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Introduction
We will cover only RooFit/RooStats

Statistical tools for: 
point estimation: determine the best estimate of a parameter

estimation of confidence (credible) intervals 

lower/upper limits or multi-dimensional contours

hypothesis tests: 

evaluation of p-value for one or multiple hypotheses (discovery 
significance)

Model description and sharing of results

analysis combination
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MathMore
 Algorithms and functions

Core 
libraries

Histogram Library

TH1 TF1 TGraph

uses

plug-ins

RooStats

• Large set of mathematical libraries and tools needed for event reconstruction, 
simulation and statistical data analysis
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Function Minimization
Common  interface class (ROOT::Math::Minimizer) 
Existing implementations available as plug-ins: 

Minuit  (based on class TMinuit, direct translation from Fortran code) 
with Migrad, Simplex, Minimize algorithms

Minuit2 (new C++ implementation with OO design) 
with Migrad, Simplex, Minimize and Fumili2 

Fumili (only for least-square or log-likelihood minimizations)
GSLMultiMin: conjugate gradient  minimization algorithm from GSL (Fletcher-Reeves, BFGS)
GSLMultiFit:  Levenberg-Marquardt (for minimizing least square functions) from GSL
Linear for least square functions (direct solution, non-iterative method)
GSLSimAn: Simulated Annealing from GSL
Genetic:   based on a genetic algorithm implemented in TMVA 

All these are available for ROOT fitting and in RooFit/RooStats

Possible to combine them (e.g. use Minuit and Genetic)

Easy to extend and add new implementations
e.g. minimizer based on NagC exists in the development branch (see here)
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https://root.cern.ch/svn/root/branches/dev/mathDev/math/mathnag
https://root.cern.ch/svn/root/branches/dev/mathDev/math/mathnag
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Outline
Introduction to RooFit 

Basic functionality 
Model building using the workspace
Composite models 

Exercises on RooFit: 
building and fitting models

Introduction to RooStats
Interval estimation tools (Likelihood/Bayesian)
Hypothesis tests 
Frequentist interval/limit calculator (CLs)

Exercises on interval/limit estimation and discovery 
significance (hypothesis test)

5

Materia
l based on slides fro

m W. 

Verkerke (author of RooFit)
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RooFit
Toolkit for data modeling 

developed by W. Verkerke and D. Kirkby

model distribution of observable x in terms of 
parameters p

probability density function (pdf): P(x;p) 
pdf are normalized over allowed range of observables 
x with respect to the parameters p
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Wouter Verkerke, NIKHEF 

Mathematic – Probability density functions

• Probability Density Functions describe probabilities, thus
– All values most be >0 

– The total probability must be 1 for each p, i.e.

– Can have any number of dimensions

• Note distinction in role between parameters (p) and observables (x)
– Observables are measured quantities

– Parameters are degrees of freedom in your model
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Why RooFit ? 

ROOT function framework can handle complicated 
functions but difficult for users

require writing large amount of code
Normalization of p.d.f. not always trivial

RooFit does automatically for user 
In complex fit, computation performance important

need to optimize code for acceptable performance
RooFit provides built-in optimization 

evaluation only when needed
Simultaneous fit to different data samples
Provide full description of model for further use
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RooFit
RooFit provides functionality for building the pdf’s

complex model building from standard 
components
composition with addition product and 
convolution

All models provide the functionality for 
maximum likelihood fitting 
toy MC generator
visualization 

Extension of ROOT functionality

9
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RooFit Modeling
Mathematical concepts are represented as C++ objects

variable RooRealVar

function RooAbsReal

PDF RooAbsPdf

space point RooArgSet

list of space points RooAbsData

integral RooRealIntegral

RooFit classMathematical concept

10
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RooFit Modeling
Gaus(x,m,s)Example: Gaussian pdf

RooRealVar x(“x”,”x”,2,-10,10)
RooRealVar s(“s”,”s”,3) ;
RooRealVar m(“m”,”m”,0) ;
RooGaussian g(“g”,”g”,x,m,s) 

RooRealVar x

RooRealVar m

RooRealVar s

RooGaussian g

RooFit code: 

11

Represent relations between variables and functions as 
client/server links between objects
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RooFit Functionality
pdf visualization

RooPlot * xframe = x->frame();
pdf->plotOn(xframe);
xframe->Draw();

Plot range taken from limits of x

Axis label from gauss title

Unit 
normalizationA RooPlot is an empty frame

capable of holding anything
plotted versus it variable
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RooFit Functionality
Toy MC generation from any pdf

data visualization

RooDataSet * data = pdf->generate(*x,10000);

RooPlot * xframe = x->frame();
data->plotOn(xframe);
xframe->Draw();

Generate 10000 events from Gaussian p.d.f and show distribution

Note that dataset is unbinned

(vector of data points, x, values)

Binning into histogram is performed 
in data->plotOn() call
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RooFit Functionality
Fit of model to data

e.g. unbinned maximum likelihood fit 

data and pdf visualization after fit

RooPlot * xframe = x->frame();
data->plotOn(xframe);
pdf->plotOn(xframe);
xframe->Draw();

pdf = pdf->fitTo(data);

PDF
automatically
normalized
to dataset

14
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RooFit Workspace
RooWorkspace class: container for all objected created: 

full model configuration 
PDF and parameter/observables descriptions
uncertainty/shape of nuisance parameters

(multiple) data sets
Maintain a complete description of all the model

possibility to save entire model in a ROOT file 
Combination of results joining workspaces in a single one
All information is available for further analysis 

common format for combining and sharing physics results
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RooWorkspace workspace(“w”);
workspace.import(*data);
workspace.import(*pdf);
workspace.writeToFile(“myWorkspace.root”)
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RooFit Factory
RooRealVar x(“x”,”x”,2,-10,10)
RooRealVar s(“s”,”s”,3) ;
RooRealVar m(“m”,”m”,0) ;
RooGaussian g(“g”,”g”,x,m,s) 

The workspace provides a factory method to auto-
generates objects from a math-like language
(the p.d.f is made with 1 line of code instead of 4)

RooWorkspace w; 
w.factory(“Gaussian::g(x[2,-10,10],m[0],s[3])”)

In the tutorial we will work using the workspace 
factory to build models
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Using the workspace 

• Workspace
– A generic container class for all RooFit objects of your project

– Helps to organize analysis projects

• Creating a workspace

• Putting variables and function into a workspace

– When importing a function or pdf, all its components (variables) are 
automatically imported too

RooWorkspace w(“w”) ;  

  RooRealVar x(“x”,”x”,-10,10) ;
  RooRealVar mean(“mean”,”mean”,5) ;
  RooRealVar sigma(“sigma”,”sigma”,3)  ;
  RooGaussian f(“f”,”f”,x,mean,sigma) ;

  // imports f,x,mean and sigma
  w.import(f) ; 
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Using the workspace 

• Looking into a workspace

• Getting variables and functions out of a workspace

• Writing workspace and contents to file

  w.Print() ;

  variables
  ---------
  (mean,sigma,x)

  p.d.f.s
  -------
  RooGaussian::f[ x=x mean=mean sigma=sigma ] = 0.249352

  // Variety of accessors available

  RooRealVar * x = w.var(“x”);

  RooAbsPdf * f = w.pdf(“f”);

  w.writeToFile(“wspace.root”) ;
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Using the workspace 

• Organizing your code – 
Separate construction and use of models

  void driver() {
    RooWorkspace w(“w”) ;

    makeModel(w) ;

    useModel(w) ;

  }

 

  void makeModel(RooWorkspace& w) {

    // Construct model here

  }

  void useModel(RooWorkspace& w) {

    // Make fit, plots etc here

  }
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Factory syntax

• Rule #1 – Create a variable 

• Rule #2 – Create a function or pdf object

– Leading ‘Roo’ in class name can be omitted

– Arguments are names of objects that already exist in the workspace

– Named objects must be of correct type, if not factory issues error

– Set and List arguments  can be constructed with brackets {}

x[-10,10]   // Create variable with given range
x[5,-10,10] // Create variable with initial value and range
x[5]        // Create initially constant variable 

Gaussian::g(x,mean,sigma) 
         RooGaussian(“g”,”g”,x,mean,sigma)

Polynomial::p(x,{a0,a1}) 
         RooPolynomial(“p”,”p”,x”,RooArgList(a0,a1));

ClassName::Objectname(arg1,[arg2],...)
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Factory syntax

• Rule #3 – Each creation expression returns the name of the 
object created
– Allows to create input arguments to functions ‘in place’ rather than in 

advance

• Miscellaneous points
– You can always use numeric literals where values or functions are expected

– It is not required to give component objects a name, e.g.

Gaussian::g(x[-10,10],mean[-10,10],sigma[3]) 
     "x[-10,10] 
 mean[-10,10]
 sigma[3]
 Gaussian::g(x,mean,sigma)

Gaussian::g(x[-10,10],0,3)  

SUM::model(0.5*Gaussian(x[-10,10],0,3),Uniform(x)) ;  
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Model building – (Re)using standard components

• RooFit provides a collection of compiled standard PDF classes

RooArgusBG

RooPolynomial

RooBMixDecay

RooHistPdf

RooGaussian

Basic
Gaussian, Exponential, Polynomial,…
Chebychev polynomial

Physics inspired
ARGUS,Crystal Ball, 
Breit-Wigner, Voigtian,
B/D-Decay,….

Non-parametric
Histogram, KEYS

Easy to extend the library: each p.d.f. is a separate C++ class
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Model building – (Re)using standard components

• List of most frequently used pdfs and their factory spec

 Gaussian       Gaussian::g(x,mean,sigma)

 Breit-Wigner BreitWigner::bw(x,mean,gamma)

 Landau          Landau::l(x,mean,sigma)

 Exponential           Exponential::e(x,alpha)

 Polynomial   Polynomial::p(x,{a0,a1,a2})

 Chebychev      Chebychev::p(x,{a0,a1,a2})

 Kernel Estimation        KeysPdf::k(x,dataSet)

 Poisson        Poisson::p(x,mu)

 Voigtian      Voigtian::v(x,mean,gamma,sigma)
(=BW⊗G)
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Factory syntax – using expressions

• Customized p.d.f from interpreted expressions 

• Customized class, compiled and linked on the fly

• re-parametrization of variables (making functions)

– note using expr (builds a function, a RooAbsReal) 

– instead of EXPR (builds a pdf, a RooAbsPdf)

  w.factory(“EXPR::mypdf(‘sqrt(a*x)+b’,x,a,b)”) ;

  w.factory(“CEXPR::mypdf(‘sqrt(a*x)+b’,x,a,b)”) ;

  w.factory(“expr::w(‘(1-D)/2’,D[0,1])”) ;

This usage of upper vs  lower case applies also for other factory commands 

(SUM, PROD,.... )
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RooBMixDecay

RooPolynomial

RooHistPdf
•

RooArgusBG

Model building – (Re)using standard components

• Most realistic models are constructed as the sum of one or more p.d.f.s (e.g. 
signal and background)

• Facilitated through operator p.d.f RooAddPdf

RooAddPdf
+

RooGaussian
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Factory syntax:  Adding p.d.f. 

• Additions of PDF (using fractions)

– Note that last PDF does not have an associated fraction

• PDF additions (using expected events instead of fractions)

– the resulting model will be extended

– the likelihood will contain a Poisson term depending on the total number of 
expected events (Nsig+Nbkg)

SUM::name(frac1*PDF1,frac2*PDF2,...,PDFN)  

  SUM::name(frac1*PDF1,PDFN)  

  SUM::name(Nsig*SigPDF,Nbkg*BkgPDF)  

L (x | p) -> L(x|p)Poisson(Nobs,Nexp)
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Component plotting - Introduction

• Plotting, toy event generation and 
fitting works identically for 
composite p.d.f.s
– Several optimizations applied behind 

the scenes that are specific to 
composite models (e.g. delegate event 
generation to components)

• Extra plotting functionality specific 
to composite pdfs

– Component plotting

  
  // Plot only argus components
  w::sum.plotOn(frame,Components(“argus”),LineStyle(kDashed)) ;

  // Wildcards allowed
  w::sum.plotOn(frame,Components(“gauss*”),LineStyle(kDashed)) ;
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RooBMixDecay

RooPolynomial

RooHistPdf
•

RooArgusBG

RooGaussian

Model building – Products of uncorrelated p.d.f.s

RooProdPdf*
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Uncorrelated products – Mathematics and constructors

• Mathematical construction of products of uncorrelated p.d.f.s is 
straightforward

– No explicit normalization required  If input p.d.f.s are unit normalized, 
product is also unit normalized

– (Partial) integration and toy MC generation automatically uses factorizing 
properties of product, e.g.                        is deduced from structure. 

• Corresponding factory operator is PROD

2D nD

  w.factory(“Gaussian::gx(x[-5,5],mx[2],sx[1])”) ;
  w.factory(“Gaussian::gy(y[-5,5],my[-2],sy[3])”) ;

  w.factory(“PROD::gxy(gx,gy)”) ;
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Introducing correlations through composition

• RooFit pdf building blocks do not require variables as input, just 
real-valued functions
– Can substitute any variable with a function expression in parameters and/or 

observables

– Example: Gaussian with shifting mean

– No assumption made in function on a,b,x,y being observables or 
parameters, any combination will work

  w.factory(“expr::mean(‘a*y+b’,y[-10,10],a[0.7],b[0.3])”) ;
  w.factory(“Gaussian::g(x[-10,10],mean,sigma[3])”) ;
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Operations on specific to composite pdfs

• Tree printing mode of workspace reveals component structure – 
w.Print(“t”)

– Can also make input files for GraphViz visualization
(w.pdf(“sum”)->graphVizTree(“myfile.dot”))

– Graph output on ROOT Canvas in near future
(pending ROOT integration
of GraphViz package)

  RooAddPdf::sum[ g1frac * g1 + g2frac * g2 + [%] * argus ] = 0.0687785  
      RooGaussian::g1[ x=x mean=mean1 sigma=sigma ] = 0.135335
      RooGaussian::g2[ x=x mean=mean2 sigma=sigma ] = 0.011109
      RooArgusBG::argus[ m=x m0=k c=9 p=0.5 ] = 0
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Constructing joint pdfs (RooSimultaneous)

• Operator class SIMUL to construct joint models 
at the pdf level
– need a discrete observable (category) to label the channels

• Construct joint datasets 

– contains observables (“x”) and category (“index”)

  // Pdfs for channels ‘A’ and ‘B’
  w.factory(“Gaussian::pdfA(x[-10,10],mean[-10,10],sigma[3])”) ;
  w.factory(“Uniform::pdfB(x)”) ;

  // Create discrete observable to label channels
  w.factory(“index[A,B]”) ;

  // Create joint pdf (RooSimultaneous)
  w.factory(“SIMUL::joint(index,A=pdfA,B=pdfB)”) ;

  RooDataSet *dataA, *dataB ;
  RooDataSet dataAB(“dataAB”,”dataAB”,
                     RooArgSet(*w.var(“x”),*w.cat(“index”)),
                     Index(*w.cat(“index”)),
                     Import(“A”,*dataA),Import(“B”,*dataB)) ;
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Constructing the likelihood

• So far focus on construction of pdfs, and basic use for fitting 
and toy event generation

• Can also explicitly construct the likelihood function of and pdf/
data combination
– Can use (plot, integrate) likelihood like any RooFit function object

RooAbsReal* nll = pdf->createNLL(data) ;

RooPlot* frame = parameter->frame() ;
nll->plotOn(frame,ShiftToZero()) ;



34

Constructing the likelihood

• Example – Manual MIMIZATION using MINUIT
– Result of minimization are immediately propagated to RooFit variable 

objects (values and errors)

– Also other minimizers (Minuit, GSL etc) supported

– N.B. Different minimizer can also be used from RooAbsPdf::fitTo

  // Create likelihood (calculation parallelized on 8 cores)
  RooAbsReal* nll = w::model.createNLL(data,NumCPU(8)) ;

  RooMinimizer m(*nll) ;            // create Minimizer class
  m.minimize(“Minuit2”,”Migrad”);  // minimize using Minuit2  
  m.hesse() ;                      // Call HESSE
  m.minos(w::param) ;              // Call MINOS for ‘param’

  RooFitResult* r = m.save() ; // Save status (cov matrix etc)

//fit a pdf to a data set using Minuit2 as minimizer 
pdf.fitTo(*data, RooFit::Minimizer(“Minuit2”,”Migrad”)) ; 
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Minuit2
Object-Oriented version of Minuit (re-written in C++)

same functionality with some improvements
single side parameter limits
better tools to debug minimization 
 capability to retrieve all information at each iteration
added Fumili algorithm 

support parallelization in gradient calculation 
Used now for complex fits in RooFit/RooStats (e.g. Higgs 
discovery fits)
Found to be more robust and able to converge faster (less 
iterations)
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Running Minuit2
To use Minuit2 for fitting: 

pdf->fitTo(*data, RooFit::Minimizer(“Minuit2”,”Migrad”));

or when using  ROOT fitting (TH1::Fit) or RooStats: 
ROOT::Math::MinimizerOptions::SetDefaultMinimizer(“Minuit2”)

Example of output log:  

36

MnSeedGenerator: for initial parameters FCN = 0

MnSeedGenerator: Initial state:   - FCN =                0 Edm =      1303.17 NCalls =      9

VariableMetric: start iterating until Edm is < 0.001

VariableMetric: Initial state   - FCN =                0 Edm =      1303.17 NCalls =      9

VariableMetric: Iteration #   1 - FCN =  -1244.112454315 Edm =      47.6952 NCalls =     18

VariableMetric: Iteration #   2 - FCN =  -1477.322027873 Edm =     0.337079 NCalls =     31

VariableMetric: Iteration #   3 - FCN =  -1478.857831678 Edm =    0.0555537 NCalls =     37

VariableMetric: Iteration #   4 - FCN =  -1479.014254322 Edm =   0.00688715 NCalls =     43

VariableMetric: Iteration #   5 - FCN =  -1479.022055997 Edm =  3.78846e-08 NCalls =     49

VariableMetric: After Hessian   - FCN =  -1479.022055997 Edm =  4.12083e-08 NCalls =     59

Minuit2Minimizer : Valid minimum - status = 0

FVAL  = -1479.02205599658964

Edm   = 4.12082593076253669e-08

Nfcn  = 59

mu   = 1.05369  +/-  0.0656498 (limited)

sigma   = 2.07586  +/-  0.0464542 (limited)
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Adding parameter pdfs to the likelihood

• Systematic/external uncertainties can be modeled
 with regular RooFit pdf objects. 

• To incorporate in likelihood, simply multiply with original pdf

– Any pdf can be supplied, e.g. a RooMultiVarGaussian from a RooFitResult 
(or one you construct yourself)

  w.factory(“Gaussian::f(x[-10,10],mean[-10,10],sigma[3])”) ;

  w.factory(“PROD::gprime(f,Gaussian(mean,1.15,0.30))”) ;

  w.import(*fitRes->createHessePdf(w::mean,w::sigma),”parampdf”) ;
  w.factory(“PROD::gprime(f,parampdf)”) ;
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RooFit Summary
Overview of RooFit functionality

not everything covered
not discussed on how it works internally 
(optimizations, analytical deduction, etc..)

Capable to handle complex model
scale to models with large number of parameters
being used for many analysis at LHC 

Workspace: 
easy model creation using the factory syntax
tool for storing and sharing models (analysis 
combination) 
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RooFit Documentation

Starting point: http://root.cern.ch/drupal/content/roofit

Users manual (134 pages ~ 1 year old)

Quick Start Guide (20 pages, recent)

Link to 84 tutorial macros (also in $ROOTSYS/tutorials/roofit)

More than 200 slides from W. Verkerke documenting all features 
are available at the French School of Statistics 2008 

http://indico.in2p3.fr/getFile.py/access?contribId=15&resId=0&materialId=slides&confId=750 
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http://root.cern.ch/drupal/content/roofit
http://root.cern.ch/drupal/content/roofit
http://indico.in2p3.fr/getFile.py/access?contribId=15&resId=0&materialId=slides&confId=750
http://indico.in2p3.fr/getFile.py/access?contribId=15&resId=0&materialId=slides&confId=750
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Time For Exercises ! 

40

Follow the RooFit exercises at the Twiki page: 
https://twiki.cern.ch/twiki/bin/view/RooStats/RooStatsTutorialsJune2013

If you have network problem, you can download tar file from the agenda:
- unpack the tar file and open with your browser the page RooStatsTutorialsJune2013.html

https://twiki.cern.ch/twiki/bin/view/RooStats/RooStatsTutorialsJune2013
https://twiki.cern.ch/twiki/bin/view/RooStats/RooStatsTutorialsJune2013
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RooStats
Lecture and Tutorials

41
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Outline
Introduction to RooFit 

Basic functionality 
Model building using the workspace
Composite models 

Exercises on RooFit: 
building and fitting models

Introduction to RooStats
Interval estimation tools (Likelihood/Bayesian)
Hypothesis tests 
Frequentist interval/limit calculator (CLs)

Exercises on interval/limit estimation and discovery 
significance (hypothesis test)
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RooStats Project

Collaborative project to provide and consolidate advanced 
statistical tools needed by LHC experiments
Joint contribution from ATLAS, CMS, ROOT and RooFit        

developments over-sighted by ATLAS and CMS statistics 
committees
initiated from previous code developed in ATLAS and CMS
used by both collaborations 
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RooStats Goal

Common framework for statistical calculations
work on arbitrary models and datasets

factorize modeling from statistical calculations
implement most accepted techniques 

frequentists, Bayesian and likelihood based tools
possible to easy compare different statistical 
methods 
provide utility for combinations of results
using same tools across experiments facilitates the 
combinations of results
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Statistical Applications

Statistical problems:

point estimation (covered by RooFit) 
estimation of confidence (credible) intervals 
hypothesis tests
goodness of fit (not yet addressed)
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RooStats Technology

Built on top of RooFit 
generic and convenient description of models (probability density function or 
likelihood functions)
provides workspace (RooWorkspace)

container for model and data and can be written to disk 
inputs to all RooStats statistical tools
convenient for sharing models (e.g digital publishing of results)

easily generation of models (workspace factory and HistFactory tool)
tools for combinations of model (e.g. simultaneous pdf)

Use of ROOT core libraries: 
minimization (e.g. Minuit), numerical integration, etc...
additional tools provided when needed (e.g. Markov-Chain MC)

46
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RooStats Design
C++ interfaces and classes mapping to real statistical concepts 

47

GetHypoTestGetInterval
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RooStats Calculator classes

ProfileLikelihoodCalculato
r

interval estimation using asymptotic 
properties of the likelihood function

BayesianCalculator
interval estimation based on Bayes 
theorem using adaptive numerical 
integration

MCMCCalculator
Bayesian calculator using Markov-
Chain Monte Carlo

HypoTestInverter
invert hypothesis test results  to 
estimate an interval 

CLs limits, FC interval
NeymanConstruction and 
FeldmanCousins

frequentist interval calculators

HybridCalculator, 
FrequentistCalculator 

frequentist hypothesis test 
calculators using toy data (difference 
in treatment of nuisance parameters)

AsymptoticCalculator
hypothesis tests using asymptotic 
properties of likelihood function

48

Interval Calculators HypoTest Calculators
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ModelConfig class input to all Roostats calculators 
contains a reference to the RooFit workspace class
provides the workspace meta information needed to run 
RooStats calculators

pdf of the model stored in the workspace
what are observables (needed for toy generations)
what are the parameters of interest and the nuisance parameters
global observables (from auxiliary measurements) for frequentist 
calculators
prior pdf for the Bayesian tools  

ModelConfig can be imported in workspace for storage and 
later retrieval

ModelConfig Class

49
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ModelConfig must be built after having the workspace
Identify all the components which are present in the workspace

Some tools (Bayesian) require to specify prior pdf

ModelConfig can be imported in workspace to be then stored in a file

//specify components of model for statistical tools
ModelConfig  modelConfig(“G(x|mu,1)”);
modelConfig.SetWorkspace(workspace);
//set components using the name of ws objects
modelConfig.SetPdf( “normal”);
modelConfig.SetParameterOfInterest(“poi”);
modelConfig.SetObservables(“obs”);

Building ModelConfig Class

//can import modelConfig into workspace too
workspace.import(*modelConfig);

//Bayesian tools would also need a prior
modelConfig.SetPriorPdf( “prior”);

50
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Method based on properties of the likelihood function
Profile likelihood function:

Uses asymptotic properties of λ based on Wilks’ theorem:
from a Taylor expansion of logλ around the minimum:

➔ -2logλ is a parabola (λ is a gaussian function)
➔  interval on μ from logλ values

Method of MINUIT/MINOS
lower/upper limits for 1D 
contours for 2 parameters

Profile Likelihood Calculator

μ 51

maximize w.r.t nuisance parameters ν and fix POI !

maximize w.r.t. all parameters

λ is a function of only the parameter of interest !

�(µ) =
L(x|µ,

ˆ̂
⌫)

L(x|µ̂, ⌫̂)
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Using the  Profile Likelihood Calculator

For one-dimensional intervals:
68% CL (1 σ) interval :
95% CL interval :

LikelihoodIntervalPlot can plot the 2D contours

// create the class using data and model
ProfileLikelihoodCalculator plc(*data, *model);

// set the confidence level
plc.SetConfidenceLevel(0.683);

// compute the interval
LikelihoodInterval* interval = plc.GetInterval();
double lowerLimit = interval->LowerLimit(*mu);
double upperLimit = interval->UpperLimit(*mu);

// plot the interval
LikelihoodIntervalPlot plot(interval);
plot.Draw();

52

∆logλ = 0.5
∆logλ = 1.96

μ
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Bayesian Analysis in RooStats
RooStats provides classes for

marginalize posterior and estimate credible 
interval 

support for different integration algorithms:
adaptive (numerical) 
MC integration 
Markov-Chain

can work with models with many 
parameters (e.g few hundreds)

Bayesian Theorem

nuisance  parameters
marginalization posterior probability

likelihood function prior probability 

normalisation term

POI data

P (µ|x) =
R

L(x|µ, ⌫)⇧(µ, ⌫)d⌫RR
L(x|µ, ⌫)⇧(µ, ⌫)dµd⌫
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Bayesian Classes
BayesianCalculator class

posterior and interval estimation using numerical integration
working only for one parameter of interest but can integrate (marginalize) many 
nuisance parameters
support for different integration algorithms,  
using BayesianCalculator::SetIntegrationType

adaptive numerical (default type),  
working only for few nuisances (< 10) 

Monte Carlo integration 
(PLAIN, MISER, VEGAS) 
TOYMC : average from toys where the 
nuisance parameters are sampled from a 
given p.d.f.  (nuisance pdf), but can work 
in model with many parameters

can compute: 
central interval  
one-sided interval (upper limit)  
a shortest interval 

provide plot of  posterior and interval 

BayesianCalculator bc(data, model);
bc.SetConfidenceLevel(0.683); 
bc.SetLeftSideTailFraction(0.5);
bc.SetIntegrationType(“ADAPTIVE”); 
SimpleInterval* interval = bc.GetInterval();
double lowerLimit = interval->LowerLimit();
double upperLimit = interval->UpperLimit();
RooPlot * plot = bc.GetPosteriorPlot();
plot->Draw();

Example:  68% CL central interval
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MCMCCalculator mc(data, model);
mc.SetConfidenceLevel(0.683); 
mc.SetLeftSideTailFraction(0.5);
SequentialProposal sp(0.1); 
mc.SetProposalFunction(sp); 
mc.SetNumIters(1000000);         
mc.SetNumBurnInSteps(50);    
MCInterval* interval = bc.GetInterval();
RooRealVar * s = (RooRealVar*) 
model.GetParametersOfInterest()->find(“s”);
double lowerLimit = interval->LowerLimit(*s);
double upperLimit = interval->UpperLimit(*s);
MCMCIntervalPlot plot(*interval);

MCMC Calculator

MCMCCalculator class
integration using Markov-Chain Monte 
Carlo (Metropolis Hastings algorithm)
can deal with more than one parameter of 
interest 
can work with many nuisance parameters

e.g. used in Higgs combination with 
more than 300 nuisances

possible to specify ProposalFunction
multivariate Gaussian from fit result
Sequential proposal 

can visualize posterior and also the chain 
result

MCMCCalculator

55



INFN School of Statistics 2013

Running RooStats 
RooStats provides standard tutorials taking all as input workspace, 
ModelConfig and data set names

StandardProfileLikelihoodDemo.C

StandardBayesianNumericalDemo.C

StandardBayesianMCMCDemo.C

56

run ProfileLikelihoodCalculator - get interval and produce plot

root[]StandardProfileLikelihoodDemo("ws.root","w","ModelConfig","data")

run Bayesiancalculator: get a credible interval and produce plot of posterior function

root[]StandardBayesianNumericalDemo("ws.root","w","ModelConfig","data")

run bayesian MCMCCalculator: get a credible interval and produce plot of posterior function

root[]StandardBayesianMCMCDemo("ws.root","w","ModelConfig","data")
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RooStats
Part2

Hypothesis tests in RooStats using toys and 
asymptotic formulae
Hypothesis test inversion

Limit and interval calculators 
CLs, Feldman-Cousins

57



INFN School of Statistics 2013

Frequentist Hypothesis Tests

Ingredients: 
Null Hypothesis: the hypothesis being tested   (e.g.   θ = 
θ0 ), assumed to be true and one tries to reject it 
Alternate Hypothesis: the competitive hypothesis (e.g.   θ ≠ 
θ0 )
w is the critical region, a subspace of all possible data:

size of test :      α = P( X ∊ w | H0 )    
power of test :  1- β = P( X ∊ w | H1 )

Test statistics: a function of the data, t(X) ,used for defining the 
critical region in multidimensional data: X ∊ w ➞ t(X) ∊ wt
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RooStats Hypothesis Test
Define null and alternate model using ModelConfig

can use ModelConfig::SetSnapshot(const RooArgSet &) to 
define parameter values for the null in case of a common 
model (e.g. μ = 0 for the B model)

Select test statistics  to use 
Select calculator 

Use toys or asymptotic formula 
 to get sampling distribution 
 of test statistics
FrequentistCalculator or 
HybridCalculator have different 
treatment of nuisance parameters
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Test Statistics
Test statistics maps multidimensional space in one, in a 
way relevant to the hypothesis being tested

preferred choice is profile likelihood ratio which has 
known asymptotic distribution

60

Sven Kreiss

Test Statistics

Test Statistic: Maps high dimensional data (points in “observable”-space) to a real number. 
(source?), Fred James: “Any function of the data is called a statistic.”

➡ a complicated shape that defines the boundary between acceptance and critical 
region gets mapped to a point on a line

At the LHC, the Profile-Likelihood-Test-Statistic is used.

➡ takes nuisance parameters into account

22Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

SoS, Autrans, May 19 & 20, 2010

Three common test statistics
We express cross-section as                       for convenience.
Effect of systematics is parametrized by one or more “nuisance 
parameters” denoted    .  

● best fit point is:
● best fit of nuisance parameters with µ fixed is     (aka “profiled”)

In principle, s+b and b-only models can have different parametrizations

RooStats has the three common test statistics used in the field (and more)
● simple likelihood ratio (used at LEP, nuisance parameters fixed)

● ratio of profiled likelihoods (used commonly at Tevatron)

● profile likelihood ratio (related to Wilks’s theorem)

�(µ) = Ls+b(µ, ˆ̂⇥)/Ls+b(µ̂, ⇥̂)

QLEP = Ls+b(µ = 1)/Lb(µ = 0)

QTEV = Ls+b(µ = 1, ˆ̂�)/Lb(µ = 0, ˆ̂�0)

µ = �/�SM

⌫

µ̂, �̂
ˆ̂⌫
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FrequentistCalculator
Generate toys using nuisance parameter at their conditional 
ML estimate ( θ = θμ) by fitting them to the observed data
Treat constraint terms in the likelihood (e.g. systematic errors) 
as auxiliary measurements

introduce global observables which will be varied (tossed) 
for each pseudo-experiment

L = Poisson( nobs | μ +b) Gaussian( b0 | b, σb) 
b0 is a global observables, varied for each toys but it needs to be 
considered constant when fitting
nobs is the observable which is part of the data set
μ is the parameter of interest (poi) 
b is the nuisance parameter
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HybridCalculator
Nuisance parameters are integrated using their pdf (the 
constraint term) which is interpreted as a Bayesian prior

integration is done by generating for each toys 
different nuisance parameters values
need to have a pdf for the nuisance parameters (often it 
can be derived automatically from the model)

    L = Poisson( nobs | μ +b) Gaussian( b| b0, σb) 

 L = ∫  Poisson( nobs | μ +b) Gaussian( b| b0, σb) db
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Example: FrequentistCalculator
Define the models

N.B for discovery significance null is B model and alt is S
+B

63

// create first HypoTest calculator (data, alt model , null model)
FrequentistCalculator fcalc(*data, *sbModel, *bModel);

// create the test statistics
ProfileLikelihoodTestStat profll(*sbModel->GetPdf());
// use one-sided profile likelihood for discovery tests
profll.SetOneSidedDiscovery(true);
  
// configure  ToyMCSampler and set the test statistics
ToyMCSampler *toymcs = (ToyMCSampler*)fcalc.GetTestStatSampler();
toymcs->SetTestStatistic(&profll);

fcalc.SetToys(1000,1000);  // set number of toys for (null, alt)

// run the test
HypoTestResult * r = fcalc.GetHypoTest();
r->Print();

// plot test statistic distributions
HypoTestPlot * plot = new HypoTestPlot(*r);
plot->Draw();

Results HypoTestCalculator_result: 
 - Null p-value = 0.034 +/- 0.00573097
 - Significance = 1.82501 sigma
 - Number of Alt toys: 1000
 - Number of Null toys: 1000

Profile Likelihood Ratio
0 1 2 3 4 5 6 7 8 9

-210

-110

1

10

ModelConfig
ModelConfigB_only
test statistic data

B model

S+B model

data
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AsymptoticCalculator
Use the asymptotic formula for the test statistic distributions
one-sided profile likelihood test statistic: 

null model (μ = μTEST )
half Χ2 distribution

alt model (μ ≠ μTEST )
non-central Χ2

use Asimov data to get 

 the non centrality 

 parameter  Λ = (μ-μTEST)/σ
p-values for null and 

alternate can be obtained 

without generating toys 
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➡ see Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727,EPJC 71 (2011) 1-1

�(µ) =
L(x|µ,

ˆ̂
⌫)

L(x|µ̂, ⌫̂)

λ(μ) = 0  for 
μ < 0 (discovery)
μ < μTEST (limits)
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Example: Discovery Significance

Performing the tests for different mass hypotheses 
(i.e  different signal models):
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Inversion of Hypothesis Tests
one-to-one mapping  between hypothesis tests and 
confidence intervals

66

Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN School HEP, Romania, Sept. 2011

A Point about the Neyman Construction

119

x0

��

�+

x

�

This is not Bayesian... it doesn’t mean the probability 
that the true value of   is in the interval is        !� 1� �

�true

Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN School HEP, Romania, Sept. 2011

Inverting Hypothesis Tests
There is a precise dictionary that explains how to move from from 
hypothesis testing to parameter estimation.
‣ Type I error: probability interval does not cover true value of the 

parameters (eg. it is now a function of the parameters)
‣ Power is probability interval does not cover a false value of the 

parameters (eg. it is now a function of the parameters)
● We don’t know the true value, consider each point      as if it were true

What about null and alternate hypotheses?
‣ when testing a point    it is considered the null 
‣ all other points considered “alternate” 

So what about the Neyman-Pearson lemma & Likelihood ratio?
‣ as mentioned earlier, there are no guarantees like before 
‣ a common generalization that has good power is:
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�0

f(x|�0)
f(x|�best(x))

f(x|H0)
f(x|H1)

�0

Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN School HEP, Romania, Sept. 2011

The Dictionary
There is a formal 1-to-1 mapping between hypothesis tests and 
confidence intervals:
‣ some refer to the Neyman Construction as an “inverted 

hypothesis test”

121

Classical Hypothesis Testing (cont.)

“Test for θ=θ0” ↔ “Is θ0 in confidence interval for θ”

Bob Cousins, CMS, 2008 44

“There is thus no need to derive optimum properties 

separately for tests and for intervals; there is a one-to-one 

correspondence between the problems as in the dictionary in 

Table 20.1” – Stuart99, p. 175.
Using the likelihood ratio hypothesis test, this correspondence is the basis 

of intervals in G. Feldman, R Cousins, Phys Rev D57 3873 (1998).

Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN School HEP, Romania, Sept. 2011

Discovery in pictures
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N events

P(
 N

 |
 s

+
b
 )

b-only s+b
b-only p-valueobs

more discrepant

Discovery: test b-only (null: s=0 vs. alt: s>0)
• note, one-sided alternative.  larger N is “more discrepant” 

aka “CLb”

Gary Feldman 25 Journeys

Visit to Harvard Statistics Department

Towards the end of this work, I decided to try it out on
some professional statisticians whom I know at Harvard.

They told me that this was the standard method of
constructing a confidence interval!

I asked them if they could point to a single reference of
anyone using this method before, and they could not.

They explained that in statistical theory there is a one-to-
one correspondence between a hypothesis test and a
confidence interval.  (The confidence interval is a
hypothesis test for each value in the interval.)   The
Neyman-Pearson Theorem states that the likelihood ratio
gives the most powerful hypothesis test.  Therefore, it must
be the standard method of constructing a confidence
interval.

I decided to start reading about hypothesis testing…

from G. Feldman visiting Harvard 
statistics department
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Hypothesis Test Inversion
Performing an hypothesis test at each value of the parameter 
Interval can be derived by inverting the p-value curve,  
function of the parameter of interest (μ)

value of μ which has  p-value α (e.g. 0.05), is the upper 
limit of 1-α confidence interval (e.g. 95%)
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Hypothesis Test Inversion
use one-sided test for upper limits (e.g. one-side 
profile likelihood test statistics)
use two-sided test for a 2-sided interval

68
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HypoTestInverter class
Input is an  Hypothesis Test calculator:

Frequentist/Hybrid/AsymptoticCalculator
possible to customize test statistic, number of toys, etc..

N.B:  null model is S+B, alternate is B only model 
Compute an Interval (result is a ConfInterval object): 

scan given interval of µ and perform hypothesis tests
compute upper/lower limit from scan result

can use CLs = CLs+b / CLb for the p-value
result (HypoTestInverterResult) contains all the 
hypothesis test results for each scanned µ value 
can compute expected limits and bands
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HypoTestInverter
HypoTestInverter class in RooStats

70

// create first HypoTest calculator (N.B null is s+b model)
FrequentistCalculator fc(*data, *bModel, *sbModel);

HypoTestInverter calc(*fc);
calc.UseCLs(true);

// configure  ToyMCSampler and set the test statistics
ToyMCSampler *toymcs = (ToyMCSampler*)fc.GetTestStatSampler();

ProfileLikelihoodTestStat profll(*sbModel->GetPdf());
// for CLs (bounded intervals) use one-sided profile likelihood
profll.SetOneSided(true);
toymcs->SetTestStatistic(&profll);

// configure and run the scan
calc.SetFixedScan(npoints,poimin,poimax);
HypoTestInverterResult * r = calc.GetInterval();

// get result and plot it
double upperLimit = r->UpperLimit();
double expectedLimit = r->GetExpectedUpperLimit(0);

HypoTestInverterPlot *plot = new HypoTestInverterPlot("hi","",r);
plot->Draw();
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Running the HypoTestInverter  
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Hypothesis test results for each scanned point

p-value, CLs+b (or CLb)  is integral of S+B (or B) 
test statistic distribution from data value

Scan result 

How expected limit and bands are 
obtained ?
 - compute p-value for quantiles 
(median, +/1,2 sigma)  of the B 
model test statistic distribution
(i.e. use quantile as the observed 
value)
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Asymptotic Limits
AsymptoticCalculator class for HypoTestInverter

use the asymptotic formula for the test statistic distributions 
! 2 approximation for the profile likelihood ratio

see G. Cowan et al., arXiv:1007.1727,EPJC 71 (2011) 1-1
p-values CLs+b (null) and  CLb (alt) obtained without generating toys 
also expected limits from the alt distribution
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// create first HypoTest calculator (N.B null is s+b model)
AsymptoticCalculator ac(*data, *bModel, *sbModel);

HypoTestInverter calc(*ac);
// run inverter same as using other calculators
........
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Example of Scan
95% CL limit on a Gaussian measurement: 

Gauss(x,μ,1), with μ≥0
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By computing limits for different mass hypothesis:

Example:  Computing Limits

74
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Limits on bounded measurements

75

Downward fluctuations in searches for excesses 
Classic example: Upper limit on mean P of 
Gaussian based on measurement x (in units of V). 
 
 

Bob Cousins, CMSDAS, 1/2012 60 

Frequentist 1-sided 95% C.L. Upper 
Limits, based on D = 1 – C.L. = 5% 
(called CLsb at LEP).  
For x < �1.64 V the confidence 
interval is the null set! 

If  Pt0 in model, as measured x 
becomes increasingly negative, 
standard classical upper limit 
becomes small and then null. 
 
Issue acute 15-25 years ago in 
expts to measure Qe mass in 
(tritium E decay): several 
measured mQ

2 < 0. 
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Figure 4: Upper limits obtained via the Bayesian method recommended by the PDG RPP,
plotted as a confidence belt. The prior probability density for µ is uniform for all µ which
exist in the model, i.e., for µ � 0. The horizontal lines contain more than 95% of the
acceptance for x, so from the frequentist point of view the upper limits are conservative. For
this problem, the upper limits from CLS are the same.
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Figure 5: 95% confidence belt advocated by Feldman and Cousins [8]. For x  1.64, the lower
end of the interval is 0. All horizontal acceptance intervals contain 95% of the probability
for observing x.
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CLs or Bayesian

Feldman-Cousins 
interval

from Bob Cousins:
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Feldman-Cousins intervals
HypoTestInverter class can compute also a Feldman-Cousins 
interval

need to use FrequentistCalculator and CLs+b as p-value
use the 2-sided profile likelihood test statistic 
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Feldman-Cousins Interval

77

from Kyle Cranmer:



ROOT Users Workshop                     11-14 March 2013

Example: Feldman-Cousins interval

• Same RooStats code but with different configuration 
can compute also a Feldman-Cousins interval
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StandardHypoTestInvDemo.C
Standard ROOT macro to run the Hypothesis Test inversion. 
Inputs to the macro:  

workspace file, workspace name
name of S+B model (null) and for B model (alt)

if no B model is given, use S+B model with poi = 0 
data set name 
calculator type: frequentist (= 0),  hybrid (=1), or asymptotic (=2) 
test statistics

options:
use CLs or CLs+b for computing limit
number of points to scan and min, max of interval

load the macro after having created the workspace and saved in file SPlusBExpoModel.root
root[] .L StandardHypoTestInvDemo.C

run for CLs (with  frequentist calculator (type = 0) and one-side PL test statistics (type = 3) scan 10 points in [0,100]

root[] StandardHypoTestInvDemo("SPlusBExpoModel.root","w","ModelConfig","","data",0,3, true, 10, 0, 100)

run for Asymptotic CLs (scan 20 points in [0,100]) 

root[] StandardHypoTestInvDemo(SPlusBExpoModel.root","w","ModelConfig","","data",2,3, true, 20, 0, 100)

run for Feldman-Cousins  ( scan 10 points in [0,100]) 

root[] StandardHypoTestInvDemo(SPlusBExpoModel.root","w","ModelConfig","","data",0,2, false, 10, 0, 15)
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HistFactory – a new class of pdfs

• Focus of RooFit traditionally on analytical models
– Assumes you can formulate signal/background in an analytical form

– Often possible in e+e- experiments, 
shapes for hadron colliders cumbersome  rely on MC simulation

Wouter Verkerke, NIKHEF 

Analytical form:
Gaussian+Polynomial

Template form:
Histogram (discrete) 
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Model Building with HistFactory
Tool to build models from input histograms

81

RooFit  
Workspace
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RooFit/RooStats at LHC (Higgs analysis)

Wouter Verkerke, NIKHEF 

Simplify packaging
and sharing of models

Class RooWorkspace
Statistical tests based on 

likelihoods from RooFit models

RooStats toolkit

HistFactory package
Constructing models from

Monte Carlo templates

Higgs observatio
n

82
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How well does it scale?

Graph of the full 
ATLAS Higgs 
combination 
model

Model has ~23.000 function objects, ~1600 parameters
Reading/writing of full model takes ~4 seconds
ROOT file with workspace is ~6 Mb
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Summary
RooFit/RooStats allow you to perform advanced 
statistical data/analysis 

LHC results (e.g. Higgs observation)
Capable of using different tools and interpretations 
(Frequentist/Bayesian) on the same model 
Generic tools capable to deal with large variety of 
models

based on histograms or un-binned data
multi-dimensional observations 

Provide tools to facilitate complex model building
HistFactory for histogram based analysis

84
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Documentation
RooStats TWiki: https://twiki.cern.ch/twiki/bin/view/RooStats/WebHome

RooStats users guide (not really completed)
http://root.cern.ch/viewcvs/branches/dev/roostats/roofit/roostats/doc/usersguide/
RooStats_UsersGuide.pdf

For reference and citation: ACAT 2010 proceedings papers: http://arxiv.org/abs/1009.1003

RooStats tutorial macros: http://root.cern.ch/root/html534/tutorials/roostats/index.html

HistFactory document: https://cdsweb.cern.ch/record/1456844/files/CERN-OPEN-2012-016.pdf

RooStats user support:
Request support via ROOT talk forum: http://root.cern.ch/phpBB2/viewforum.php?
f=15 
(questions on statistical concepts accepted)
contact me directly (email: Lorenzo.Moneta at cern.ch  )

Contacts for statistical questions:
ATLAS statistics forum: 

TWiki: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/StatisticsTools
CMS statistics committee:

TWiki: https://twiki.cern.ch/twiki/bin/view/CMS/StatisticsCommittee
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Time For Exercises ! 

Follow the Twiki page at 
https://twiki.cern.ch/twiki/bin/view/RooStats/RooStatsTutorialsJune2013#RooStats_Exercises

If you have network problem, you can download tar file from the agenda:
- unpack the tar file and open with your browser the page RooStatsTutorialsJune2013.html
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RooFit BackUp Slides
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Function Minimization 
Minimizer interface used for fitting in ROOT (by ROOT::Fit::Fitter) 
and also RooFit/RooStats (via class RooMinimizer)
Control of minimization options and type of minimizer using the 
ROOT::Math::MinimizerOptions class 

to change the minimizer for fitting: 
ROOT::Math::MinimizerOptions::SetDefaultMinimizer(“Minuit2”);

e.g. to change the tolerance:
ROOT::Math::MinimizerOptions::SetDefaultTolerance(1.E-6);

several other options also available:
 (some specific to the minimizer) 

Possible to combine minimizers 
e.g. use first Genetic and then
Minuit to find the global minimum
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Convolution

• Model representing a convolution of a theory model and a 
resolution model often useful

• But numeric calculation of convolution integral can be
challenging. No one-size-fits-all solution, but 3 options available
– Analytical convolution (BW⊗Gauss, various B physics decays)

– Brute-force numeric calculation (slow)

– FFT numeric convolution (fast, but some side effects)

⊗ =
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Convolution

• Example

• FFT usually best
– Fast: unbinned ML fit to 10K 

events take ~5 seconds

– NB: Requires installation of FFTW
package (free, but not default)

– Beware of cyclical effects
(some tools available to mitigate)

  w.factory(“Landau::L(x[-10,30],5,1)”) :
  w.factory(“Gaussian::G(x,0,2)”) ;

  w.var(“x”)->setBins(“cache”,10000) ; // FFT sampling density
  w.factory(“FCONV::LGf(x,L,G)”) ;     // FFT convolution

  w.factory(“NCONV::LGb(x,L,G)”) ;    // Numeric convolution
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HistFactory

see also HistFactory doc (https://cdsweb.cern.ch/record/1456844/files/CERN-OPEN-2012-016.pdf)
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Tool available in ROOT (in roofit/histfactory) to build 
models based on histograms

generalization of number counting models

HistFactory
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Formally one can either write the probability model in terms of a product over Poisson
distributions for each bin of the histogram, or one can also continue to use the unbinned
expression above recognizing that the shapes f(x) look like histograms (ie. they are discon-
tinuous at the bin boundaries and constant between them). Technically, the HistFactory

makes a model that looks more like the unbinned expression with a single RooAbsPdf that
is “extended” with a discontinuous shape in x. Nevertheless, it can be more convenient to
express the model in terms of the individual bins. Then we have

P(nb|µ) = Pois(n
tot

|µS +B)

"
Y

b2bins

µ⌫

sig

b + ⌫

bkg

b

µS +B

#
= N

comb

Y

b2bins
Pois(nb|µ⌫sigb + ⌫

bkg

b ) , (4)

where nb is the data histogram and N
comb

is a combinatorial factor that can be neglected
since it is constant. Similarly, denote the data histogram is nb.

1.2 Generalizations and Use-Cases

Based on the discussion above, we want to generalize the model in the following ways:

• Ability to include multiple signal and background samples

• Ability to include unconstrained scaling of the normalization of any sample (as was
done with µ)

• Ability to parametrize variation in the normalization of any sample due to some sys-
tematic e↵ect

• Ability to parameterize variations in the shape of any sample due to some systematic
e↵ect

• Ability to include bin-by-bin statistical uncertainty on the normalization of any sample

• Ability to incorporate an arbitrary contribution where each bin’s content is parametrized
individually

• Ability to combine multiple channels (regions of the data defined by disjoint event
selections) and correlate the parameters across the various channels

• Ability to use the combination infrastructure to incorporate control samples for data-
driven background estimation techniques

• Ability to reparametrize the model

Constrained Unconstrained
Normalization Variation OverallSys (⌘cs) NormFactor (�p)
Coherent Shape Variation HistoSys �csb –
Bin-by-bin variation ShapeSys & StatError �cb ShapeFactor �csb

Table 1: Conceptual building blocks for constructing more complicated PDFs: parameters.
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in general HistFactory produces model of this form

2 The Likelihood Template

2.1 Index Convention

We will use the following mnemonic index conventions:

• e 2 events

• b 2 bins

• c 2 channels

• s 2 samples

• p 2 parameters

We define the following subsets of parameters N = {�p} the unconstrained normalization
factors (ie. NormFactor), S = {↵p} the parameters associated to systematic that have ex-
ternal constraints (ie. OverallSys and HistoSys), � = {�csb} (the bin-by-bin uncertainties
with constraints (statistical errors, ShapeSys but not those associated to an unconstrained
ShapeFactor). We also use greek symbols for parameters of the model and roman symbols
for observable quantities with a frequentist notion of probability.

2.2 The Template

The parametrized probability density function constructed by the HistFactory is of a con-
crete form, but su�ciently flexible to describe many analyses based on template histograms.
In general, the HistFactory produces probability density functions of the form

P(nc, xe, ap |�p,↵p, �b) =
Y

c2channels
Pois(nc|⌫c)

"
ncY

e=1

fc(xe|↵)

#
·G(L

0

|�,�L) ·
Y

p2S+�

Pp(ap|↵p) (5)

where Pp(ap|↵p) is a constraint term describing an auxiliary measurement ap that constrains
the nuisance parameter ↵p (see Section 3.2). Denote the bin containing xe as be. We have
the following expression for the expected (mean) number of events in a given bin

⌫cb(�p,↵p, �b) = �cs �cb �cs(↵) ⌘cs(↵) �csb(↵) , (6)

where the meaning of the various terms is described below and the specific interpolation
algorithms are described in Section 3.1. The mean number of events in each bin implies the
following probability density

fc(xe|�p,↵p, �b) =
⌫cbe

⌫c
with ⌫c =

X

b2bins of channel c

⌫cb (7)

It is perhaps more convenient to think of the likelihood as a product over bins

P(ncb, ap |�p,↵p, �b) =
Y

c2channels

Y

b2bins
Pois(ncb|⌫cb) ·G(L

0

|�,�L) ·
Y

p2S+�

Pp(ap|↵p)

• �cs - luminosity parameter for a given channel and sample. Within a given channel
this parameter is a common luminosity parameter for all the samples that include
luminosity uncertainty (i.e.. NormalizeByTheory="True"). For all the samples with
NormalizeByTheory="False" it is fixed to the nominal luminosity �cs = L

0

.

4

luminosity constraint
parameter constraint

HistFactory can be configured with XML files or directly in C++/Python (New in 5.34)
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Creating the Example

• go to an empty directory

• What is in data?

34

[lxplus] ATLASDanalysis > prepareHistFactory

[lxplus] ATLASDanalysis > ls
config data result

[lxplus] ATLASDanalysis > root -l data/example.root
root [0] 
Attaching file example.root as _file0...
root [1] .ls
TFile**!! example.root!
 TFile*!! example.root!
  KEY: TH1F!data;1! data
  KEY: TH1F!signal;1! signal histogram (pb)
  KEY: TH1F!background1;1! background 1 histogram (pb)
  KEY: TH1F!background2;1! background 2 histogram (pb)
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HistFactory Models

Data: think of it as data points in a histogram

Model: looks the same (it is also a histogram), but one should think about it as a shape 
(a PDF) that is extended with the number of events in the histogram.

➡ xi events in bin i really means: probability of an event in this bin is xi/Σj xj and the 
PDF is extended with Σj xj (for bins with equal width).

➡ If there is only one bin, this reduces to “number counting form”.

From the HistFactory User Guide:
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1 Introduction

The HistFactory is a tool to build parametrized probability density functions (pdfs) in the
RooFit/RooStats framework based based on simple ROOT histograms organized in an XML
file. The pdf has a restricted form, but it is su�ciently flexible to describe many analyses
based on template histograms. The tool takes a modular approach to build complex pdfs from
more primative conceptual building blocks. The resulting PDF is stored in a RooWorkspace
which can be saved to and read from a ROOT file.

1.1 Preliminaries

Let us begin by considering the simple case of a single channel with one signal and one back-
ground contribution and no systematics based on the discriminating variable is x. While
we will not continue with this notation, let us start with the familiar convention where the
number of signal events is denoted as S and the number of background events as B. Similarly,
denote the signal and background “shapes” as f

S

(x) and f

B

(x) and note the these are proba-
bility density functions normalized so that

R
dxf(x) = 1. It is common to introduce a “signal

strength” parameter µ such that µ = 0 corresponds to the background-only hypothesis and
µ = 1 corresponds to the nominal signal+background hypothesis. This continuous parameter
µ is our parameter of interest.

Now we ask what the probability model is for obtaining n events in the data where
the discriminating variable for event e has a value xe; thus the full dataset will be denoted
{x

1

. . . xn}. First one must include the Poisson probability of obtaining n events when µS+B

are expected. Secondly, one must take into account the probability density of obtaining xe

based on the relative mixture f

S

(x) and f

B

(x) for a given value of µ. Putting those two
ingredients together one obtains what statisticians call a “marked Poisson model”:

P({x
1

. . . xn}|µ) = Pois(n|µS +B)

"
nY

e=1

µSf

S

(xe) +Bf

B

(xe)

µS +B

#
. (1)

If one imagines the data as being fixed, then this equation depends on µ and is called the
likelihood function L(µ). Simply taking the logarithm of the equation above and remembering
that Pois(n|⌫) = ⌫

n
e

�µ
/n! gives us a familiar formula referred to by physicists as an “extended

maximum likelihood fit” :

� lnL(µ) = �n ln(µS +B) + (µS +B) + lnn!�
nX

e=1

ln


µSf

S

(xe) +Bf

B

(xe)

µS +B

�

= (µS +B) + lnn!�
nX

e=1

ln [µSf
S

(xe) +Bf

B

(xe)] . (2)

Since HistFactory is based on histograms, it is natural to think of the binned equivalent
of the probability model above. Denoted the signal and background histograms as ⌫

sig

b and

⌫

bkg

b , where b is the bin index and the histograms contents correspond to the number of events
expected in the data. We can relate the bin ⌫b and the shape f(x) via

fS(xe) =
⌫

sig

be

S�be
and fB(xe) =

⌫

bkg

be

B�be
, (3)

where be is the index of the bin containing xe and �be is the width of that same bins. Note,

because the f(x) are normalized to unity we have S =
P

b ⌫
sig

b

and B =
P

b ⌫
bkg

b

.

2

shapes (integral is one)

total number of signal (S) and background (B) events
including “signal strength modifier” μ
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Example Channel

• config/example_channel.xml

36

file we just looked at
names of the histograms 

from previous page
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Example Model

• config/
example.xml

37

use that channel

do not run ProfileLikelihoodCalculator 
for this Measurement
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Running Example

• from the main directory:

• this created many .root files and 
also .eps files
➡ eps files are the outputs of the 

ProfileLikelihoodCalculator that 
was run automatically
(use ExportOnly=”True” to 
switch that off)
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[lxplus] ATLASDanalysis > hist2workspace config/example.xml
... producing a lot of output ...

[lxplus] ATLASDanalysis > ls results/
example_channel1_ConstExample_model.root       example_combined_GaussExample_model.root
example_channel1_GammaExample_model.root       example_combined_GaussExample_profileLR.eps
example_channel1_GammaExample_profileLR.eps    example_combined_LogNormExample_model.root
example_channel1_GaussExample_model.root       example_combined_LogNormExample_profileLR.eps
example_channel1_GaussExample_profileLR.eps    example_ConstExample.root
example_channel1_LogNormExample_model.root     example_GammaExample.root
example_channel1_LogNormExample_profileLR.eps  example_GaussExample.root
example_combined_ConstExample_model.root       example_LogNormExample.root
example_combined_GammaExample_model.root       example_results.table
example_combined_GammaExample_profileLR.eps

NLL
Profile
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Look at result

• Find out workspace name, model name and data name:
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[lxplus] ATLASDanalysis > root -l results/
example_combined_GaussExample_model.root 

root [1] .ls
TFile**!! results/example_combined_GaussExample_model.root!
 TFile*!! results/example_combined_GaussExample_model.root!
  KEY: RooWorkspace!combined;1! combined
  KEY: TProcessID! ProcessID0;1!0c6e344e-2565-11e0-9717-ecd28a89beef

root [2] combined->Print()
RooWorkspace(combined) combined contents
... print out of variables, p.d.f.s, functions, named sets, and ...

datasets
--------
RooDataSet::asimovData(channelCat,obs_channel1)
RooDataSet::obsData(channelCat,obs_channel1)

generic objects
---------------
RooStats::ModelConfig::ModelConfig

root [3] 
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Reading obsData

• in the standard form, the model is built using RooHistFuncs, which is more 
efficient than the number counting form
➡ look at data like this:
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root [2] f = combined->var("obs_channel1")->frame()
(const class RooPlot*)0x7fc173162800
root [3] combined->data("obsData")->plotOn(f)
(const class RooPlot*)0x7fc173162800
root [4] f->Draw()
Info in <TCanvas::MakeDefCanvas>:  created default TCanvas with name c1
root [5] 
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Using a HistFactory model
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root [5] .x /afs/cern.ch/sw/lcg/app/releases/ROOT/5.30.01/x86_64-slc5-gcc43-opt/root/tutorials/
roostats/StandardProfileLikelihoodDemo.C("results/example_combined_GaussExample_model.root", 
"combined", "ModelConfig", "obsData")

[#1] INFO:Minization --  Including the following contraint terms in minimization: 
(alpha_syst2Constraint,alpha_syst3Constraint)
ProfileLikelihoodCalcultor::DoGlobalFit - using Minuit / Migrad with strategy 1
[#1] INFO:Minization --  Including the following contraint terms in minimization: 
(alpha_syst2Constraint,alpha_syst3Constraint)
[#1] INFO:Fitting -- RooAddition::defaultErrorLevel(nll_simPdf_simData_with_constr) Summation contains a RooNLLVar, using 
its error level
[#1] INFO:Minization -- RooMinimizer::optimizeConst: activating const optimization
[#1] INFO:Fitting -- RooAbsTestStatistic::initSimMode: creating slave calculator #0 for state channel1 (1 dataset entries)
[#1] INFO:Minization -- RooMinimizer::optimizeConst: deactivating const optimization

  RooFitResult: minimized FCN value: 8.44132, estimated distance to minimum: 2.09744e-06
                covariance matrix quality: Full, accurate covariance matrix

    Floating Parameter    FinalValue +/-  Error   
  --------------------  --------------------------
         SigXsecOverSM    1.1212e+00 +/-  5.26e-01
           alpha_syst2   -1.3646e-02 +/-  9.75e-01
           alpha_syst3    2.7826e-02 +/-  9.19e-01

[#1] INFO:Fitting -- RooAbsTestStatistic::initSimMode: creating slave calculator #0 for state channel1 (1 dataset entries)
[#1] INFO:Minization -- RooProfileLL::evaluate(nll_simPdf_simData_with_constr_Profile[SigXsecOverSM]) Creating instance of 
MINUIT
[#1] INFO:Fitting -- RooAddition::defaultErrorLevel(nll_simPdf_simData_with_constr) Summation contains a RooNLLVar, using 
its error level
[#1] INFO:Minization -- RooProfileLL::evaluate(nll_simPdf_simData_with_constr_Profile[SigXsecOverSM]) determining minimum 
likelihood for current configurations w.r.t all observable
[#1] INFO:Fitting -- RooAbsTestStatistic::initSimMode: creating slave calculator #0 for state channel1 (1 dataset entries)
[#1] INFO:Minization -- RooProfileLL::evaluate(nll_simPdf_simData_with_constr_Profile[SigXsecOverSM]) minimum found at 
(SigXsecOverSM=1.12102)
..........................................................................................................................
................................................................................Info in <TCanvas::MakeDefCanvas>:  created 
default TCanvas with name c1

95% interval on SigXsecOverSM is : [0.102174, 2.21605] 
root [6] 

from previous pages


