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Aim of Lecture
• introduction to basic methods in reaction theory with particularities for exotic nuclei

• no need to follow every step in derivations, only for completeness

• not a review of recent results or details of specific approaches/individual cases
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Introduction



General Remarks

• definition
reactions = all processes that occur if two (or more) particles collide
within an interaction zone (depends on range of interaction)

• types of interactions
◦ electromagnetic interaction (long range)
◦ strong interaction (medium range)
◦ weak interaction (short range)
⇒ possible competition or interference

• notation

◦ general form: X1 +X2 → X3 +X4 + . . .+Xn

◦ alternatively:

X2(X1,X4, . . . ,Xn)X3 with projectile X1, target X2, and ejectiles X4, . . . ,Xn

inverse kinematics, e.g. if X2 is unstable nucleus

X1(X2,X4, . . . ,Xn)X3 with projectile X2, target X1, and ejectiles X4, . . . ,Xn
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Types of Reactions

• reactions with two particles in the initial state

◦ elastic scattering a+A→ A+ a

◦ inelastic scattering a+A→ A∗ + a′

◦ rearrangement reactions a+A→ B + b with b 6= a, B 6= A

◦ radiative capture reactions a+A→ C + γ with photon in final state

◦ many-body reactions a+ A→ B + b1 + b2 + . . .

• example:

p+ 7
3Li →































7
3Li+ p
7
3Li

∗ + p
7
4Be+ n
α+ α
8
4Be+ γ (→ α+ α+ γ)
α+ t+ p
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Length and Time Scales

• radius of stable nucleus R = r0A
1/3 with r0 ≈ 1.25 fm, mass number A

• corresponding area of circle S = πR2

• time for light to traverse nucleus t = 2R/c

• example 208Pb:

R ≈ 7.4 fm, S ≈ 172 fm2 = 1.72 b, t ≈ 14.8 fm/c = 4.9 · 10−23 s

• unit for area in reaction theory: barn
(1 b = 10−28 m2, 1 fm2 = 10 mb)

• time scales for reactions:
◦ fast, t ≈ 10−22 s: direct reactions (few nucleons involved, one-step processes)
◦ intermediate, t > 10−22 s: multi-step reactions (complicated)
◦ slow, t≫ 10−22 s: compound nucleus reactions (many nucleons involved,
collective excitations, no memory of initial state, statistical features)
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Energy Scales and Kinematics

• typical energies

◦ nuclear structure: binding and excitation energies ⇒ a few MeV

◦ potentials: Coulomb barrier ⇒ EC = ZaZAe2

RC
RC ≈ Ra +RA e2 = 1.44 MeV fm

◦ reactions: very large range of energies, e.g.
− thermal neutrons ⇒ ≈ 25 meV
− astrophysical reactions ⇒ a few 10 or 100 keV
− direct nucleon transfer reactions ⇒ a few MeV per nucleon
− Coulomb excitation reactions ⇒ a few 10 MeV or 100 MeV per nucleon
− relativistic heavy-ion collisions ⇒ a few GeV or TeV per nucleon

• Q value

Q = (ma +mA −mb −mB)c
2 for reaction A(a, b)B

◦ Q > 0 exothermic reaction (release of kinetic energy due to larger binding)
◦ Q = 0 elastic reaction
◦ Q < 0 endothermic reaction (reaction not possible below threshold)
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Conservation Laws

reaction A(a, b)B

• conservation of energy

E(a+A) = Ta + TA + (ma +mA)c
2 = Tb + TB + (mb +mB)c

2 = E(b+B)

with kinetic energies Ta, TA, Tb, TB

• conservation of momentum

~P (a+A) = ~pa + ~pA = ~pb + ~pB = ~P (b+B)

• conservation of total angular momentum

~J(a+A) = ~Ja + ~JA + ~JaA = ~Jb + ~JB + ~JbB = ~J(b+B)

• conservation of parity

P (a+A) = Pa · PA · (−1)laA = Pb · PB · (−1)lbB = P (b+ B)

• conservation of isospin

~T (a+A) = ~Ta + ~TA = ~Tb + ~TB = ~T (b+B)

• conservation of charge, baryon number and lepton number
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General Reaction Theory



Theoretical Approaches

• large variety of reactions

◦ numerous theoretical approaches
◦ here only a selection, mainly for direct reactions
◦ many topics not covered: e.g. compound nucleus reactions, heavy-ion collisions

• theoretical description

◦ classical methods
◦ semiclassical methods
◦ quantal methods
⇒ observables: cross sections

• general conditions in the following

◦ nonrelativistic kinematics
◦ no explicit consideration of antisymmetrization
◦ no weak interaction processes
◦ spins of particles mostly neglected
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Definition of Cross Sections I

� �

��

�

quantifying the strength of reactions

• uniform beam of particles in z-direction
hitting a thick target
⇒ reduction of current J due to reactions:

dJ

dz
= −σJ(z)ρ ⇒ J(z) = J(0) exp (−σρz)

◦ proportial to current J(z)
and density of target nuclei ρ

◦ proportionality constant
= (interaction) cross section σ

◦ dimensions: [J ] = L−2T−1, [ρ] = L−3, [σ] = L2

with length L and time T

• cross section σ depends on energy E of beam ⇒ excitation function σ(E)

• more detailed information on reaction with dependence on scattering angle θ

⇒ differential cross section
dσ

dΩ
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Definition of Cross Sections II

�

�

��

�

differential cross section

• initial state: uniform beam of particles
in z direction with current Ji

• scattering on a single target nucleus,
detection of scattered particles
at distance r from target
in area dS = r2dΩ
at scattering angle θ

• final state: current of particles Jf
in radial direction

⇒ dσfi =
JfdS

Ji
or

dσfi
dΩ

=
Jfr

2

Ji

• in classical physics:
dσ

dΩ
=

b

sin θ

∣

∣

∣

∣

dθ

db

∣

∣

∣

∣

−1

(elastic scattering i = f)

with deflection function θ(b) depending on impact parameter b
assuming azimuthal symmetry (φ independence) of scattering
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Classical Description of Scattering

�

�

�

�

�

�

determine trajectories of particles

• solve Newtonian equations of motion mi~̈ri = ~Fi

(or use conservation laws for energy, momentum, angular momentum)

with given initial conditions (position, velocity)

⇒ ordinary time-dependent differential equations

• example: elastic Coulomb scattering of particle a
with energy E and impact parameter b on target A

~Fa = ZaZAe2

r2
~r
r

⇒ deflection function

θ(b) = 2 arccot
(

2bE
ZaZAe2

)

⇒ Rutherford cross section

dσR
dΩ =

(

ZaZAe2

4E

)2
1

sin4(θ2)
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Semiclassical Description

�

�

�

�

�
�

�
�

��	

�

combination of classical and quantal methods

• example: Coulomb excitation of nucleus a from ground state |i〉 to excited state |f〉
with excitation energy E = ~ω in time-dependent Coulomb potential

V (~x, t) = ZaZAe2

|~r(t)+~x| of target nucleus A

◦ excitation cross section
dσfi

dΩ = dσR
dΩ × Pfi

◦ Rutherford cross section dσR
dΩ

◦ excitation probability Pfi = |afi|
2

in first order time-dependent
perturbation theory with amplitude

afi =
1
i~

∫∞

−∞
dt e−iωt〈f |V (~x, t)|i〉

◦ application to exotic nuclei:
⇒ excitation to continuum states/breakup
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Quantal Description

determine scattering wavefunction

• solve Schrödinger equation with given boundary conditions

◦ time-dependent i~ ∂
∂tψ = Ĥψ ⇒ time evolution of wave packet

(not considered in the following)

◦ stationary Eψ = Ĥψ ⇒ fixed energy E

two formulations:
− partial differental equations
− integral equations

◦ boundary conditions:
“plane wave + outgoing (ingoing) spherical waves”

• define channels c = i, f that characterize asymptotic states
◦ partition, e.g. A+ a, B + b, C + γ, . . .
◦ additional quantum numbers, e.g. for particular states of nuclei A, a, . . .
◦ energy, momentum
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General Reaction Theory

• Stationary Scattering Theory



Stationary Scattering Theory I

theoretical formulation for reaction with nuclei a and A in initial channel

• total Hamiltonian Ĥ = Ĥa + ĤA + T̂aA + V̂aA with

◦ Hamiltonians Ĥa, ĤA of nuclei with wave functions φa, φA

Ĥaφa = Eaφa ĤAφA = EAφA

◦ kinetic energy operator of relative motion

T̂aA = − ~
2

2µaA
∆~raA with reduced mass µaA = mamA

ma+mA
and ~raA = ~ra − ~rA

◦ interaction potential V̂aA

• Hamiltonian without aA interaction Ĥ
(i)
0 = Ĥa + ĤA + T̂aA

⇒ wave function Φi = φi exp
(

i~ki · ~ri
)

~ri = ~raA ~ki = µaA

(

~ka
ma

−
~kA
mA

)

with φi = φaφA , Ĥ
(i)
0 Φi = (Ea + EA + EaA) Φi and EaA =

~
2k2i

2µaA
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Stationary Scattering Theory II

• full solution with total Hamiltonian ĤΨ
(±)
i = EΨ

(±)
i

• boundary condition: asymptotic form for large radii

Ψ
(±)
i → Φi +

∑

f

φff
(±)
fi

exp (±ikfrf)

rf
with Φi = φi exp

(

i~ki · ~ri
)

and scattering amplitude f
(±)
fi in final channels f

◦ “+” solution: outgoing spherical waves
◦ “−” solution: ingoing spherical waves

• differential cross section for reaction from initial channel i to final channel f

dσfi
dΩ

=
Jfr

2

Ji
with currents Ji, Jf of relative motion

◦ current in nonrelativistic quantum mechanics for wavefunction ψ

for particle with mass m ~J =
~

2mi

[

ψ∗
(

~∇ψ
)

−
(

~∇ψ∗
)

ψ
]
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Stationary Scattering Theory III

• initial state: current for wave function of relative motion

ψ = exp
(

i~ki · ~ri
)

⇒ ~Ji =
~~ki
µi

= ~vi = ~vaA

• final state: current for wave function of relative motion

ψ = f
(+)
fi

exp (±ikfrf)

rf
⇒ ~Jf →

∣

∣

∣
f
(+)
fi

∣

∣

∣

2

r2f

~kf
µf

~rf
rf

for rf → ∞

• cross section for reaction from initial state i to final state f

dσfi
dΩ

=
Jfr

2
f

Ji
=
kf
ki

∣

∣

∣
f
(+)
fi

∣

∣

∣

2

⇒ determine scattering amplitude f
(+)
fi

• methods to find f
(+)
fi :

◦ partial-wave expansion of wave function Ψ
(+)
i

◦ formulation with integral equation ⇒ operator formalism

Reaction Theory - 15 Stefan Typel



General Reaction Theory

• Partial-Wave Expansion



Partial-Wave Expansion I

elastic scattering A(a, a)A on a spherically symmetric short-range
potential VaA(r) for nonrelativistic energies (single channel)

• expansion of full wave function Ψ
(+)
i =

∞
∑

l=0

l
∑

m=−l

ϕ
(+)
l (r)

r
Ylm(r̂)φaφA

with radial wave functions ϕ
(+)
l and spherical harmonics Ylm

• ĤΨ
(+)
i = EiΨ

(+)
i = (Ea + EA + EaA)Ψ

(+)
i ⇒ radial Schrödinger equation

[

−
~
2

2µaA

d2

dr2
+
l(l + 1)

r2
+ VaA(r)

]

ϕ
(+)
l (r) = EaAϕ

(+)
l (r) with energy EaA = ~

2k2

2µaA

• boundary conditions:

◦ r = 0 ⇒ ϕ
(+)
l (r) = 0

◦ r → ∞ ⇒ ϕ
(+)
l (r) → ?, but short-range potential VaA(r) → 0 for r → ∞

⇒ linear combination of regular and irregular spherical Bessel functions
(modifications for Coulomb potentials)
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Partial-Wave Expansion II

• wavefunction without potential Φi = φaφA exp
(

i~ki · ~r
)

with ~ki = ki~ez

• partial-wave expansion Φi = 4π
∑

l,m

iljl(kir)Ylm(r̂)Y ∗
lm(k̂i)φaφA

with spherical Bessel functions jl, spherical harmonics Ylm, r̂ = ~r/r, k̂i = ~ki/ki

• use properties of spherical Bessel functions

j0(z) =
sin z

z
=
eiz − e−iz

2iz
jl = zl

(

−
1

z

d

dz

)l

j0(z) =
1

2iz

[

u
(+)
l (z)− u

(−)
l (z)

]

with in/outgoing spherical waves u
(±)
l (z) → exp

[

±i
(

z − lπ2
)]

for z → ∞

⇒ Φi = 4π
∑

l,m

il
1

2ikir

[

u
(+)
l (kir)− u

(−)
l (kir)

]

Ylm(r̂)Y ∗
lm(k̂i)φaφA
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Partial-Wave Expansion III

• scattering can only affect outgoing spherical waves u
(+)
l

⇒ introduce S-matrix elements Sl(ki) (complex numbers)
⇒ asymptotics of solution of Schrödinger equation

Ψ
(+)
i → 4π

∑

l,m

il
1

2ikir

[

Sl(ki)u
(+)
l (kir)− u

(−)
l (kir)

]

Ylm(r̂)Y ∗
lm(k̂i)φaφA

• asymptotics of scattering part

Ψ
(+)
i − Φi → 4π

∑

l,m

il
1

2ikir
[Sl(ki)− 1]u

(+)
l (kir)Ylm(r̂)Y ∗

lm(k̂i)φaφA

⇒ elastic scattering amplitude f
(+)
ii (θ) =

∑

l

2l + 1

2iki
[Sl(ki)− 1]Pl(cos θ)

with Legendre polynomials Pl, argument cos θ = r̂ · k̂i and

Pl(cos θ) = 4π
∑

m Ylm(r̂)Y ∗
lm(k̂i)
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Partial-Wave Expansion IV

• differential elastic scattering cross section

dσii
dΩ

=
∣

∣

∣
f
(+)
ii

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∑

l

2l + 1

2iki
[Sl(ki)− 1]Pl(cos θ)

∣

∣

∣

∣

∣

2

• total elastic scattering cross section

σel =

∫

dΩ
dσii
dΩ

= 2π

∫ 1

−1

d cos θ
∣

∣

∣
f
(+)
ii (θ)

∣

∣

∣

2

=
π

k2i

∑

l

(2l + 1) |Sl(ki)− 1|2

with orthogonality relation of Legendre polynomials
∫ 1

−1
dz Pl(z)Pl′(z) =

2
2l+1δll′

⇒ knowledge of S-matrix elements Sl sufficient to calculate cross sections
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Partial-Wave Expansion V
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• parametrization Sl = exp (2iδl) with scattering phase shifts δl ∈ [0, π]

⇒ asymptotics of radial wave functions

ul =
1
2i

[

Slu
(+)
l − u

(−)
l

]

→ exp (iδl) sin
(

kir + δl − lπ2
)

for r → ∞
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Partial-Wave Expansion VI

• calculation of cross section with current of full wave function Ψ
(+)
i

⇒ absorption cross section σabs =
π

k2i

∑

l

(2l + 1)
[

1− |Sl(ki)|
2
]

• total reaction cross section

σtot = σel + σabs =
2π

k2i

∑

l

(2l + 1)Re [1− Sl(ki)]

• scattering phase shifts δl real ⇒ |Sl(ki)| = |exp (2iδl)| = 1

⇒ σabs = 0 only elastic scattering

• scattering phase shifts δl complex with Im(δl) > 0 ⇒ |Sl(ki)| = exp [−2Im(δl)] < 1

⇒ σabs > 0 reactions with removal of flux from elastic scattering channel

◦ can be described phenomenologically by optical potential

U = V + iW with real and imaginary contributions (V , W real)
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Partial-Wave Expansion VII

isolated narrow resonance in partial wave l

• resonance energy Er • resonance width Γ ≪ Er

• different parametrisation of S-matrix element

Sl(E) =
E − Er − iΓ2
E − Er + iΓ2

⇒ |Sl(E)| = 1 ⇒ Sl(E)− 1 = −i
Γ

E − Er + iΓ2

⇒ elastic scattering cross section

σel =
π

k2i
(2l + 1)

Γ2

(E − Er)
2
+ Γ2

4

Breit-Wigner form

general formulation with many resonances and many channels
including Coulomb potential
⇒ R-matrix theory with parameters: resonance energies and reduced widths
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General Reaction Theory

• Operator Formalism



Operator Formalism I

• simplified notation: point-like nuclei without internal structure

⇒ φa = φA = 1, Ea = EA = 0, E = Ei = EaA =
~
2k2i

2µaA

• solve Schrödinger equation ĤΨ =
(

T̂ + V̂
)

Ψ = EΨ with T̂ = Ĥ0 = − ~
2

2µaA
∆

• Φ0(~ki) = exp
(

i~ki · ~r
)

is solution of Schrödinger equation Ĥ0Φ0 = EΦ0

• rewrite full Schrödinger equation
(

Ĥ0 + V̂
)

Ψ = EΨ as V̂Ψ =
(

E − Ĥ0

)

Ψ

and introduce operator G
(±)
0 =

(

E − Ĥ0 ± iǫ
)−1

⇒ integral (Lippmann-Schwinger) equation Ψ(±) = Φ0(~ki) + G(±)
0 V̂Ψ(±)

◦ term with Φ0 ⇒ correct solution for V̂ = 0

◦ (±) forms for different asymptotics
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Operator Formalism II

• explicit form Ψ(±)(~r) = Φ0(~ki, ~r) +

∫

d3r′ G
(±)
0 (~r, ~r′)V̂ (~r′)Ψ(±)(~r′)

with Green’s function G
(±)
0 (~r, ~r′) = −2µaA

~2

exp(±iki|~r−~r′|)
4π|~r−~r′|

• formal solution: Born series

Ψ(±) = Φ0(~ki) + G(±)
0 V̂Ψ(±) = Φ0(~ki) + G(±)

0 V̂ Φ0 + G(±)
0 V̂ G(±)

0 V̂ Φ0 + . . .

with integral operator G
(±)
0 [. . .] =

∫

d3r′ G
(±)
0 (~r, ~r′) [. . .]

• integration range of coordinate ~r′ limited by extension potential V

◦ for r ≫ r′ use approximation ki |~r − ~r′| ≈ kir − ~kf~r
′ + . . . with ~kf = ki

~r
r

⇒ Ψ(±)(~r) = Φ0(~ki, ~r)−
2µaA

~2

exp (±ikir)

4πr

∫

d3r′ exp
(

−i~kf · ~r′
)

V̂ (~r′)Ψ(±)(~r′)
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Operator Formalism III

• scattering amplitude

f
(±)
fi = −

µaA

2π~2

∫

d3r′ exp
(

−i~kf · ~r′
)

V̂ (~r′)Ψ(±)(~r′) = −
µaA

2π~2
Tfi

with T-matrix element Tfi = 〈Φ0(~kf)|V̂ |Ψ(+)(~ki)〉

⇒ knowledge of T-matrix elements Tfi sufficient to calculate cross sections

• reformulation
◦ introduce potential U with known solutions χ(±) (distorted waves)

of Schrödinger equation
(

Ĥ0 + Û
)

χ(±) = Eχ(±)

◦ use operator identity 1
A − 1

B = 1
B (B −A) 1

A

⇒ two-potential formula

Tfi = 〈Φ0(~kf)|Û |χ(+)(~ki)〉+ 〈χ(−)(~kf)|V̂ − Û |Ψ(+)(~ki)〉
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Operator Formalism IV

• generalisation with Gell-Mann–Goldberger relation for reaction A(a, b)B

Tfi = 〈φbφBΦ0(~kf)|ÛaA|φaφAχ
(+)
aA (~ki)〉+ 〈φbφBχ

(−)
bB (~kf)|V̂bB − ÛbB|Ψ

(+)
aA (~ki)〉

• potential UaA acting only on coordinates of relative motion, not internal coordinates

⇒ 〈φbφBΦ0(~kf)|ÛaA|φaφAχ
(+)
aA (~ki)〉 = 0 if aA 6= bB

• for rearrangement reactions aA 6= bB

◦ exact results: − “post form” Tfi = 〈φbφBχ
(−)
bB (~kf)|V̂bB − ÛbB|Ψ

(+)
aA (~ki)〉

− “prior form” Tfi = 〈Ψ
(−)
bB (~kf)|V̂aA − ÛaA|φaφAχ

(−)
aA (~ki)〉

⇒ exact scattering wave fuctions Ψ
(+)
aA or Ψ

(−)
bB still needed

• potentials V̂aA and V̂bB depend on coordinates of all nucleons in the nuclei,
should be consistent with those used for microscopic description of nuclei itself
⇒ challenge: combination of structure and reaction calculations
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Cross Sections I

• general form for two-body reaction A(a, b)B in c.m. system

◦ energies Ei = Ea + EA +
p2aA
2µaA

, Ef = Eb + EB +
p2bB
2µbB

◦ with spins ⇒ averaging over initial states, summation over final states

dσ(a+A→ b+B) =
2π

~

µaA

paA

1

(2Ja + 1)(2JA + 1)

∑

ma,mA

∑

mb,mB

×

∫

d3pbB
(2π~)3

|TbBaA|
2 δ(Ei − Ef +Qa+A→B+b)

with d3pbB = p2bBdpbBdΩbB, dEf/dpbB = pbB/µbB and integration over pbB

⇒
dσ

dΩbB
(a+ A→ b+B) =

µaAµbB

(2π)2~4
pbB
paA

1

(2Ja + 1)(2JA + 1)

∑

ma,mA

∑

mb,mB

|TbBaA|
2

◦ similar expression for inverse reaction B(b, a)A

• result can be generalized to reactions with three or more particles in the final state
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Cross Sections II

• cross sections for reactions A(a, b)B and B(b, a)A

dσ

dΩbB
(a+A→ b+ B) =

µaAµbB

(2π)2~4
pbB
paA

1

(2Ja + 1)(2JA + 1)

∑

ma,mA

∑

mb,mB

|TbBaA|
2

dσ

dΩaA
(b+B → a+A) =

µbBµaA

(2π)2~4
paA
pbB

1

(2Jb + 1)(2JB + 1)

∑

mb,mB

∑

ma,mA

|TaAbB|
2

• time-reversal symmetry |TbBaA|
2 = |TaAbB|

2

⇒ theorem of detailed balance (for two-body reactions)

(2Ja + 1)(2JA + 1) p2aA
dσ

dΩ
(a+ A→ b+B)

= (2Jb + 1)(2JB + 1) p2bB
dσ

dΩ
(b+ B → a+A)

◦ application: indirect methods (e.g. Coulomb dissociation method)

Reaction Theory - 28 Stefan Typel



Applications



Relevance of Reaction Theory

applications

• direct interest in relevant reaction cross sections, e.g.
◦ prediction of production rates of exotic nuclei
(not considered here)

◦ astrophysics: nucleosynthesis

• reactions to study of nuclear structure, e.g.
◦ gross properties: radii, density distributions, . . .
⇒ elastic scattering (with electrons, protons, α-particles, . . . ),

absorption reactions, . . . (not considered here)

◦ detailed structure:
− excitation of specific states with electromagnetic or nuclear interaction
− study of single-particle structure

challenges with exotic nuclei

• correct treatment of continuum states
• combination of reaction theory with modern structure models
• choice of nuclear interaction
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Reactions of Astrophysical Interest

0 2 4 6 8 10 12 14 16
N

0

2

4

6

8

10

12

Z

(p,γ)
(α,γ)

(α,p)

(p,α)

(α)

(β+
), (EC)

(p,β+
), (

3
He,2p)

CNO cycles

pp chains

• nuclear reactions rates
◦ input for astrophysical models
◦ various processes (pp-chain, CNO cycles,
s- , r-, p-, rp-process)

◦ often unstable nuclei involved
◦ cross sections at low energies needed
⇒ direct measurement practically impossible

◦ alternative: indirect methods

• nuclei in hot plasma
⇒ Maxwellian-averaged reaction rate

raA =
ρaρA

1 + δaA
〈σv〉 with 〈σv〉 =

√

8

πµaA

∫

dE

(kT )3/2
Eσ(E) exp

(

−
E

kT

)

• reactions with charged particles
⇒ cross section needed in Gamov window around effective energy

Eeff = 0.1220 µ
1/3
aA (ZaZZT9)

2/3 MeV

with effective mass µaA in amu and temperature T9 = T/(109 K)
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Reactions of Astrophysical Interest
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• nuclear reactions rates
◦ input for astrophysical models
◦ various processes (pp-chain, CNO cycles,
s- , r-, p-, rp-process)

◦ often unstable nuclei involved
◦ cross sections at low energies needed
⇒ direct measurement practically impossible

◦ alternative: indirect methods

• nuclei in hot plasma
⇒ Maxwellian-averaged reaction rate

raA =
ρaρA

1 + δaA
〈σv〉 with 〈σv〉 =

√

8

πµaA

∫

dE

(kT )3/2
Eσ(E) exp

(

−
E

kT

)

• reactions with charged particles
⇒ cross section needed in Gamov window around effective energy

Eeff = 0.1220 µ
1/3
aA (ZaZZT9)

2/3 MeV

with effective mass µaA in amu and temperature T9 = T/(109 K)
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Scattering with Coulomb Potential I

• modification with Coulomb potential VCoul =
ZaZAe2

r in initial state

⇒ replacement of plane wave in initial state
with exact solution for Coulomb scattering (analytically known)

⇒ asymptotics of radial wave functions with additional nuclear interaction

ul →
exp (2iσl)

2i

[

Slu
(+)
l − u

(−)
l

]

for r → ∞

with Coulomb scattering phase shift σl = arg Γ(l + 1 + iη)

depending on the Sommerfeld parameter η =
ZaZAe

2

~vaA
, vaA = paA

µaA

and u
(±)
l (kir) = exp (∓iσl) [Gl ± iFl] → exp

[

±i
(

kir − 2η ln(kir) + σl − l
π

2

)]

with regular and irregular Coulomb wave functions Fl and Gl
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Scattering with Coulomb Potential II

• elastic scattering amplitude

f
(+)
ii (θ) =

∑

l

2l + 1

2iki
[exp (2iσl)Sl(ki)− 1]Pl(cos θ) = f

(+)
C (θ) + f

(+)
N (θ)

with Coulomb scattering amplitude (analytically known)

f
(+)
C (θ) =

∑

l

2l + 1

2iki
[exp (2iσl)− 1]Pl(cos θ)

and nuclear scattering amplitude

f
(+)
N (θ) =

∑

l

2l + 1

2iki
exp (2iσl) [Sl(ki)− 1]Pl(cos θ)

⇒ interference in cross sections!
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Scattering with Coulomb Potential III
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E = 0.05 MeV
E = 0.02 MeV

example: p + 7Be scattering
solid lines: l = 0

effect of Coulomb barrier (and centrifugal barrier)
⇒ reduced probability of finding

the particles at small distance R

• introduce penetrability factor

Pl(R) =
limr→∞

∣

∣

∣
u
(±)
l

(η;kr)
∣

∣

∣

2

∣

∣

∣
u
(±)
l

(η;kR)
∣

∣

∣

2 = 1
F 2
l
(η,kR)+G2

l
(η,kR)

• s-wave scattering (l = 0):

lim
R→0

P0(R) =
2πη

exp(2πη)− 1

• define astrophysical S factor

S(E) = σ(E) E exp (2πη)

weak energy dependence
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Scattering with Coulomb Potential III
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• s-wave scattering (l = 0):
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P0(R) =
2πη

exp(2πη)− 1

• define astrophysical S factor

S(E) = σ(E) E exp (2πη)

weak energy dependence
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Scattering with Coulomb Potential III
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• s-wave scattering (l = 0):

lim
R→0

P0(R) =
2πη

exp(2πη)− 1

• define astrophysical S factor

S(E) = σ(E) E exp (2πη)

weak energy dependence
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Indirect Methods I

Coulomb dissociation

• study inverse of radiative

capture reaction

b(x, γ)a ⇔ a(γ, x)b

• use Coulomb field of

target nucleus A as

source of photons

a(γ, x)b ⇔ A(a, bx)A

⇓
absolute S factors

as a function of energy

ANC method

• extract asymptotic

normalization coefficient

of ground state wave

function of nucleus a

from transfer reactions

• calculate matrix elements

for radiative capture

reaction b(x, γ)a

⇓
S factor at zero energy

Trojan-Horse method

• study three-body reaction

A + a → C + c + b

with Trojan horse

a = b + x

and spectator b

• extract cross section of

two-body reaction

A + x → C + c

⇓
energy dependence

of S factor
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Indirect Methods II

a=(b+x) b

x

AA A B=(A+x)

a=(b+x) b

x

a=(b+x)

A C

b

c
x

Coulomb dissociation

photon exchange

ANC method

transfer of particle to
bound state

Trojan-Horse method

transfer of particle to
continuum state

• similar reaction mechanisms: transfer of virtual particle

• final state with three particles (bound/continuum states)

• theoretical descripton with direct reaction theory
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Indirect Methods III

general characteristics:

• two-body reaction at low-energy is replaced by three-body reaction

at “high-energy” with large cross section

◦ Coulomb dissociation b(x, γ)a⇒ A(a, bx)A

◦ ANC method b(x, γ)a⇒ A(a,B)b a = (b+ x) B = (A+ x)

◦ Trojan-horse method A(x, c)C ⇒ A(a,Cc)b

• transfer of virtual particle (photon γ or nucleus x)

• relation of cross sections is found with the help of nuclear direct reaction theory

• theoretical approximations essential

• study of peripheral reactions

− asymptotics of wave functions relevant

− selection of suitable kinematical conditions important
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Coulomb Dissociation Method I

electric field

target

projectile
A

a b
x

fragments

exc

exotic nucleus

stable nucleus

breakup

threshold

E    ~ few MeV

correspondence
(Fermi 1924, Weizsäcker-Williams 1932)

time-dependent electromagnetic field
of highly-charged nucleus A

during scattering of projectile a
m

spectrum of (virtual, equivalent) photons

radiative capture b(x, γ)a
detailed balance m

photo absorption a(γ, x)b
equivalent photons in Coulomb field of target A m

Coulomb dissociation A(a, bx)A

only ground state transitions !

• further application:
study structure of nucleus a
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Coulomb Dissociation Method II

breakup cross section for reaction A(a, bx)A (in first-order approximation,
with angular integration over relative momentum between fragments)

⇒
d2σ

dEbxdΩaA
=

1

Eγ

∑

πλ

σπλ(a+ γ → b+ x)
dnπλ
dΩaA

π = E,M λ = 1, 2, . . .

• photo absorption cross section σπλ(a+ γ → b+ x)

• virtual photon numbers dnπλ
dΩaA

depend on kinematics: scattering angle ϑaA or

impact parameter b, projectile velocity v, excitation energy Eγ = ~ω

• calculation
◦ in semiclassical approximation with trajectories
◦ with quantal methods using scattering wave functions
in partial-wave expansion or eikonal approximation

• final state: usually three charged particles A, b, x
⇒ higher-order effects = multi-step transitions/Coulomb post-acceleration?
⇒ better approximation of full scattering wave function needed
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Coulomb Dissociation Method III

a=(b+x) b

x

AA
• Coulomb dissociation cross section

d2σ

dEbxdΩAa
=

1

Eγ

∑

πλ

σπλ(a+ γ → b+ x)
dnπλ
dΩAa

• theorem of detailed balance

σπλ(a+ γ → b+ x) =
(2Jb + 1)(2Jx + 1)

2(2Ja + 1)

k2bx
k2γ

σπλ(b+ x→ a+ γ)

with photo absorpton and radiative capture cross sections

• phase space factor
k2bx
k2γ

=
2µbxc

2Ebx

(Ebx + Sbx)2
≫ 1 for not too small Ebx

• virtual photon numbers
dnπλ
dΩAa

≫ 1 for large ZA and for not too high Ebx

⇒ large Coulomb dissociation cross sections
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Applications

• Transfer Reactions



Transfer Reactions I

A B=(A+x)

a=(b+x) b

x

a=(b+x)

A C

b

c
x

application of transfer reactions

• indirect methods for astrophysics:
Coulomb breakup, ANC method, Trojan Horse method

• study of nuclear structure:
◦ pickup reaction, e.g. (p,d), (d,t), (d,3He), (d,6Li), . . .
◦ stripping reaction, e.g. (d,p), (d,n), (3He,p), . . .
◦ knockout/breakup reactions, e.g. (p,pn), (p,pα), . . .

theoretical description

• information on reaction process in T-matrix elements
⇒ full scattering wave function Ψ(±) needed,

in general complicated many-body wave function
⇒ choose appropriate approximations

• reactions with stable nuclei: two particles in final state,
⇒ transfer to bound states

• reaction with exotic nuclei: in most cases three (or more) particles in final state
⇒ transfer to continuum states, study of correlations
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Transfer Reactions II

coordinates in two-body system a + A

• relative and center-of-mass coordinates

~raA = ~ra − ~rA ~R =
ma~ra +mA~rA
ma +mA

~paA = µaA

(

~pa
ma

−
~pA
mA

)

~P = ~pa + ~pA with reduced mass µaA = mamA
ma+mA

coordinates in three-body system b + c + C = b + B

• Jacobi coordinates ⇒ three possibilities, e.g.

~rcC = ~rc − ~rC ~rb(cC) = ~rb − ~rB ~R =
mb~rb +mc~rc +mC~rC

mb +mc +mC

~pcC = µcC

(

~pc
mc

−
~pC
mC

)

~pb(cC) = µbB

(

~pb
mb

−
~pB
mB

)

~P = ~pb + ~pc + ~pC

with ~rB = mc~rc+mC~rC
mc+mC

, ~pB = ~pc + ~pC, mB = mc +mC, µbB = mbmB
mb+mB
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Transfer Reactions III

• general form of cross section for three-body reaction A(a, cC)b in c.m. system

◦ energies Ei = Ea + EA +
p2aA
2µaA

, Ef = Eb + Ec + EC +
p2cC
2µcC

+
p2bB
2µbB

dσ(a+A→ b+ c+ C) =
2π

~

µaA

paA

1

(2Ja + 1)(2JA + 1)

∑

ma,mA

∑

mb,mc,mC

×

∫

d3pbB
(2π~)3

d3pcC
(2π~)3

∣

∣T(bcC)(aA)

∣

∣

2
δ(Ei − Ef +Qa+A→C+c+b)

with d3pbB = p2bBdpbBdΩbB, d
3pcC = p2cCdpcCdΩcC, dEf/dpbB = pbB/µbB

EcC = p2cC/(2µcC), dEcC/dpcC = pcC/µcC and integration over pbB

⇒
d3σ

dEcCdΩcCdΩcB
(a+A→ b+ c+ C)

=
µaAµbBµcC

(2π)5~7
pbBpcC
paA

1

(2Ja + 1)(2JA + 1)

∑

ma,mA

∑

mb,mc,mC

∣

∣T(bcC)(aA)

∣

∣

2

◦ integration over unobserved quantities ⇒ less detailed information

Reaction Theory - 42 Stefan Typel



Transfer Reactions IV

T-matrix elements for transfer reactions A+ a→ B + b

with a = b+ x, B = A+ x

• introduce optical potentials Uij (ij = Aa,Bb)

and distorted waves χ
(±)
ij with (Tij + Uij)χ

(±)
ij = Eijχ

(±)
ij

◦ post form: T(Bb)(Aa) = 〈φBφbχ
(−)
Bb |V̂Bb − ÛBb|Ψ

(+)
Aa 〉 exact!

◦ prior form: T(Bb)(Aa) = 〈Ψ(−)
Bb |V̂Aa − ÛAa|φAφAχ

(+)
Aa 〉 exact!

• approximations for exact scattering wave functions:

◦ distorted-wave Born approximation Ψ
(+)
Aa → φaφAχ

(+)
Aa or Ψ

(−)
Bb → φBφbχ

(−)
Bb

◦ better: Ψ
(+)
Aa or Ψ

(−)
Bb from coupled-channel calculation

◦ other methods
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Transfer Reactions V

A B=(A+x)

a=(b+x) b

x

introduction of spectroscopic amplitudes/factors

• introduce overlap functions
=̂ wave function of transferred particle

Φa
bx = 〈φb|φa〉 ΦB

Ax = 〈φA|φB〉

(integration only over internal coordinates)

• approximation Φa
bx ≈ Aa

bxϕ
a
bx(~rbx)φx ΦB

Ax ≈ AB
Axϕ

B
Ax(~rAx)φx

with single-particle wave functions ϕa
bx, ϕ

A
Bx

generated from (standard) potentials (usually Woods-Saxon type)

◦ for bound states 〈ϕa
bx|ϕ

a
bx〉 = 〈ϕA

Bx|ϕ
A
Bx〉 = 1

and spectroscopic amplitudes Aa
bx, A

B
Ax

⇒ spectroscopic factors Sa
bx = |Aa

bx|
2 SB

Ax =
∣

∣AB
Ax

∣

∣

2

◦ model dependent quantities!
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Transfer Reactions VI

distorted-wave Born approximation (DWBA) and spectroscopic factors

• approximation for T-matrix elements (still expensive to calculate)

◦ post form: T(Bb)(Aa) ≈ AB∗
AxA

a
bx 〈ϕ

B
Ax(~rAx)χ

(−)
Bb |V̂Bb − ÛBb|ϕa

bx(~rbx)χ
(+)
Aa 〉

◦ prior form: T(Bb)(Aa) ≈ AB∗
AxA

a
bx 〈ϕ

B
Ax(~rAx)χ

(−)
Bb |V̂Aa − ÛAa|ϕa

bx(~rbx)χ
(+)
Aa 〉

• distorted waves χ
(+)
Aa , χ

(−)
Bb from full calculation in partial-wave expansion

or eikonal approximation at high energies

• cross sections dσ ∝
∣

∣T(Bb)(Aa)

∣

∣

2
⇒ dσ ≈ Sa

bxS
B
Axdσsingle particle

• experimental spectroscopic factors Sa
bx, S

B
Ax from comparison

of measured cross sections with single-particle cross sections

• microscopic nuclear structure models: Sa
bx = 〈Φa

bx|Φ
a
bx〉, S

B
Ax = 〈ΦB

Ax|Φ
B
Ax〉

• choice of potentials V̂aA, V̂bB, ÛaA, ÛbB? often approximations

• interpretation if B = C + c is continuum state?
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Applications

• Coupled-Channel Approach



Coupled-Channel Approach I

explicit calculation of full scattering wave function

⇒ expansion Ψ
(+)
aA =

∑

cψc with all channels c = a+A, b+ B, . . .

and correct asymptotics ψc → φcf
(+)
c(aA)

exp (ikcrc)

rc
with φc = φaφA, φbφB, . . .

• Hamiltonian Ĥ = Ĥc + T̂c + V̂c

with, e.g. Ĥc = Ĥa + ĤA, T̂c = T̂Aa, V̂c = V̂aA for c = a+A

• stationary Schrödinger equation ĤΨ
(+)
aA = EΨ

(+)
aA

◦ projection on channel wave functions φc
⇒ coupled equations

〈φc|T̂c + V̂c + Ec − E|ψc〉 = −
∑

c′〈φc|Ĥ − E|ψc′〉

with, e.g., Ec = Ea + EA for c = a+A in diagonal part
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Coupled-Channel Approach II

problems

• infinitely many channels (different excited states and partitions, partial waves)
truncation needed ⇒ choice of relevant channels

• asymptotic solution in channels with three particles
⇒ different methods/approximations

◦ use hyperspherical coordinates, but no exact solution for three charges particles

◦ use product wave function φbcC ≈ φbΨ
(+)
cC

with two-body scattering wave function Ψ
(+)
cC

− continuum states depend on energy, not normalizable
− discretize continuum by introducing energy bins

φbcC = φb
∫ Emax

Emin
dE w(E) Ψ

(+)
cC (E) with appropriate weight functions w(E)

⇒ φbcC normalizable

⇒ continuum-discretized coupled channels (CDCC) approach
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Coupled-Channel Approach III

CDCC approach

• single-particle states and collective states can be considered

• binning of continuum can be adapted to resonances

• numerical convergence can be tested

• computationable expensive, only for not too high energies

optical potentials used in calculation of T-matrix elements

• imaginary part considers loss of flux to open channels
◦ consistency with explicit treatment of open channels?

• often systematic potentials used from fits of elastic scattering cross sections
◦ mostly available for scattering of nucleons and light nuclei (d, α, . . . )
◦ usually not available for exotic nuclei

• other approaches: e.g.
◦ single-folding or double-folding potentials
◦ dispersive methods
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Summary



Summary

• information on reactions is contained in cross sections
◦ depend only on asymptotics of scattering wave functions
◦ knowledge of S-matrix elements or T-matrix elements sufficient
◦ many different types of reactions and kinematical conditions
◦ many methods: partial-wave expansion, R-matrix theory, DWBA, CDCC, . . .

• reactions with exotic nuclei
◦ direct interest in reaction cross sections (e.g. astrophysics)
◦ reactions as tool to study nuclear structure
◦ major challenges:
− adaption of standard methods to specific conditions
− combination of reaction theory with modern nuclear structure models
− treatment of (many-body) continuum states
− choice and consistent application of potentials

⇒ need for development and many exciting applications in the future
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