogeneous part of YB.

For the full result to satisfy YB
equation it should be a solution to
the homogeneous part of YB.

It is again ∝ 1 in all the cases but
one: AdS3 × S3 × S3 × S1. Why?

Lorenzo Bianchi (HU) Unitarity techniques in 2D May 28th , 2014 7 / 11



Features

The result

T (1) =
θ

2π
(T u T − T s T ) +

i

2
T s T +

1

16π
(

1

m2
T̃ t
← T +

1

m′2
T t
→ T̃ )

Satisfies the inhomogeneous YB
equation for any TL S-matrix
(proven).

Gives the one-loop rational terms up
to an overall phase (observed).

In all the cases we considered this
coefficient is ∝ 1, as required by
integrability.

It is a trivial solution of the
homogeneous part of YB.

For the full result to satisfy YB
equation it should be a solution to
the homogeneous part of YB.

It is again ∝ 1 in all the cases but
one: AdS3 × S3 × S3 × S1. Why?

Lorenzo Bianchi (HU) Unitarity techniques in 2D May 28th , 2014 7 / 11



Features

External leg correction

“Unwanted” contribution

1
4π

(
p2

m + p′2

m′

)
T (0) .

p and p′ are the spatial component of the ingoing (and outgoing)
two-momenta.
Similar to an external leg correction for non-relativistic theory.
The only theory with this contribution has three-point interactions

T with = i(1+h−1Σ1(p))
p2−m2−h−1Σ0(p)

+ . . .

p pl1

l2
F (0) F (0) = Σ0(p) + Σ1(p)(p2 −m2) +O((p2 −m2)2)
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Applications

Applications

The technique has been applied to several two-dimensional integrable models:

Bosonic relativistic models (generalized Sine-Gordon); [Hollowood, Miramontes, Park, 1994;

Bakas, Park, Shin, 1995]

Fermionic relativistic models (Pohlmeyer reduced theories for GS string in
AdS5 × S5 and truncations) ; [Grigoriev, Tseytlin, 2007; Mikhailov, Schafer-Nameki, 2007]

Non-relativistic models (worldsheet scattering for non-linear sigma model in
AdS5 × S5 and AdS3 × S3 ×M4).[Metsaev, Tseytlin, 1998; Pesando, 1998; Rahmfeld, Rajaraman, 1998]

Non-linear sigma model

−→

R× S1 −→
PSU(2, 2|4)

SO(4, 1)× SO(5)
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Applications

Worldsheet scattering in AdS5 × S5

Lagrangian of the non-linear sigma model [Metsaev, Tseytlin, 1998]

L =

√
λ

4π

∫
d2σ
√
−h habGMN(X ) ∂aX

M∂bX
N + fermions

Uniform light-cone gauge fixing [Frolov, Plefka, Zamaklar 2006]

Hws =

∫
dσHws = −

∫
dσP− ≡ E − J

Decompactification limit to define asymptotic states

−P+

2
< σ <

P+

2
, P+ →∞

Perturbative quantization for λ→∞

WS
scattering

Magnons
scattering

Computed

perturbatively

Fixed by

integrability
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Conclusion and outlook

Conclusion and outlook

Conclusion

We developed a technique to perform perturbative computations in 1+1
dimensions at one loop.

The one-loop S-matrix can be expressed as a combination of products of TL
S-matrices.

It surely reproduces the logarithmic dependence (checked also at two loops).

In all the integrable theories we studied it reproduces also the rational terms.

Future directions

We found hints of a relation with YB equation which deserves further analysis.

Rational terms beyond one loop.

Study of off-shell objects via unitarity.
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