Unitarity techniques in 2D

based on 1304.1798 with B. Hoare, V. Forini, 1405.**** and work in progress

Lorenzo Bianchi

Humboldt Universität zu Berlin
 Emmy Noether Research Group "Gauge fields from strings"

May $28^{\text {th }}, 2014$

Outline

(1) Motivation

(2) Method

(3) Features
(4) Applications
(5) Conclusion and outlook

Motivation

- Combine a powerful technique with the special properties of $1+1$ dimensions.
- Improve perturbative computations in integrable non-linear sigma models.
- Understand the connection between cut constructibility and integrability.
- Perform non-trivial checks of quantum integrability for classically integrable string backgrounds.
- Compute overall scalar functions for symmetry-determined S-matrices.
- Moving towards the perturbative computation of off-shell quantities.

The method

Standard unitarity in 4d [Bern, Dixon, Dunbar, Kosower, 1994]

Glue together the two amplitudes and uplift the integral with

$$
i \pi \delta^{+}\left(p^{2}-m^{2}\right) \rightarrow \frac{1}{p^{2}-m^{2}-i \epsilon}
$$

The method

Standard unitarity in 4d [Bern, Dixon, Dunbar, Kosower, 1994]

Glue together the two amplitudes and uplift the integral with

$$
i \pi \delta^{+}\left(p^{2}-m^{2}\right) \rightarrow \frac{1}{p^{2}-m^{2}-i \epsilon}
$$

Generalized unitarity in 4d [Bern, Dixon, Kosower, 1998; Britto, Cachazo, Feng, 2004]

$$
\mathcal{A}^{L}=\sum_{i} c_{i} \mathcal{I}_{i}^{(L)} \longrightarrow \text { Known basis of L-loop scalar integrals }
$$

The method

Standard unitarity in 4d [Bern, Dixon, Dunbar, Kosower, 1994]

Glue together the two amplitudes and uplift the integral with

$$
i \pi \delta^{+}\left(p^{2}-m^{2}\right) \rightarrow \frac{1}{p^{2}-m^{2}-i \epsilon}
$$

Generalized unitarity in 4d [Bern, Dixon, Kosower, 1998; Britto, Cachazo, Feng, 2004]

For $\mathrm{L}=1$

$$
\Rightarrow
$$

The method

Standard unitarity in 2d [LB, Forini, Hoare, 2013]

Glue together the two amplitudes and uplift the integral with

$$
i \pi \delta^{+}\left(p^{2}-m^{2}\right) \rightarrow \frac{1}{p^{2}-m^{2}-i \epsilon}
$$

Generalized unitarity in 2d [Engelund, McKeown, Roiban, 2013]

$$
\mathcal{A}^{L}=\sum_{i} c_{i} \mathcal{I}_{i}^{(L)} \longrightarrow \text { Known basis of L-loop scalar integrals }
$$

For $L=1$

s-channel

$T_{M N}^{R S}\left(p, p^{\prime}\right) T_{R S}^{P Q}\left(p, p^{\prime}\right)$
t-channel
$\frac{1}{2} T_{M R}^{S P}(p, p) T_{S N}^{R Q}\left(p, p^{\prime}\right)$
$+\frac{1}{2} T_{M R}^{P S}\left(p, p^{\prime}\right) T_{S N}^{Q R}\left(p^{\prime}, p^{\prime}\right)$

$T_{M R}^{S Q}\left(p, p^{\prime}\right) T_{S N}^{P R}\left(p, p^{\prime}\right)$

$T_{M N}^{R S}\left(p, p^{\prime}\right) T_{R S}^{P Q}\left(p, p^{\prime}\right)$

$\frac{1}{2} T_{M R}^{S P}(p, p) T_{S N}^{R Q}\left(p, p^{\prime}\right)$
$+\frac{1}{2} T_{M R}^{P S}\left(p, p^{\prime}\right) T_{S N}^{Q R}\left(p^{\prime}, p^{\prime}\right)$

The result

$$
T^{(1)}=\frac{\theta}{2 \pi}(T(4) T-T ® T)+\frac{i}{2} T ® T+\frac{1}{16 \pi}\left(\frac{1}{m^{2}} \widetilde{T} \underset{\leftarrow}{\oplus} T+\frac{1}{m^{\prime 2}} T \underset{\rightarrow}{\oplus} \widetilde{T}\right)
$$

Yang-Baxter equation

Yang-Baxter equation

Expanding the S-matrix perturbatively

$$
S=\square+(1 L+\cdots
$$

Yang-Baxter equation

Expanding the S-matrix perturbatively

Tree-level YB

Yang-Baxter equation

Expanding the S-matrix perturbatively

Tree-level YB

$$
a_{\alpha}+a_{\alpha}+a_{\alpha}=a_{\alpha}+\mathscr{a}_{\alpha}+\mathscr{a}_{\alpha}
$$

One loop YB

Yang-Baxter equation

Expanding the S-matrix perturbatively

Tree-level YB

One loop YB - Homogeneous part

The result

$$
T^{(1)}=\frac{\theta}{2 \pi}(T(4) T-T \text { © } T)+\frac{i}{2} T \text { (s) } T+\frac{1}{16 \pi}\left(\frac{1}{m^{2}} \widetilde{T} \underset{\leftarrow}{\oplus} T+\frac{1}{m^{\prime 2}} T \underset{\rightarrow}{\oplus} \widetilde{T}\right)
$$

The result

$$
T^{(1)}=\frac{\theta}{2 \pi}(T(4) T-T \text { © } T)+\frac{i}{2} T \text { © } T+\frac{1}{16 \pi}\left(\frac{1}{m^{2}} \widetilde{T} \underset{\leftarrow}{\oplus} T+\frac{1}{m^{\prime 2}} T \underset{\rightarrow}{\oplus} \widetilde{T}\right)
$$

- Satisfies the inhomogeneous YB equation for any TL S-matrix (proven).
- Gives the one-loop rational terms up to an overall phase (observed).

The result

$$
T^{(1)}=\frac{\theta}{2 \pi}(T(4) T-T \text { ©s } T)+\frac{i}{2} T \text { (s) } T+\frac{1}{16 \pi}\left(\frac{1}{m^{2}} \widetilde{T} \underset{\leftarrow}{\oplus} T+\frac{1}{m^{\prime 2}} T \underset{\rightarrow}{\oplus} \widetilde{T}\right)
$$

- Satisfies the inhomogeneous YB equation for any TL S-matrix (proven).
- Gives the one-loop rational terms up to an overall phase (observed).
- In all the cases we considered this coefficient is $\propto \mathbb{1}$, as required by integrability.
- It is a trivial solution of the homogeneous part of YB.

The result

$$
T^{(1)}=\frac{\theta}{2 \pi}(T(4) T-T \text { © } T)+\frac{i}{2} T \text { © } T+\frac{1}{16 \pi}\left(\frac{1}{m^{2}} \widetilde{T} \underset{\leftarrow}{\oplus} T+\frac{1}{m^{\prime 2}} T \underset{\rightarrow}{\oplus} \widetilde{T}\right)
$$

- Satisfies the inhomogeneous YB equation for any TL S-matrix (proven).
- Gives the one-loop rational terms up to an overall phase (observed).
- In all the cases we considered this coefficient is $\propto \mathbb{1}$, as required by integrability.
- It is a trivial solution of the homogeneous part of YB.
- For the full result to satisfy YB equation it should be a solution to the homogeneous part of YB.
- It is again $\propto \mathbb{1}$ in all the cases but one: $\operatorname{AdS}_{3} \times S^{3} \times S^{3} \times S^{1}$. Why?

External leg correction

"Unwanted" contribution

$$
\frac{1}{4 \pi}\left(\frac{p^{2}}{m}+\frac{p^{\prime 2}}{m^{\prime}}\right) T^{(0)}
$$

External leg correction

"Unwanted" contribution

$$
\frac{1}{4 \pi}\left(\frac{p^{2}}{m}+\frac{p^{\prime 2}}{m^{\prime}}\right) T^{(0)}
$$

- p and p^{\prime} are the spatial component of the ingoing (and outgoing) two-momenta.
- Similar to an external leg correction for non-relativistic theory.
- The only theory with this contribution has three-point interactions

External leg correction

"Unwanted" contribution

$$
\frac{1}{4 \pi}\left(\frac{p^{2}}{m}+\frac{p^{\prime 2}}{m^{\prime}}\right) T^{(0)}
$$

- p and p^{\prime} are the spatial component of the ingoing (and outgoing) two-momenta.
- Similar to an external leg correction for non-relativistic theory.
- The only theory with this contribution has three-point interactions

External leg correction

"Unwanted" contribution

$$
\frac{1}{4 \pi}\left(\frac{p^{2}}{m}+\frac{p^{\prime 2}}{m^{\prime}}\right) T^{(0)}
$$

- p and p^{\prime} are the spatial component of the ingoing (and outgoing) two-momenta.
- Similar to an external leg correction for non-relativistic theory.
- The only theory with this contribution has three-point interactions

Applications

The technique has been applied to several two-dimensional integrable models:

- Bosonic relativistic models (generalized Sine-Gordon); [Hollowood, Miramontes, Park, 1994; Bakas, Park, Shin, 1995]
- Fermionic relativistic models (Pohlmeyer reduced theories for GS string in $A d S_{5} \times S_{5}$ and truncations) ; [Grigoriev, Tseytlin, 2007; Mikhailov, Schafer-Nameki, 2007]
- Non-relativistic models (worldsheet scattering for non-linear sigma model in $A d S_{5} \times S^{5}$ and $A d S_{3} \times S^{3} \times M^{4}$).[Metsaev, Tseytlin, 1998; Pesando, 1998; Rahmfeld, Rajaraman, 1998]

Applications

The technique has been applied to several two-dimensional integrable models:

- Bosonic relativistic models (generalized Sine-Gordon); [Hollowood, Miramontes, Park, 1994; Bakas, Park, Shin, 1995]
- Fermionic relativistic models (Pohlmeyer reduced theories for GS string in $A d S_{5} \times S_{5}$ and truncations) ; [Grigoriev, Tseytlin, 2007; Mikhailov, Schafer-Nameki, 2007]
- Non-relativistic models (worldsheet scattering for non-linear sigma model in $A d S_{5} \times S^{5}$ and $A d S_{3} \times S^{3} \times M^{4}$).[Metsaev, Tseytlin, 1998; Pesando, 1998; Rahmfeld, Rajaraman, 1998]

Non-linear sigma model

Worldsheet scattering in $A d S_{5} \times S^{5}$

Lagrangian of the non-linear sigma model [Metsaev, Tseytin, 1998]

$$
\mathcal{L}=\frac{\sqrt{\lambda}}{4 \pi} \int d^{2} \sigma \sqrt{-h} h^{a b} G_{M N}(X) \partial_{a} X^{M} \partial_{b} X^{N}+\text { fermions }
$$

Worldsheet scattering in $A d S_{5} \times S^{5}$

Lagrangian of the non-linear sigma model [Metsaev, Tseytin, 1998]

$$
\mathcal{L}=\frac{\sqrt{\lambda}}{4 \pi} \int d^{2} \sigma \sqrt{-h} h^{a b} G_{M N}(X) \partial_{a} X^{M} \partial_{b} X^{N}+\text { fermions }
$$

- Uniform light-cone gauge fixing [Frolov, Plefka, Zamaklar 2006]

$$
H_{w s}=\int d \sigma \mathcal{H}_{w s}=-\int d \sigma P_{-} \equiv E-J
$$

- Decompactification limit to define asymptotic states

$$
-\frac{P_{+}}{2}<\sigma<\frac{P_{+}}{2} \quad, \quad P_{+} \rightarrow \infty
$$

- Perturbative quantization for $\lambda \rightarrow \infty$

Worldsheet scattering in $\operatorname{AdS}_{5} \times S^{5}$

Lagrangian of the non-linear sigma model [Metsaev, Tseytin, 1998]

$$
\mathcal{L}=\frac{\sqrt{\lambda}}{4 \pi} \int d^{2} \sigma \sqrt{-h} h^{a b} G_{M N}(X) \partial_{a} X^{M} \partial_{b} X^{N}+\text { fermions }
$$

- Uniform light-cone gauge fixing [Frolov, Plefka, Zamaklar 2006]

$$
H_{w s}=\int d \sigma \mathcal{H}_{w s}=-\int d \sigma P_{-} \equiv E-J
$$

- Decompactification limit to define asymptotic states

$$
-\frac{P_{+}}{2}<\sigma<\frac{P_{+}}{2} \quad, \quad P_{+} \rightarrow \infty
$$

- Perturbative quantization for $\lambda \rightarrow \infty$

Conclusion and outlook

Conclusion

- We developed a technique to perform perturbative computations in $1+1$ dimensions at one loop.
- The one-loop S-matrix can be expressed as a combination of products of TL S-matrices.
- It surely reproduces the logarithmic dependence (checked also at two loops).
- In all the integrable theories we studied it reproduces also the rational terms.

Conclusion and outlook

Conclusion

- We developed a technique to perform perturbative computations in $1+1$ dimensions at one loop.
- The one-loop S-matrix can be expressed as a combination of products of TL S-matrices.
- It surely reproduces the logarithmic dependence (checked also at two loops).
- In all the integrable theories we studied it reproduces also the rational terms.

Future directions

- We found hints of a relation with YB equation which deserves further analysis.
- Rational terms beyond one loop.
- Study of off-shell objects via unitarity.

