

Germanium-detector based study of the $^2{\rm H}({\rm p},\gamma)^3{\rm He}$ cross section at LUNA

Klaus Stöckel^{1,2} for the LUNA collaboration

¹*Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany* ²*Technische Universität Dresden (TU Dresden), 01062 Dresden, Germany*

Recent, precise measurements of the primordial ²H abundance [1] have opened the possibility to precisely determine of the primordial baryon-to-photon ratio, independent from the cosmic microwave background. For their interpretation, the ²H abundance data require equally precise nuclear data, in particular on the ²H(p, γ)³He reaction.

Deep underground in the Gran Sasso laboratory, Italy, the LUNA collaboration is undertaking a dedicated effort to measure the 2 H(p, γ) 3 He cross section directly in the Big Bang energy window of interest. The campaign is divided in two phases based on a BGO and a high-purity germanium (HPGe) detector, respectively.

The present poster will report on the second, HPGe-based phase of the experiment. Due to the Doppler shift of the emitted γ -rays, in addition to the absolute yield also information on the γ -ray angular distribution, thus reducing the systematic uncertainty. The characterization and calibration of the setup and detectors, background conditions, and potential sources of uncertainty will be discussed.

References

 R. J. Cooke, M. Pettini, R. A. Jorgenson, M. T. Murphy, and C. C. Steidel, Astrophys. J. 781, 31 (2014).