Reaction Theory

Stefan Typel

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt Nuclear Astrophysics Virtual Institute

Re-writing Nuclear Physics textbooks: 30 years of radioactive ion-beam physics

Pisa, Italy July 20 – July 24, 2015

Outline

Introduction

notation, interactions and reactions, scales, kinematics, conservation laws

General Reaction Theory

- o cross sections and theoretical methods
- o stationary scattering theory
- o partial-wave expansion
- o operator formalism

Applications

- o astrophysics and indirect methods
- o transfer reactions

Summary

Aim of Lecture

- introduction to basic methods in reaction theory with particularities for exotic nuclei
- no need to follow every step in derivations, only for completeness
- not a review of recent results or details of specific approaches/individual cases

Reaction Theory - 1 Stefan Typel

Introduction

General Remarks

definition

reactions = all processes that occur if two (or more) particles collide within an interaction zone (depends on range of interaction)

types of interactions

- electromagnetic interaction (long range)
- strong interaction (medium range)
- weak interaction (short range)
- ⇒ possible competition or interference

notation

- \circ general form: $X_1 + X_2 \rightarrow X_3 + X_4 + \ldots + X_n$
- o alternatively:

 $X_2(X_1, X_4, \dots, X_n)X_3$ with projectile X_1 , target X_2 , and ejectiles X_4, \dots, X_n

inverse kinematics, e.g. if X_2 is unstable nucleus

 $X_1(X_2, X_4, \dots, X_n)X_3$ with projectile X_2 , target X_1 , and ejectiles X_4, \dots, X_n

Reaction Theory - 2 Stefan Typel

Types of Reactions

• reactions with two particles in the initial state

- \circ elastic scattering $a + A \rightarrow A + a$
- \circ inelastic scattering $a + A \rightarrow A^* + a'$
- \circ rearrangement reactions $a + A \rightarrow B + b$ with $b \neq a$, $B \neq A$
- \circ radiative capture reactions $\ a+A\to C+\gamma$ with photon in final state
- \circ many-body reactions $a+A \to B+b_1+b_2+\dots$

• example:

$$p + {}^{7}_{3}\text{Li} + p$$

$${}^{7}_{3}\text{Li}^* + p$$

$${}^{7}_{4}\text{Be} + n$$

$$\alpha + \alpha$$

$${}^{8}_{4}\text{Be} + \gamma \quad (\rightarrow \alpha + \alpha + \gamma)$$

$$\alpha + t + p$$

Reaction Theory - 3 Stefan Typel

Length and Time Scales

- ullet radius of stable nucleus $R=r_0A^{1/3}$ with $r_0pprox 1.25$ fm, mass number A
- ullet corresponding area of circle $S=\pi R^2$
- ullet time for light to traverse nucleus t=2R/c
- \bullet example $^{208} \text{Pb}$: $R \approx 7.4 \text{ fm, } S \approx 172 \text{ fm}^2 = 1.72 \text{ b, } t \approx 14.8 \text{ fm}/c = 4.9 \cdot 10^{-23} \text{ s}$
- unit for area in reaction theory: barn $(1 \text{ b} = 10^{-28} \text{ m}^2, 1 \text{ fm}^2 = 10 \text{ mb})$
- time scales for reactions:
 - \circ fast, $t \approx 10^{-22}$ s: direct reactions (few nucleons involved, one-step processes)
 - \circ intermediate, $t > 10^{-22}$ s: multi-step reactions (complicated)
 - \circ slow, $t\gg 10^{-22}$ s: compound nucleus reactions (many nucleons involved, collective excitations, no memory of initial state, statistical features)

Reaction Theory - 4 Stefan Typel

Energy Scales and Kinematics

typical energies

- \circ nuclear structure: binding and excitation energies \Rightarrow a few MeV
- \circ potentials: Coulomb barrier $\Rightarrow E_C = \frac{Z_a Z_A e^2}{R_C}$ $R_C \approx R_a + R_A$ $e^2 = 1.44$ MeV fm
- o reactions: very large range of energies, e.g.
 - thermal neutrons $\Rightarrow \approx 25 \text{ meV}$
 - astrophysical reactions \Rightarrow a few 10 or 100 keV
 - direct nucleon transfer reactions \Rightarrow a few MeV per nucleon
 - Coulomb excitation reactions \Rightarrow a few 10 MeV or 100 MeV per nucleon
 - relativistic heavy-ion collisions \Rightarrow a few GeV or TeV per nucleon

• Q value

 $Q = (m_a + m_A - m_b - m_B)c^2$ for reaction A(a, b)B

- Q > 0 exothermic reaction (release of kinetic energy due to larger binding)
- Q = 0 elastic reaction
- $\circ Q < 0$ endothermic reaction (reaction not possible below threshold)

Reaction Theory - 5 Stefan Typel

Conservation Laws

reaction A(a,b)B

conservation of energy

$$E(a+A) = T_a + T_A + (m_a + m_A)c^2 = T_b + T_B + (m_b + m_B)c^2 = E(b+B)$$
 with kinetic energies T_a , T_A , T_b , T_B

conservation of momentum

$$\vec{P}(a+A) = \vec{p}_a + \vec{p}_A = \vec{p}_b + \vec{p}_B = \vec{P}(b+B)$$

conservation of total angular momentum

$$\vec{J}(a+A) = \vec{J}_a + \vec{J}_A + \vec{J}_{aA} = \vec{J}_b + \vec{J}_B + \vec{J}_{bB} = \vec{J}(b+B)$$

conservation of parity

$$P(a+A) = P_a \cdot P_A \cdot (-1)^{l_{aA}} = P_b \cdot P_B \cdot (-1)^{l_{bB}} = P(b+B)$$

• conservation of isospin

$$\vec{T}(a+A) = \vec{T}_a + \vec{T}_A = \vec{T}_b + \vec{T}_B = \vec{T}(b+B)$$

conservation of charge, baryon number and lepton number

Reaction Theory - 6 Stefan Typel

General Reaction Theory

Theoretical Approaches

• large variety of reactions

- numerous theoretical approaches
- here only a selection, mainly for direct reactions
- o many topics not covered: e.g. compound nucleus reactions, heavy-ion collisions

• theoretical description

- o classical methods
- semiclassical methods
- quantal methods
- ⇒ observables: cross sections

general conditions in the following

- nonrelativistic kinematics
- o no explicit consideration of antisymmetrization
- no weak interaction processes
- o spins of particles mostly neglected

Reaction Theory - 7 Stefan Typel

Definition of Cross Sections I

quantifying the strength of reactions

- ullet uniform beam of particles in z-direction hitting a thick target
 - \Rightarrow reduction of current J due to reactions:

$$\frac{dJ}{dz} = -\sigma J(z)\rho \implies J(z) = J(0) \exp(-\sigma \rho z)$$

- \circ proportial to current J(z) and density of target nuclei ho
- \circ proportionality constant = (interaction) cross section σ
- \circ dimensions: $[J]=L^{-2}T^{-1}$, $[\rho]=L^{-3}$, $[\sigma]=L^2$ with length L and time T

- ullet cross section σ depends on energy E of beam \Rightarrow excitation function $\sigma(E)$
- ullet more detailed information on reaction with dependence on scattering angle heta
 - \Rightarrow differential cross section $\frac{d\sigma}{d\Omega}$

Definition of Cross Sections II

differential cross section

- initial state: uniform beam of particles in z direction with current J_i
- scattering on a single target nucleus, detection of scattered particles at distance r from target in area $dS = r^2 d\Omega$ at scattering angle θ

$$\Rightarrow d\sigma_{fi} = \frac{J_f dS}{J_i} \quad \text{or} \quad \frac{d\sigma_{fi}}{d\Omega} = \frac{J_f r^2}{J_i}$$

with deflection function $\theta(b)$ depending on impact parameter b assuming azimuthal symmetry (ϕ independence) of scattering

Classical Description of Scattering

determine trajectories of particles

- solve Newtonian equations of motion $m_i \ddot{r}_i = \vec{F}_i$ (or use conservation laws for energy, momentum, angular momentum) with given initial conditions (position, velocity) \Rightarrow ordinary time-dependent differential equations
- ullet example: elastic Coulomb scattering of particle a with energy E and impact parameter b on target A

$$\vec{F}_a = \frac{Z_a Z_A e^2}{r^2} \frac{\vec{r}}{r}$$

⇒ deflection function

$$\theta(b) = 2 \operatorname{arccot}\left(\frac{2bE}{Z_a Z_A e^2}\right)$$

⇒ Rutherford cross section

$$\frac{d\sigma_R}{d\Omega} = \left(\frac{Z_a Z_A e^2}{4E}\right)^2 \frac{1}{\sin^4(\frac{\theta}{2})}$$

Semiclassical Description

combination of classical and quantal methods

ullet example: Coulomb excitation of nucleus a from ground state $|i\rangle$ to excited state $|f\rangle$ with excitation energy $E=\hbar\omega$ in time-dependent Coulomb potential

$$V(\vec{x},t) = \frac{Z_a Z_A e^2}{|\vec{r}(t) + \vec{x}|}$$
 of target nucleus A

o excitation cross section

$$\frac{d\sigma_{fi}}{d\Omega} = \frac{d\sigma_R}{d\Omega} \times P_{fi}$$

- \circ Rutherford cross section $\frac{d\sigma_R}{d\Omega}$
- \circ excitation probability $P_{fi} = |a_{fi}|^2$ in first order time-dependent perturbation theory with amplitude

$$a_{fi} = \frac{1}{i\hbar} \int_{-\infty}^{\infty} dt \ e^{-i\omega t} \langle f|V(\vec{x},t)|i\rangle$$

- o application to exotic nuclei:
 - ⇒ excitation to continuum states/breakup

Quantal Description

determine scattering wavefunction

- solve Schrödinger equation with given boundary conditions
 - \circ time-dependent $i\hbar \frac{\partial}{\partial t}\psi = \hat{H}\psi \Rightarrow$ time evolution of wave packet (not considered in the following)
 - \circ stationary $E\psi=\hat{H}\psi \ \Rightarrow$ fixed energy E

two formulations:

- partial differental equations
- integral equations
- boundary conditions:

"plane wave + outgoing (ingoing) spherical waves"

- ullet define channels c=i,f that characterize asymptotic states
 - \circ partition, e.g. A+a, B+b, $C+\gamma$, . . .
 - \circ additional quantum numbers, e.g. for particular states of nuclei A, a, . . .
 - o energy, momentum

Reaction Theory - 12 Stefan Typel

General Reaction TheoryStationary Scattering Theory

Stationary Scattering Theory I

theoretical formulation for reaction with nuclei a and A in initial channel

- ullet total Hamiltonian $\hat{H}=\hat{H}_a+\hat{H}_A+\hat{T}_{aA}+\hat{V}_{aA}$ with
 - \circ Hamiltonians \hat{H}_a , \hat{H}_A of nuclei with wave functions ϕ_a , ϕ_A

$$\hat{H}_a \phi_a = E_a \phi_a \quad \hat{H}_A \phi_A = E_A \phi_A$$

kinetic energy operator of relative motion

$$\hat{T}_{aA}=-rac{\hbar^2}{2\mu_{aA}}\Delta_{ec{r}_{aA}}$$
 with reduced mass $\mu_{aA}=rac{m_a m_A}{m_a+m_A}$ and $ec{r}_{aA}=ec{r}_a-ec{r}_A$

- \circ interaction potential \hat{V}_{aA}
- Hamiltonian without aA interaction $\hat{H}_0^{(i)} = \hat{H}_a + \hat{H}_A + \hat{T}_{aA}$

$$\Rightarrow$$
 wave function $\Phi_i = \phi_i \exp\left(i \vec{k}_i \cdot \vec{r}_i\right)$ $\vec{r}_i = \vec{r}_{aA}$ $\vec{k}_i = \mu_{aA} \left(\frac{\vec{k}_a}{m_a} - \frac{\vec{k}_A}{m_A}\right)$

with
$$\phi_i=\phi_a\phi_A$$
 , $\hat{H}_0^{(i)}\Phi_i=(E_a+E_A+E_{aA})\,\Phi_i$ and $E_{aA}=\frac{\hbar^2k_i^2}{2\mu_{aA}}$

Stationary Scattering Theory II

- full solution with total Hamiltonian $\hat{H}\Psi_i^{(\pm)} = E\Psi_i^{(\pm)}$
- boundary condition: asymptotic form for large radii

$$\Psi_i^{(\pm)} \to \Phi_i + \sum_f \phi_f f_{fi}^{(\pm)} \frac{\exp\left(\pm i k_f r_f\right)}{r_f} \quad \text{with } \Phi_i = \phi_i \exp\left(i \vec{k}_i \cdot \vec{r}_i\right)$$

and scattering amplitude $f_{fi}^{(\pm)}$ in final channels f

- "+" solution: outgoing spherical waves
- ∘ "−" solution: ingoing spherical waves
- ullet differential cross section for reaction from initial channel i to final channel f

$$\frac{d\sigma_{fi}}{d\Omega} = \frac{J_f r^2}{J_i}$$
 with currents J_i , J_f of relative motion

 \circ current in nonrelativistic quantum mechanics for wavefunction ψ

for particle with mass
$$m$$
 $\vec{J} = \frac{\hbar}{2mi} \left[\psi^* \left(\vec{\nabla} \psi \right) - \left(\vec{\nabla} \psi^* \right) \psi \right]$

Reaction Theory - 14 Stefan Typel

Stationary Scattering Theory III

• initial state: current for wave function of relative motion

$$\psi = \exp\left(i\vec{k}_i \cdot \vec{r}_i\right) \Rightarrow \vec{J}_i = \frac{\hbar \vec{k}_i}{\mu_i} = \vec{v}_i = \vec{v}_{aA}$$

• final state: current for wave function of relative motion

$$\psi = f_{fi}^{(+)} \frac{\exp\left(\pm ik_f r_f\right)}{r_f} \implies \vec{J}_f \to \frac{\left|f_{fi}^{(+)}\right|^2}{r_f^2} \frac{\hbar k_f}{\mu_f} \frac{\vec{r}_f}{r_f} \quad \text{for } r_f \to \infty$$

ullet cross section for reaction from initial state i to final state f

$$\frac{d\sigma_{fi}}{d\Omega} = \frac{J_f r_f^2}{J_i} = \frac{k_f}{k_i} \left| f_{fi}^{(+)} \right|^2 \implies \text{determine scattering amplitude} \quad f_{fi}^{(+)}$$

- methods to find $f_{fi}^{(+)}$:
 - \circ partial-wave expansion of wave function $\Psi_i^{(+)}$
 - \circ formulation with integral equation \Rightarrow operator formalism

Reaction Theory - 15 Stefan Typel

General Reaction TheoryPartial-Wave Expansion

Partial-Wave Expansion I

elastic scattering A(a,a)A on a spherically symmetric short-range potential $V_{aA}(r)$ for nonrelativistic energies (single channel)

$$\ \, \bullet \ \, \text{expansion of full wave function} \quad \Psi_i^{(+)} = \sum_{l=0}^\infty \sum_{m=-l}^l \frac{\varphi_l^{(+)}(r)}{r} Y_{lm}(\hat{r}) \phi_a \phi_A$$

with radial wave functions $\varphi_l^{(+)}$ and spherical harmonics Y_{lm}

• $\hat{H}\Psi_i^{(+)} = E_i\Psi_i^{(+)} = (E_a + E_A + E_{aA})\Psi_i^{(+)} \Rightarrow \text{radial Schrödinger equation}$

$$\left[-\frac{\hbar^2}{2\mu_{aA}} \frac{d^2}{dr^2} + \frac{l(l+1)}{r^2} + V_{aA}(r) \right] \varphi_l^{(+)}(r) = E_{aA} \varphi_l^{(+)}(r) \quad \text{with energy } E_{aA} = \frac{\hbar^2 k^2}{2\mu_{aA}}$$

• boundary conditions:

$$\circ r = 0 \Rightarrow \varphi_l^{(+)}(r) = 0$$

 $\circ r \to \infty \Rightarrow \varphi_{l}^{(+)}(r) \to ?$, but short-range potential $V_{aA}(r) \to 0$ for $r \to \infty$

⇒ linear combination of regular and irregular spherical Bessel functions (modifications for Coulomb potentials)

Reaction Theory - 16 Stefan Typel

Partial-Wave Expansion II

• wavefunction without potential $\Phi_i = \phi_a \phi_A \exp\left(i \vec{k}_i \cdot \vec{r}\right)$ with $\vec{k}_i = k_i \vec{e}_z$

• partial-wave expansion $\Phi_i = 4\pi \sum_{l,m} i^l j_l(k_i r) Y_{lm}(\hat{r}) Y_{lm}^*(\hat{k}_i) \phi_a \phi_A$

with spherical Bessel functions j_l , spherical harmonics Y_{lm} , $\hat{r} = \vec{r}/r$, $\hat{k}_i = \vec{k}_i/k_i$

use properties of spherical Bessel functions

$$j_0(z) = \frac{\sin z}{z} = \frac{e^{iz} - e^{-iz}}{2iz} \quad j_l = z^l \left(-\frac{1}{z} \frac{d}{dz} \right)^l j_0(z) = \frac{1}{2iz} \left[u_l^{(+)}(z) - u_l^{(-)}(z) \right]$$

with in/outgoing spherical waves $u_l^{(\pm)}(z) o \exp\left[\pm i\left(z-l\frac{\pi}{2}\right)\right]$ for $z o \infty$

$$\Rightarrow \Phi_i = 4\pi \sum_{l,m} i^l \frac{1}{2ik_i r} \left[u_l^{(+)}(k_i r) - u_l^{(-)}(k_i r) \right] Y_{lm}(\hat{r}) Y_{lm}^*(\hat{k}_i) \phi_a \phi_A$$

Reaction Theory - 17 Stefan Typel

Partial-Wave Expansion III

- scattering can only affect outgoing spherical waves $u_i^{(+)}$
 - \Rightarrow introduce S-matrix elements $S_l(k_i)$ (complex numbers)
 - ⇒ asymptotics of solution of Schrödinger equation

$$\Psi_i^{(+)} \to 4\pi \sum_{l,m} i^l \frac{1}{2ik_i r} \left[S_l(k_i) u_l^{(+)}(k_i r) - u_l^{(-)}(k_i r) \right] Y_{lm}(\hat{r}) Y_{lm}^*(\hat{k}_i) \phi_a \phi_A$$

asymptotics of scattering part

$$\Psi_i^{(+)} - \Phi_i \to 4\pi \sum_{l,m} i^l \frac{1}{2ik_i r} \left[S_l(k_i) - 1 \right] u_l^{(+)}(k_i r) Y_{lm}(\hat{r}) Y_{lm}^*(\hat{k}_i) \phi_a \phi_A$$

$$\Rightarrow$$
 elastic scattering amplitude $f_{ii}^{(+)}(\theta) = \sum_{l} \frac{2l+1}{2ik_i} [S_l(k_i) - 1] P_l(\cos\theta)$

with Legendre polynomials P_l , argument $\cos \theta = \hat{r} \cdot \hat{k}_i$ and

$$P_l(\cos\theta) = 4\pi \sum_m Y_{lm}(\hat{r}) Y_{lm}^*(\hat{k}_i)$$

Reaction Theory - 18 Stefan Typel

Partial-Wave Expansion IV

• differential elastic scattering cross section

$$\frac{d\sigma_{ii}}{d\Omega} = \left| f_{ii}^{(+)} \right|^2 = \left| \sum_{l} \frac{2l+1}{2ik_i} \left[S_l(k_i) - 1 \right] P_l(\cos \theta) \right|^2$$

• total elastic scattering cross section

$$\sigma_{\rm el} = \int d\Omega \, \frac{d\sigma_{ii}}{d\Omega} = 2\pi \int_{-1}^{1} d\cos\theta \, \left| f_{ii}^{(+)}(\theta) \right|^{2} = \frac{\pi}{k_{i}^{2}} \sum_{l} (2l+1) \left| S_{l}(k_{i}) - 1 \right|^{2}$$

with orthogonality relation of Legendre polynomials $\int_{-1}^1 dz \, P_l(z) P_{l'}(z) = \frac{2}{2l+1} \delta_{ll'}$

 \Rightarrow knowledge of S-matrix elements S_l sufficient to calculate cross sections

Reaction Theory - 19 Stefan Typel

Partial-Wave Expansion V

- parametrization $S_l = \exp{(2i\delta_l)}$ with scattering phase shifts $\delta_l \in [0, \pi]$
 - ⇒ asymptotics of radial wave functions

$$u_l = \frac{1}{2i} \left[S_l u_l^{(+)} - u_l^{(-)} \right] \to \exp\left(i\delta_l\right) \sin\left(k_i r + \delta_l - l\frac{\pi}{2}\right) \quad \text{for } r \to \infty$$

Reaction Theory - 20 Stefan Typel

Partial-Wave Expansion VI

ullet calculation of cross section with current of full wave function $\Psi_i^{(+)}$

$$\Rightarrow$$
 absorption cross section $\sigma_{abs} = \frac{\pi}{k_i^2} \sum_{l} (2l+1) \left[1 - \left| S_l(k_i) \right|^2 \right]$

total reaction cross section

$$\sigma_{\text{tot}} = \sigma_{\text{el}} + \sigma_{\text{abs}} = \frac{2\pi}{k_i^2} \sum_{l} (2l+1) \text{Re} \left[1 - S_l(k_i)\right]$$

- scattering phase shifts δ_l real \Rightarrow $|S_l(k_i)| = |\exp(2i\delta_l)| = 1$
 - $\Rightarrow \sigma_{abs} = 0$ only elastic scattering
- scattering phase shifts δ_l complex with $\text{Im}(\delta_l) > 0 \Rightarrow |S_l(k_i)| = \exp\left[-2\text{Im}(\delta_l)\right] < 1$
 - \Rightarrow $\sigma_{abs} > 0$ reactions with removal of flux from elastic scattering channel
 - \circ can be described phenomenologically by optical potential U=V+iW with real and imaginary contributions (V,W) real)

Reaction Theory - 21

Partial-Wave Expansion VII

isolated narrow resonance in partial wave l

- ullet resonance energy E_r ullet resonance width $\Gamma \ll E_r$
- different parametrisation of S-matrix element

$$S_l(E) = \frac{E - E_r - i\frac{\Gamma}{2}}{E - E_r + i\frac{\Gamma}{2}} \quad \Rightarrow \quad |S_l(E)| = 1 \quad \Rightarrow \quad S_l(E) - 1 = -i\frac{\Gamma}{E - E_r + i\frac{\Gamma}{2}}$$

⇒ elastic scattering cross section

$$\sigma_{\rm el} = \frac{\pi}{k_i^2} (2l+1) \frac{\Gamma^2}{(E-E_r)^2 + \frac{\Gamma^2}{4}}$$

Breit-Wigner form

general formulation with many resonances and many channels including Coulomb potential

⇒ R-matrix theory with parameters: resonance energies and reduced widths

Reaction Theory - 22 Stefan Typel

General Reaction TheoryOperator Formalism

Operator Formalism I

• simplified notation: point-like nuclei without internal structure

$$\Rightarrow \phi_a = \phi_A = 1$$
, $E_a = E_A = 0$, $E = E_i = E_{aA} = \frac{\hbar^2 k_i^2}{2\mu_{aA}}$

- solve Schrödinger equation $\hat{H}\Psi=\left(\hat{T}+\hat{V}\right)\Psi=E\Psi$ with $\hat{T}=\hat{H}_0=-\frac{\hbar^2}{2\mu_{aA}}\Delta$
- ullet $\Phi_0(ec{k}_i) = \exp\left(iec{k}_i\cdotec{r}
 ight)$ is solution of Schrödinger equation $\hat{H}_0\Phi_0 = E\Phi_0$
- ullet rewrite full Schrödinger equation $\left(\hat{H}_0+\hat{V}\right)\Psi=E\Psi$ as $\hat{V}\Psi=\left(E-\hat{H}_0\right)\Psi$

and introduce operator
$$\mathcal{G}_0^{(\pm)} = \left(E - \hat{H}_0 \pm i\epsilon\right)^{-1}$$

- \Rightarrow integral (Lippmann-Schwinger) equation $\Psi^{(\pm)} = \Phi_0(\vec{k}_i) + \mathcal{G}_0^{(\pm)} \hat{V} \Psi^{(\pm)}$
- \circ term with $\Phi_0 \Rightarrow$ correct solution for $\hat{V} = 0$
- \circ (\pm) forms for different asymptotics

Reaction Theory - 23

Operator Formalism II

$$\bullet \ \text{explicit form} \quad \Psi^{(\pm)}(\vec{r}) = \Phi_0(\vec{k}_i, \vec{r}) + \int d^3r' \ G_0^{(\pm)}(\vec{r}, \vec{r}') \hat{V}(\vec{r}') \Psi^{(\pm)}(\vec{r}')$$

with Green's function
$$G_0^{(\pm)}(\vec{r},\vec{r'}) = -\frac{2\mu_{aA}}{\hbar^2} \frac{\exp\left(\pm ik_i \left| \vec{r} - \vec{r'} \right| \right)}{4\pi \left| \vec{r} - \vec{r'} \right|}$$

formal solution: Born series

$$\Psi^{(\pm)} = \Phi_0(\vec{k}_i) + \mathcal{G}_0^{(\pm)} \hat{V} \Psi^{(\pm)} = \Phi_0(\vec{k}_i) + \mathcal{G}_0^{(\pm)} \hat{V} \Phi_0 + \mathcal{G}_0^{(\pm)} \hat{V} \mathcal{G}_0^{(\pm)} \hat{V} \Phi_0 + \dots$$

with integral operator
$$\mathcal{G}_0^{(\pm)}\left[\ldots\right] = \int d^3r' \, G_0^{(\pm)}(\vec{r},\vec{r}')\left[\ldots\right]$$

ullet integration range of coordinate \vec{r}' limited by extension potential V

$$\circ$$
 for $r\gg r'$ use approximation $|k_i|ec r-ec r'|pprox k_ir-ec k_fec r'+\dots$ with $ec k_f=k_irac{ec r}{r}$

$$\Rightarrow \Psi^{(\pm)}(\vec{r}) = \Phi_0(\vec{k}_i, \vec{r}) - \frac{2\mu_{aA} \exp(\pm ik_i r)}{\hbar^2} \int d^3r' \exp(-i\vec{k}_f \cdot \vec{r}') \hat{V}(\vec{r}') \Psi^{(\pm)}(\vec{r}')$$

Reaction Theory - 24 Stefan Typel

Operator Formalism III

• scattering amplitude

$$f_{fi}^{(\pm)} = -\frac{\mu_{aA}}{2\pi\hbar^2} \int d^3r' \, \exp\left(-i\vec{k}_f \cdot \vec{r}'\right) \hat{V}(\vec{r}') \Psi^{(\pm)}(\vec{r}') = -\frac{\mu_{aA}}{2\pi\hbar^2} \, T_{fi}$$

with T-matrix element
$$T_{fi} = \langle \Phi_0(\vec{k}_f) | \hat{V} | \Psi^{(+)}(\vec{k}_i) \rangle$$

- \Rightarrow knowledge of T-matrix elements T_{fi} sufficient to calculate cross sections
- reformulation
 - \circ introduce potential U with known solutions $\chi^{(\pm)}$ (distorted waves)

of Schrödinger equation
$$\left(\hat{H}_0 + \hat{U}\right)\chi^{(\pm)} = E\chi^{(\pm)}$$

- \circ use operator identity $\frac{1}{A} \frac{1}{B} = \frac{1}{B} \left(B A \right) \frac{1}{A}$
- ⇒ two-potential formula

$$T_{fi} = \langle \Phi_0(\vec{k}_f) | \hat{U} | \chi^{(+)}(\vec{k}_i) \rangle + \langle \chi^{(-)}(\vec{k}_f) | \hat{V} - \hat{U} | \Psi^{(+)}(\vec{k}_i) \rangle$$

Reaction Theory - 25 Stefan Typel

Operator Formalism IV

ullet generalisation with Gell-Mann–Goldberger relation for reaction A(a,b)B

$$T_{fi} = \langle \phi_b \phi_B \Phi_0(\vec{k}_f) | \hat{U}_{aA} | \phi_a \phi_A \chi_{aA}^{(+)}(\vec{k}_i) \rangle + \langle \phi_b \phi_B \chi_{bB}^{(-)}(\vec{k}_f) | \hat{V}_{bB} - \hat{U}_{bB} | \Psi_{aA}^{(+)}(\vec{k}_i) \rangle$$

 \bullet potential U_{aA} acting only on coordinates of relative motion, not internal coordinates

$$\Rightarrow \langle \phi_b \phi_B \Phi_0(\vec{k}_f) | \hat{U}_{aA} | \phi_a \phi_A \chi_{aA}^{(+)}(\vec{k}_i) \rangle = 0 \text{ if } aA \neq bB$$

• for rearrangement reactions $aA \neq bB$

$$\circ$$
 exact results: $-$ "post form" $T_{fi} = \langle \phi_b \phi_B \chi_{bB}^{(-)}(\vec{k}_f) | \hat{V}_{bB} - \hat{U}_{bB} | \Psi_{aA}^{(+)}(\vec{k}_i) \rangle$ $-$ "prior form" $T_{fi} = \langle \Psi_{bB}^{(-)}(\vec{k}_f) | \hat{V}_{aA} - \hat{U}_{aA} | \phi_a \phi_A \chi_{aA}^{(-)}(\vec{k}_i) \rangle$

- \Rightarrow exact scattering wave fuctions $\Psi^{(+)}_{aA}$ or $\Psi^{(-)}_{bB}$ still needed
- potentials \hat{V}_{aA} and \hat{V}_{bB} depend on coordinates of all nucleons in the nuclei, should be consistent with those used for microscopic description of nuclei itself \Rightarrow challenge: combination of structure and reaction calculations

Reaction Theory - 26 Stefan Typel

Cross Sections I

 \bullet general form for two-body reaction A(a,b)B in c.m. system

$$\circ$$
 energies $E_i = E_a + E_A + \frac{p_{aA}^2}{2\mu_{aA}}$, $E_f = E_b + E_B + \frac{p_{bB}^2}{2\mu_{bB}}$

○ with spins ⇒ averaging over initial states, summation over final states

$$d\sigma(a+A\to b+B) = \frac{2\pi \mu_{aA}}{\hbar} \frac{1}{p_{aA}} \frac{1}{(2J_a+1)(2J_A+1)} \sum_{m_a,m_A} \sum_{m_b,m_B} \sum_{m_a,m_A} \sum_{m_b,m_B} \frac{1}{(2\pi\hbar)^3} |T_{bBaA}|^2 \delta(E_i - E_f + Q_{a+A\to B+b})$$

with $d^3p_{bB}=p_{bB}^2dp_{bB}d\Omega_{bB}$, $dE_f/dp_{bB}=p_{bB}/\mu_{bB}$ and integration over p_{bB}

$$\Rightarrow \frac{d\sigma}{d\Omega_{bB}}(a+A\to b+B) = \frac{\mu_{aA}\mu_{bB}}{(2\pi)^2\hbar^4} \frac{p_{bB}}{p_{aA}} \frac{1}{(2J_a+1)(2J_A+1)} \sum_{m_a,m_A} \sum_{m_b,m_B} |T_{bBaA}|^2$$

- \circ similar expression for inverse reaction B(b,a)A
- result can be generalized to reactions with three or more particles in the final state

Reaction Theory - 27 Stefan Typel

Cross Sections II

ullet cross sections for reactions A(a,b)B and B(b,a)A

$$\frac{d\sigma}{d\Omega_{bB}}(a+A\to b+B) = \frac{\mu_{aA}\mu_{bB}}{(2\pi)^2\hbar^4} \frac{p_{bB}}{p_{aA}} \frac{1}{(2J_a+1)(2J_A+1)} \sum_{m_a,m_A} \sum_{m_b,m_B} |T_{bBaA}|^2$$

$$\frac{d\sigma}{d\Omega_{aA}}(b+B\to a+A) = \frac{\mu_{bB}\mu_{aA}}{(2\pi)^2\hbar^4} \frac{p_{aA}}{p_{bB}} \frac{1}{(2J_b+1)(2J_B+1)} \sum_{m_b,m_B} \sum_{m_a,m_A} |T_{aAbB}|^2$$

- time-reversal symmetry $|T_{bBaA}|^2 = |T_{aAbB}|^2$
 - ⇒ theorem of detailed balance (for two-body reactions)

$$(2J_a + 1)(2J_A + 1) p_{aA}^2 \frac{d\sigma}{d\Omega} (a + A \to b + B)$$

$$= (2J_b + 1)(2J_B + 1) p_{bB}^2 \frac{d\sigma}{d\Omega} (b + B \to a + A)$$

o application: indirect methods (e.g. Coulomb dissociation method)

Reaction Theory - 28 Stefan Typel

Applications

Relevance of Reaction Theory

applications

- direct interest in relevant reaction cross sections, e.g.
 - prediction of production rates of exotic nuclei (not considered here)
 - o astrophysics: nucleosynthesis
- reactions to study of nuclear structure, e.g.
 - o gross properties: radii, density distributions, . . .
 - \Rightarrow elastic scattering (with electrons, protons, α -particles, . . .), absorption reactions, . . . (not considered here)
 - o detailed structure:
 - excitation of specific states with electromagnetic or nuclear interaction
 - study of single-particle structure

challenges with exotic nuclei

- correct treatment of continuum states
- combination of reaction theory with modern structure models
- choice of nuclear interaction

Reaction Theory - 29 Stefan Typel

Applications

Astrophysics and Indirect Methods

Reactions of Astrophysical Interest

- nuclear reactions rates
 - input for astrophysical models
 - various processes (pp-chain, CNO cycles,s- , r-, p-, rp-process)
 - o often unstable nuclei involved
 - cross sections at low energies needed
 ⇒ direct measurement practically impossible
 - o alternative: indirect methods
- nuclei in hot plasma
 - ⇒ Maxwellian-averaged reaction rate

$$r_{aA} = rac{
ho_a
ho_A}{1 + \delta_{aA}} \langle \sigma v \rangle$$
 with $\langle \sigma v \rangle = \sqrt{rac{8}{\pi \mu_{aA}}} \int rac{dE}{(kT)^{3/2}} E \sigma(E) \exp\left(-rac{E}{kT}
ight)$

- reactions with charged particles
 - ⇒ cross section needed in Gamov window around effective energy

$$E_{\rm eff} = 0.1220 \, \mu_{aA}^{1/3} (Z_a Z_Z T_9)^{2/3} \, \, {\rm MeV}$$

with effective mass μ_{aA} in amu and temperature $T_9 = T/(10^9 \text{ K})$

Reactions of Astrophysical Interest

- nuclear reactions rates
 - input for astrophysical models
 - various processes (pp-chain, CNO cycles,s- , r-, p-, rp-process)
 - o often unstable nuclei involved
 - cross sections at low energies needed
 ⇒ direct measurement practically impossible
 - o alternative: indirect methods

⇒ Maxwellian-averaged reaction rate

$$r_{aA} = \frac{\rho_a \rho_A}{1 + \delta_{aA}} \langle \sigma v \rangle$$
 with $\langle \sigma v \rangle = \sqrt{\frac{8}{\pi \mu_{aA}}} \int \frac{dE}{(kT)^{3/2}} E \sigma(E) \exp\left(-\frac{E}{kT}\right)$

- reactions with charged particles
 - ⇒ cross section needed in Gamov window around effective energy

$$E_{\rm eff} = 0.1220 \, \mu_{aA}^{1/3} (Z_a Z_Z T_9)^{2/3} \, \, {\rm MeV}$$

with effective mass μ_{aA} in amu and temperature $T_9 = T/(10^9 \text{ K})$

Scattering with Coulomb Potential I

- ullet modification with Coulomb potential $V_{\mathrm{Coul}} = rac{Z_a Z_A e^2}{r}$ in initial state
 - ⇒ replacement of plane wave in initial state with exact solution for Coulomb scattering (analytically known)
 - ⇒ asymptotics of radial wave functions with additional nuclear interaction

$$u_l \to \frac{\exp(2i\sigma_l)}{2i} \left[S_l u_l^{(+)} - u_l^{(-)} \right] \quad \text{for } r \to \infty$$

with Coulomb scattering phase shift $\sigma_l = \arg \Gamma(l+1+i\eta)$

depending on the Sommerfeld parameter $\eta=\frac{Z_aZ_Ae^2}{\hbar v_{aA}}$, $v_{aA}=\frac{p_{aA}}{\mu_{aA}}$

and $u_l^{(\pm)}(k_i r) = \exp(\mp i\sigma_l) \left[G_l \pm iF_l \right] \rightarrow \exp\left[\pm i \left(k_i r - 2\eta \ln(k_i r) + \sigma_l - l\frac{\pi}{2} \right) \right]$

with regular and irregular Coulomb wave functions F_l and G_l

Reaction Theory - 31 Stefan Typel

Scattering with Coulomb Potential II

elastic scattering amplitude

$$f_{ii}^{(+)}(\theta) = \sum_{l} \frac{2l+1}{2ik_i} \left[\exp(2i\sigma_l) S_l(k_i) - 1 \right] P_l(\cos\theta) = f_C^{(+)}(\theta) + f_N^{(+)}(\theta)$$

with Coulomb scattering amplitude (analytically known)

$$f_C^{(+)}(\theta) = \sum_{l} \frac{2l+1}{2ik_i} [\exp(2i\sigma_l) - 1] P_l(\cos\theta)$$

and nuclear scattering amplitude

$$f_N^{(+)}(\theta) = \sum_{l} \frac{2l+1}{2ik_i} \exp(2i\sigma_l) \left[S_l(k_i) - 1 \right] P_l(\cos\theta)$$

⇒ interference in cross sections!

Reaction Theory - 32 Stefan Typel

Scattering with Coulomb Potential III

effect of Coulomb barrier (and centrifugal barrier)

 \Rightarrow reduced probability of finding the particles at small distance R

example: $p + {}^{7}Be$ scattering solid lines: l = 0

• introduce penetrability factor

$$P_l(R) = \frac{\lim_{r \to \infty} \left| u_l^{(\pm)}(\eta; kr) \right|^2}{\left| u_l^{(\pm)}(\eta; kR) \right|^2} = \frac{1}{F_l^2(\eta, kR) + G_l^2(\eta, kR)}$$

• s-wave scattering (l = 0):

$$\lim_{R \to 0} P_0(R) = \frac{2\pi\eta}{\exp(2\pi\eta) - 1}$$

define astrophysical S factor

$$S(E) = \sigma(E) E \exp(2\pi\eta)$$

weak energy dependence

Scattering with Coulomb Potential III

effect of Coulomb barrier (and centrifugal barrier)

- \Rightarrow reduced probability of finding the particles at small distance R
- introduce penetrability factor

$$P_l(R) = \frac{\lim_{r \to \infty} \left| u_l^{(\pm)}(\eta; kr) \right|^2}{\left| u_l^{(\pm)}(\eta; kR) \right|^2} = \frac{1}{F_l^2(\eta, kR) + G_l^2(\eta, kR)}$$

• s-wave scattering (l=0):

$$\lim_{R \to 0} P_0(R) = \frac{2\pi\eta}{\exp(2\pi\eta) - 1}$$

define astrophysical S factor

$$S(E) = \sigma(E) E \exp(2\pi\eta)$$

weak energy dependence

example: $p + {}^{7}Be$ scattering

solid lines: l = 0 dashed lines: l = 1

Scattering with Coulomb Potential III

effect of Coulomb barrier (and centrifugal barrier)

- \Rightarrow reduced probability of finding the particles at small distance R
- introduce penetrability factor

$$P_l(R) = \frac{\lim_{r \to \infty} \left| u_l^{(\pm)}(\eta; kr) \right|^2}{\left| u_l^{(\pm)}(\eta; kR) \right|^2} = \frac{1}{F_l^2(\eta, kR) + G_l^2(\eta, kR)}$$

• s-wave scattering (l=0):

$$\lim_{R \to 0} P_0(R) = \frac{2\pi\eta}{\exp(2\pi\eta) - 1}$$

define astrophysical S factor

$$S(E) = \sigma(E) E \exp(2\pi\eta)$$

weak energy dependence

example: $p + {}^{7}Be$ scattering

solid lines: l=0 dashed lines: l=1 dotted lines: l=2

Indirect Methods I

Coulomb dissociation

- study inverse of radiative capture reaction $b(x, \gamma)a \Leftrightarrow a(\gamma, x)b$
- use Coulomb field of target nucleus A as source of photons $a(\gamma,x)b \Leftrightarrow A(a,bx)A$

↓ absolute S factorsas a function of energy

ANC method

- extract asymptotic
 normalization coefficient
 of ground state wave
 function of nucleus a
 from transfer reactions
- calculate matrix elements for radiative capture reaction $b(x, \gamma)a$

 $\downarrow \downarrow$

S factor at zero energy

Trojan-Horse method

- study three-body reaction $A+a \rightarrow C+c+b$ with Trojan horse a=b+x and spectator b
- extract cross section of two-body reaction $A + x \rightarrow C + c$

↓ energy dependence of S factor

Indirect Methods II

Coulomb dissociation

ANC method

Trojan-Horse method

photon exchange

transfer of particle to bound state

transfer of particle to continuum state

- similar reaction mechanisms: transfer of virtual particle
- final state with three particles (bound/continuum states)
- theoretical descripton with direct reaction theory

Reaction Theory - 35 Stefan Typel

Indirect Methods III

general characteristics:

- two-body reaction at low-energy is replaced by three-body reaction at "high-energy" with large cross section
 - \circ Coulomb dissociation $b(x,\gamma)a \Rightarrow A(a,bx)A$
 - \circ ANC method $b(x,\gamma)a \Rightarrow A(a,B)$
 - $b(x,\gamma)a \Rightarrow A(a,B)b$ a = (b+x) B = (A+x)
 - \circ Trojan-horse method $A(x,c)C \Rightarrow A(a,Cc)b$
- ullet transfer of virtual particle (photon γ or nucleus x)
- relation of cross sections is found with the help of nuclear direct reaction theory
- theoretical approximations essential
- study of peripheral reactions
 - asymptotics of wave functions relevant
 - selection of suitable kinematical conditions important

Reaction Theory - 36 Stefan Typel

Coulomb Dissociation Method I

correspondence

(Fermi 1924, Weizsäcker-Williams 1932)

time-dependent electromagnetic field of highly-charged nucleus A during scattering of projectile a

spectrum of (virtual, equivalent) photons

radiative capture $b(x,\gamma)a$ \Leftrightarrow detailed balance \Leftrightarrow photo absorption $a(\gamma,x)b$ equivalent photons in Coulomb field of target A \Leftrightarrow Coulomb dissociation A(a,bx)A

only ground state transitions!

• further application: study structure of nucleus a

Reaction Theory - 37 Stefan Typel

Coulomb Dissociation Method II

breakup cross section for reaction A(a,bx)A (in first-order approximation, with angular integration over relative momentum between fragments)

$$\Rightarrow \frac{d^2\sigma}{dE_{bx}d\Omega_{aA}} = \frac{1}{E_{\gamma}} \sum_{\pi\lambda} \sigma_{\pi\lambda} (a + \gamma \to b + x) \frac{dn_{\pi\lambda}}{d\Omega_{aA}} \qquad \pi = E, M \qquad \lambda = 1, 2, \dots$$

- photo absorption cross section $\sigma_{\pi\lambda}(a+\gamma\to b+x)$
- virtual photon numbers $\frac{dn_{\pi\lambda}}{d\Omega_{aA}}$ depend on kinematics: scattering angle ϑ_{aA} or impact parameter b, projectile velocity v, excitation energy $E_{\gamma}=\hbar\omega$
- calculation
 - o in semiclassical approximation with trajectories
 - with quantal methods using scattering wave functions in partial-wave expansion or eikonal approximation
- ullet final state: usually three charged particles A, b, x
 - ⇒ higher-order effects = multi-step transitions/Coulomb post-acceleration?
 - ⇒ better approximation of full scattering wave function needed

Reaction Theory - 38 Stefan Typel

Coulomb Dissociation Method III

Coulomb dissociation cross section

$$\frac{d^2\sigma}{dE_{bx}d\Omega_{Aa}} = \frac{1}{E_{\gamma}} \sum_{\pi\lambda} \sigma_{\pi\lambda} (a + \gamma \to b + x) \frac{dn_{\pi\lambda}}{d\Omega_{Aa}}$$

• theorem of detailed balance

$$\sigma_{\pi\lambda}(a+\gamma\to b+x) = \frac{(2J_b+1)(2J_x+1)}{2(2J_a+1)} \frac{k_{bx}^2}{k_{\gamma}^2} \,\sigma_{\pi\lambda}(b+x\to a+\gamma)$$

with photo absorpton and radiative capture cross sections

• phase space factor
$$\frac{k_{bx}^2}{k_{\gamma}^2}=\frac{2\mu_{bx}c^2E_{bx}}{(E_{bx}+S_{bx})^2}\gg 1$$
 for not too small E_{bx}

- ullet virtual photon numbers $\dfrac{dn_{\pi\lambda}}{d\Omega_{Aa}}\gg 1$ for large Z_A and for not too high E_{bx}
- ⇒ large Coulomb dissociation cross sections

ApplicationsTransfer Reactions

Transfer Reactions I

application of transfer reactions

- indirect methods for astrophysics: Coulomb breakup, ANC method, Trojan Horse method
- study of nuclear structure:
 - \circ pickup reaction, e.g. (p,d), (d,t), (d, 3 He), (d, 6 Li), . . .
 - \circ stripping reaction, e.g. (d,p), (d,n), (3 He,p), . . .
 - \circ knockout/breakup reactions, e.g. (p,pn), (p,p α), . . .

theoretical description

- information on reaction process in T-matrix elements
 - \Rightarrow full scattering wave function $\Psi^{(\pm)}$ needed, in general complicated many-body wave function
 - ⇒ choose appropriate approximations
- reactions with stable nuclei: two particles in final state,
 - ⇒ transfer to bound states
- reaction with exotic nuclei: in most cases three (or more) particles in final state
 - ⇒ transfer to continuum states, study of correlations

Reaction Theory - 40

Transfer Reactions II

coordinates in two-body system a + A

relative and center-of-mass coordinates

$$\vec{r}_{aA} = \vec{r}_a - \vec{r}_A \quad \vec{R} = \frac{m_a \vec{r}_a + m_A \vec{r}_A}{m_a + m_A}$$

$$\vec{p}_{aA} = \mu_{aA} \left(\frac{\vec{p}_a}{m_a} - \frac{\vec{p}_A}{m_A} \right)$$
 $\vec{P} = \vec{p}_a + \vec{p}_A$ with reduced mass $\mu_{aA} = \frac{m_a m_A}{m_a + m_A}$

coordinates in three-body system b+c+C=b+B

• Jacobi coordinates \Rightarrow three possibilities, e.g.

$$\vec{r}_{cC} = \vec{r}_c - \vec{r}_C$$
 $\vec{r}_{b(cC)} = \vec{r}_b - \vec{r}_B$ $\vec{R} = \frac{m_b \vec{r}_b + m_c \vec{r}_c + m_C \vec{r}_C}{m_b + m_c + m_C}$

$$\vec{p}_{cC} = \mu_{cC} \left(\frac{\vec{p}_c}{m_c} - \frac{\vec{p}_C}{m_C} \right) \quad \vec{p}_{b(cC)} = \mu_{bB} \left(\frac{\vec{p}_b}{m_b} - \frac{\vec{p}_B}{m_B} \right) \quad \vec{P} = \vec{p}_b + \vec{p}_c + \vec{p}_C$$

with
$$\vec{r}_B = \frac{m_c \vec{r}_c + m_C \vec{r}_C}{m_c + m_C}$$
, $\vec{p}_B = \vec{p}_c + \vec{p}_C$, $m_B = m_c + m_C$, $\mu_{bB} = \frac{m_b m_B}{m_b + m_B}$

Reaction Theory - 41 Stefan Typel

Transfer Reactions III

ullet general form of cross section for three-body reaction A(a,cC)b in c.m. system

$$\circ \text{ energies } E_i = E_a + E_A + \frac{p_{aA}^2}{2\mu_{aA}}, \ E_f = E_b + E_c + E_C + \frac{p_{cC}^2}{2\mu_{cC}} + \frac{p_{bB}^2}{2\mu_{bB}}$$

$$d\sigma(a+A\to b+c+C) = \frac{2\pi \mu_{aA}}{\hbar} \frac{1}{p_{aA}(2J_a+1)(2J_A+1)} \sum_{m_a,m_A} \sum_{m_b,m_c,m_C} \int d^3m_{bB} \frac{d^3n_{bB}}{p_{aA}(2J_a+1)(2J_A+1)} \frac{1}{p_{aA}(2J_a+1)(2J_A+1)} \sum_{m_a,m_A} \sum_{m_b,m_c,m_C} \frac{1}{p_{aA}(2J_a+1)(2J_A+1)} \frac{1}{p_{aA}(2J_a+1)} \frac{1}$$

$$\times \int \frac{d^{3}p_{bB}}{(2\pi\hbar)^{3}} \frac{d^{3}p_{cC}}{(2\pi\hbar)^{3}} \left| T_{(bcC)(aA)} \right|^{2} \delta(E_{i} - E_{f} + Q_{a+A \to C+c+b})$$

with $d^3p_{bB} = p_{bB}^2 dp_{bB} d\Omega_{bB}$, $d^3p_{cC} = p_{cC}^2 dp_{cC} d\Omega_{cC}$, $dE_f/dp_{bB} = p_{bB}/\mu_{bB}$ $E_{cC} = p_{cC}^2/(2\mu_{cC})$, $dE_{cC}/dp_{cC} = p_{cC}/\mu_{cC}$ and integration over p_{bB}

$$\Rightarrow \frac{d^{3}\sigma}{dE_{cC}d\Omega_{cC}d\Omega_{cB}}(a+A\to b+c+C)$$

$$= \frac{\mu_{aA}\mu_{bB}\mu_{cC}}{(2\pi)^{5}\hbar^{7}} \frac{p_{bB}p_{cC}}{p_{aA}} \frac{1}{(2J_{a}+1)(2J_{A}+1)} \sum_{m_{a},m_{A}} \sum_{m_{b},m_{c},m_{C}} |T_{(bcC)(aA)}|^{2}$$

○ integration over unobserved quantities ⇒ less detailed information

Reaction Theory - 42 Stefan Typel

Transfer Reactions IV

T-matrix elements for transfer reactions $A+a \rightarrow B+b$ with a=b+x, B=A+x

• introduce optical potentials U_{ij} (ij = Aa, Bb)

and distorted waves $\chi_{ij}^{(\pm)}$ with $(T_{ij}+U_{ij})\,\chi_{ij}^{(\pm)}=E_{ij}\chi_{ij}^{(\pm)}$

o post form: $T_{(Bb)(Aa)} = \langle \phi_B \phi_b \chi_{Bb}^{(-)} | \hat{V}_{Bb} - \hat{U}_{Bb} | \Psi_{Aa}^{(+)} \rangle$ exact!

o prior form: $T_{(Bb)(Aa)} = \langle \Psi_{Bb}^{(-)} | \hat{V}_{Aa} - \hat{U}_{Aa} | \phi_A \phi_A \chi_{Aa}^{(+)} \rangle$ exact!

- approximations for exact scattering wave functions:
 - \circ distorted-wave Born approximation $\Psi_{Aa}^{(+)} \to \phi_a \phi_A \chi_{Aa}^{(+)}$ or $\Psi_{Bb}^{(-)} \to \phi_B \phi_b \chi_{Bb}^{(-)}$
 - \circ better: $\Psi_{Aa}^{(+)}$ or $\Psi_{Bb}^{(-)}$ from coupled-channel calculation
 - o other methods

Transfer Reactions V

introduction of spectroscopic amplitudes/factors

$$\Phi_{bx}^a = \langle \phi_b | \phi_a \rangle \qquad \Phi_{Ax}^B = \langle \phi_A | \phi_B \rangle$$

• approximation $\Phi^a_{bx} \approx \mathcal{A}^a_{bx} \varphi^a_{bx}(\vec{r}_{bx}) \phi_x$ $\Phi^B_{Ax} \approx \mathcal{A}^B_{Ax} \varphi^B_{Ax}(\vec{r}_{Ax}) \phi_x$

with single-particle wave functions φ_{bx}^a , φ_{Bx}^A generated from (standard) potentials (usually Woods-Saxon type)

 \circ for bound states $\langle \varphi^a_{bx}|\varphi^a_{bx}\rangle = \langle \varphi^A_{Bx}|\varphi^A_{Bx}\rangle = 1$

and spectroscopic amplitudes \mathcal{A}^a_{bx} , \mathcal{A}^B_{Ax}

 \Rightarrow spectroscopic factors $|\mathcal{S}^a_{bx}| = |\mathcal{A}^a_{bx}|^2$ $|\mathcal{S}^B_{Ax}| = |\mathcal{A}^B_{Ax}|^2$

model dependent quantities!

Reaction Theory - 44

Transfer Reactions VI

distorted-wave Born approximation (DWBA) and spectroscopic factors

approximation for T-matrix elements (still expensive to calculate)

$$\circ \text{ post form:} \quad T_{(Bb)(Aa)} \approx \mathcal{A}_{Ax}^{B*} \mathcal{A}_{bx}^{a} \ \langle \varphi_{Ax}^{B}(\vec{r}_{Ax}) \chi_{Bb}^{(-)} | \hat{V}_{Bb} - \hat{U}_{Bb} | \varphi_{bx}^{a}(\vec{r}_{bx}) \chi_{Aa}^{(+)} \rangle$$

o prior form:
$$T_{(Bb)(Aa)} \approx \mathcal{A}_{Ax}^{B*} \mathcal{A}_{bx}^{a} \langle \varphi_{Ax}^{B}(\vec{r}_{Ax}) \chi_{Bb}^{(-)} | \hat{V}_{Aa} - \hat{U}_{Aa} | \varphi_{bx}^{a}(\vec{r}_{bx}) \chi_{Aa}^{(+)} \rangle$$

- distorted waves $\chi_{Aa}^{(+)}$, $\chi_{Bb}^{(-)}$ from full calculation in partial-wave expansion or eikonal approximation at high energies
- cross sections $d\sigma \propto \left|T_{(Bb)(Aa)}\right|^2 \Rightarrow d\sigma \approx S_{bx}^a S_{Ax}^B d\sigma_{\text{single particle}}$
- experimental spectroscopic factors S_{bx}^a , S_{Ax}^B from comparison of measured cross sections with single-particle cross sections
- microscopic nuclear structure models: $S_{bx}^a = \langle \Phi_{bx}^a | \Phi_{bx}^a \rangle$, $S_{Ax}^B = \langle \Phi_{Ax}^B | \Phi_{Ax}^B \rangle$
- ullet choice of potentials \hat{V}_{aA} , \hat{V}_{bB} , \hat{U}_{aA} , \hat{U}_{bB} ? often approximations
- ullet interpretation if B=C+c is continuum state?

Reaction Theory - 45 Stefan Typel

ApplicationsCoupled-Channel Approach

Coupled-Channel Approach I

explicit calculation of full scattering wave function

- \Rightarrow expansion $\Psi_{aA}^{(+)} = \sum_c \psi_c$ with all channels c = a + A, b + B, . . . and correct asymptotics $\psi_c \to \phi_c f_{c(aA)}^{(+)} \frac{\exp{(ik_c r_c)}}{r}$ with $\phi_c = \phi_a \phi_A$, $\phi_b \phi_B$, . . .
- Hamiltonian $\hat{H}=\hat{H}_c+\hat{T}_c+\hat{V}_c$ with, e.g. $\hat{H}_c=\hat{H}_a+\hat{H}_A$, $\hat{T}_c=\hat{T}_{Aa}$, $\hat{V}_c=\hat{V}_{aA}$ for c=a+A
- stationary Schrödinger equation $\hat{H}\Psi_{aA}^{(+)}=E\Psi_{aA}^{(+)}$
 - \circ projection on channel wave functions ϕ_c \Rightarrow coupled equations

$$\langle \phi_c | \hat{T}_c + \hat{V}_c + E_c - E | \psi_c \rangle = -\sum_{c'} \langle \phi_c | \hat{H} - E | \psi_{c'} \rangle$$

with, e.g., $E_c = E_a + E_A$ for c = a + A in diagonal part

Reaction Theory - 46

Coupled-Channel Approach II

problems

- infinitely many channels (different excited states and partitions, partial waves)
 truncation needed ⇒ choice of relevant channels
- asymptotic solution in channels with three particles
 - ⇒ different methods/approximations
 - o use hyperspherical coordinates, but no exact solution for three charges particles
 - \circ use product wave function $\phi_{bcC} pprox \phi_b \Psi_{cC}^{(+)}$
 - with two-body scattering wave function $\Psi_{cC}^{(+)}$
 - continuum states depend on energy, not normalizable
 - discretize continuum by introducing energy bins

$$\phi_{bcC} = \phi_b \int_{E_{\min}}^{E_{\max}} dE \ w(E) \ \Psi_{cC}^{(+)}(E)$$
 with appropriate weight functions $w(E)$

- $\Rightarrow \phi_{bcC}$ normalizable
- ⇒ continuum-discretized coupled channels (CDCC) approach

Reaction Theory - 47 Stefan Typel

Coupled-Channel Approach III

CDCC approach

- single-particle states and collective states can be considered
- binning of continuum can be adapted to resonances
- numerical convergence can be tested
- computationable expensive, only for not too high energies

optical potentials used in calculation of T-matrix elements

- imaginary part considers loss of flux to open channels
 - o consistency with explicit treatment of open channels?
- often systematic potentials used from fits of elastic scattering cross sections
 - \circ mostly available for scattering of nucleons and light nuclei (d, α , . . .)
 - o usually not available for exotic nuclei
- other approaches: e.g.
 - single-folding or double-folding potentials
 - o dispersive methods

Reaction Theory - 48 Stefan Type

Summary

Summary

- information on reactions is contained in cross sections
 - depend only on asymptotics of scattering wave functions
 - o knowledge of S-matrix elements or T-matrix elements sufficient
 - many different types of reactions and kinematical conditions
 - o many methods: partial-wave expansion, R-matrix theory, DWBA, CDCC, . . .
- reactions with exotic nuclei
 - direct interest in reaction cross sections (e.g. astrophysics)
 - o reactions as tool to study nuclear structure
 - major challenges:
 - adaption of standard methods to specific conditions
 - combination of reaction theory with modern nuclear structure models
 - treatment of (many-body) continuum states
 - choice and consistent application of potentials

⇒ need for development and many exciting applications in the future

Reaction Theory - 49 Stefan Typel