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DAΦNE e+e− collider at LNF
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•σφ ~ 3.1 µb at peak

•√s  ~ 1019.46 MeV = mφ

•crossing angle  ~ 12.5 mrad  

• today, Lp e a k  = 4.5×103 2  cm-2s-1



Kaon physics at KLOE 
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φKS KL φ decay 
mode

BR

K+K− 49.1%

KSKL 34.1%

                     p* = 127 MeV/c 

          
                      λ±= 95 cm

                       p* = 110 MeV/c
                       
                    λS = 6 mm;  λL = 3.4 m

The φ decay at rest provides monochromatic 

and pure beam of kaons

⇒ KS beam unique!!

⇒ kaon momentum is measured with 1 MeV resolution

 ﾠ
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2
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Magnet
SC coil, B = 0.6 T

 
EM Calorimeter
Pb-scint fiber
4880 PMs, 2440 cells
 

Drift chamber
12582 sense wires
52140 tot wires
Carbon fiber walls
 

Al-Be beam pipe
r = 10 cm, 0.5 cm 
thick
 

The KLOE Experiment



Detector performances
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EM Calorimeter

E /E=5 .7 /E G e V

t=5 4/ E G e V⊕1 4 0p s

Drift Chamber

 p⊥ /p⊥=4 , mK S
≤1MeV

x ,y=150 mm ;z=2mm



Summary of KLOE data taking

∫L = 2.2 fb-1   

 
at φ  peak

 yielding 3×109  K+K− and 2×109   KS KL  pairs



K
S
 lifetime



Introduction

Needs for O(10-4)* measurement:

O(107) K
S
 →+-, not a problem with the KLOE data set, 0.4 fb-1 (2004)

Calibration of K
S
 momentum at 10-4: determination from √s and kinematic

Decay length ~ resolution: improve resolution as much as possible
Calibration of decay point: use redundant K

S
 momentum determination 

Resolution from negative tail of proper time distribution 

* ~ accuracy of WA (NA48 + KTeV)

Fit to proper time distribution of

       K
S
 →+-

t*
 
= d/c = ddM

K
/cpp

KK
K

S

VTX
Beam axis

d

IP



   SELECTION

- 2 tracks from ~ IP
- standard cut on 
invariant mass 
(10 MeV)

Very bad resolution!

t/S

RMS = 0.9 S



   SELECTION

t/S

RMS = 0.3 S

K
S 
VTX

Beam axis
d

IP

- use events with:
 well measured tracks
 passing topological cuts 
- additional improvement
 with geometrical fit



d 
(cm)

MC

p  -p
K M  C  t r u e

 (MeV)

decay length & momentum calibration

Decay point correction using 2nd

 determination of kaon momenta

with

without

with



FIT METHOD

R=g11−g2

 ,1 , ,2 , ,  , , ,

Detector divided in :  18x10 [
K
,cos

K
]      (-0.5<cos

K
< 0.5)

                             Account for resolution dependence
                             Check result stability       
Fit range :  15 bins from -1 to +6.5 (

S
)

Fit parameters:
 

Resolution:

-

• Fit function derived from :

• We perform 180 fits →  weighted average



tt/MCMC

Ni

FIT results

 Fit  example 2 

pull



Systematics

•Fitstability: study results with different fit ranges (+-2
s
 )

           fractional uncertainty             13x10-5

•  Decay length calibration
     uncertainty on residual calibration
       study result stability by changing selection cuts
       affecting d resolution and calibration (+/- 60% in ) 

        fractional uncertainty             27x10-5

                       
       comparable results form knowledge of 
momentum calibration + dp vs ∆d correlation from MC (~3x10-4)



Systematics
•kaon momentum calibration and kaon mass
   use momentum from boost with the appropriate kaon   
   mass(KLOE determination) reduce detector zone momentum    
   calibration effects (impact on result stability) pk~ ebeam2-mk2

    Residual effects:
   absolute P scale + knowledge of  ISR effects   
                    Fractional uncertainty  37x10-5 
    knowlege of kaon mass

                    Fractional uncertainty     4x10-5  
•  Knowledge of efficiency variation:
   very uniform efficiency over 10's ofs:
     check result with exactly uniform efficiency

               Fractional uncertainty     5x10-5 

•additional checks, result stability verified over data taking period,
detector region, decay topology ... 



   Source              value ( ps )

- fit range :                0.012    
- d calibration:           0.024    
- pk calibration:         0.033    
- Kaon mass :           0.004    
- efficiency :              0.005    
 ---------------        --------------
      Total                   0.043                  

Result

   
S
= (89.562 ± 0.029

s t a t
 ± 0.043

s y s t
) ps



Results on the market and WA


S
(WA) = 89.567 ± 0.039



isotropy of K
S
 lifetime measurement!?

• A test of the isotropy of K
S
 lifetime 

measurement is done by comparing the result 
parallel and antiparallel w.r.t. an assigned 
direction    

• retain decay events with p
K, G  C

  within a 30º cone around: 

 (263.86º, 48.24º)   (CMB)     A = -0.0002± 0.0010 ± 0.0003
  (173.86º,  0º)                         A =  0.0002± 0.0009 ± 0.0004
  (263.86º, −41.76º)                 A =  0.0000± 0.0008 ± 0.0003

T~3mK

• The CMB dipole anisotropy, if 
interpreted as a Doppler effect, is due to 
Local Group motion (~570 km/s) in the 
direction  (l,b) = (263.86º, 48.24º)



Ke2γ



Ke2(γ): introduction
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SM prediction made in terms of   
IB process only: unobservable!

IB

IB+SD

From theory (ChPT) expect SD ≈ IB 
for Ke2,   but experimental 
knowledge is poor

IB SD

1)  Consider as “signal” events with Eγ<10 MeV    (SD negligible)

2)  Correct for IB tail, 0.0625(5)  

 δSD/SD≈15%



Analysis basic principles 

1) Select kinks in DC  (≈ fiducial volume )  

2) No tag required on the
     opposite hemisphere 

(as we usually do!)
     

for decays occurring in the 
FV, the reconstruction 
efficiency is  ≈ 51% 

→  gain ×4 of statistics 

- K track from IP
- secondary with pl e p >180 MeV



Analysis basic principles 

3) Exploit tracking of K and 
secondary: 
assuming mν = 0 get M2

l e p    

M lep
2 =E K−pmiss

2
−p lep

2

M2
l e p   (MeV2)

around M2
l e p =0  we 

get S/B = 10-3

Kµ2 Kπ2

Ke2  (Eγ<10MeV) 

Ke2  (Eγ>10MeV) 



Background rejection (track quality)

M2
lep   (MeV2)

MC Kµ2 

MC Ke 2  

before cuts

 we accept  ≈35% of 
decays in the FV        

not enough!

after cuts

most of Ke2 events lost have
bad resolution

S/B = 1/20



Background rejection (PID)

       1) Particle ID exploits EMC 
granularity: energy deposits 
into 5 layers in depth 

200 MeV
electron

MeV

MeV

200 MeV
muon

4.4 cm

2) Add E/P and TOF

- cluster depth
- RMS of plane energies
- asymmetry of first (last) two energy 
releases
- skewness of cell-depth distribution
- E1, Emax, Nmax
- ∆E/∆x



Background rejection (PID)

Combine PID variables 
using a NN 

Use a pure sample of 
KL e 3  to correct cell 
response in MC and 
for NN  training 

data KL e 3

MC K L e 3

NNo u t



Ke2 fit: radiative corrections

• repeat fit by varying 

Ke2 (Eγ<10MeV) 

Ke2 (Eγ>10MeV)

M2
lep   (MeV2)

Kµ2 MC spectra
PID>0.98 Ke2 (Eγ>10MeV)

Ke2(Eγ<10MeV)
≈ 10%

• in our fit region we expect

by 15%  (SD uncertainty):
get 0.5% error…too 
large  

• Need a dedicated study of the Ke2 (Eγ>10MeV) component   

Ke2 (Eγ>10MeV)

The analysis above is inclusive of  photons in the final state



Ke2γ process 

helicity 
suppressed

negligible

ρSD  x , y =
GF

2∣V us∣
2 α

64 p2
MK

5  f Vf A 
2
f SD  x , y  f V−f A 

2
f SD− x , y  

d  K e 
dxdy

=ρIB  x , y ρSD  x , y ρIN T  x ,y 

x=2E g /MK

Structure Dependent

fV , fA  : effective vector 
and axial couplings SD− = V−A : γ polarization −

SD+ = V+A : γ polarization + 

Dalitz density

y=2E e/M K

Eγ, Ee in the K rest frame  



Dalitz plots for SD+ and SD−

Eγ (MeV)

pe (MeV)

e+ν e+ν

γ

Eγ (MeV)

pe (MeV)

SD−SD+

electron peaks at 250 MeV,
e-γ antiparallel

Broad electron peak at 100 MeV: very 
bad, since Ke3 endpoint is  230 MeV

γ



Ke2γ: theory predictions
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Ametller, Bijnens, Bramon, Cornet 93
Geng, Ho, Wu  04 
Chen, Geng, Lih 08 

Bijnens, Ecker, Gasser 93 

1) ChPT at O(p4): 
                    fV ≈ 0.0945             
                    fA ≈ 0.0425
   no dependence on photon energy  
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2) ChPT at O(p6): 
                    fV ≈ 0.082(1+λ(1-x))  

           
                    fA ≈ 0.034
  V linear x dependence   (λ≈0.4)

3) LFQM:
          non trivial x dependence
          fV = fA = 0   at x=0

Chen, Geng, Lih 08 

x=2E  /MK

IB
SD
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Ke2γ selection: photon detection
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∆tγe/σ

• A photon is required with energy Eγ
calo > 20 MeV to reject bkg  

(we loose Ke2IB, too)    

Kπ2
Ke2γ Kµ2

∆tγe/σ ∆tγe/σ

(r = distance from K decay vtx)

γ from π0

 β(π+)  0.8 ≈ instead of 1
Fake γ from accidental bkg 

• Time of arrival compatible with that of the event (electron):   

 t e= t−r  /c − te−r e /c 2



Ke2γ selection
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M2
l e p   (MeV2)

E
v/

(4
00

0 
M

eV
2 )

After photon 
detection bkg is 
dominated by 

data Ke3

Ke2 (Eγ>10MeV)Kµ2

pe >200MeV

pe <200MeV

• Kµ2 in the low M2
lep  region 

• Ke3  for M2
lep > 20000

No sensitivity for  Ke2γ  
with pe<200 MeV  
(SD− amplitude) 

We measure  
Ke2γ (Eγ>10 MeV, pe<200 MeV)      
→ SD+ amplitude 



Ke2γ selection: photon matching
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1) best evaluation of Eγ
lab    from the

kinematics of Ke2γ, using measured
pK, pe and photon direction nγ 

∆Eγ/σ

Ke3

Ke2γ

(σcalo  ≈ 30 MeV)

2)                               is also useful  as 
a discriminating variable against  
background 

E =E 
lab−E 

calo

E 
lab
=

MK
2 me

2−2EK E e2pK⋅pe

2 E K−Ee−pK⋅npe⋅n 

 12 MeV resolution



Ke2γ event counting  
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• Two-dimensional binned 
likelihood fit  in the              
    

M2
l e p   (MeV2)

100< Eγ<150 MeV:  N = 463 ± 32 
                                   χ2 = 87/106  

M2
lep  – ∆Eγ/σ   plane 

5 bins of Eγ  (from Eγ
lab  

pass in K rest frame):               
  (10, 50)    (50,100)  (100,150)     
        (150,200)  (200,250)  

Ke2γ  (Eγ>10 MeV)
Kµ2
Ke3

150< Eγ<200 MeV:  N = 494 ± 38
                                   χ2 = 100/106    

Ke2γ  (Eγ>10 MeV)
Kµ2
Ke3

• Most populated bins
 data

 data

Fit projections on M2
l e p   axis

100< Eγ<150 MeV

150< Eγ<200 MeV

30000

30000



Ke2γ event counting  
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Fit projections on ∆Eγ/σ (all Eγ bins  together)

∆Eγ/σ ∆Eγ/σ

  according to  M2
lep , we show separately regions dominated by signal and bkg 

data
fit
Kµ2
Ke3

data
fit
Kµ2
Ke3

In total, we count Ne2γ  = 1484 ± 63     

signal 
dominated

bkg 
dominated



Ke2γ spectrum vs ChPT O(p4)
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1
 K 2 

d K e2,E 10M eV, pe
¿200M eV

dE

We measure:

Eγ (MeV)

Data are compared with ChPT O(p4) 
calculation  

Integrating we obtain:

K e2 ,E 1 0M eV, pe
¿200M eV

G K 2 
=1 . 48368x 10−5

in agreement with 1.447×10-5 of ChPT O(p4)

This confirm the SD content of our MC, evaluated with ChPT O(p4), within an 
accuracy of 4.6% and allows a 0.2% systematic error on  Ke2IB  to be 
assessed

χ2=5.4/5

data
ChPT O(p4)

IB



Ke2γ spectrum: fit to ChPT O(p6) 
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• We fit our data to extract fV+fA   
(SD+), allowing for a slope of the 
vector ff 
                    fV = fV  0  (1+λ(1-x))           
   

Eγ (MeV)

We obtain:

• Since we are not sensitive to the SD− 
amplitude (acceptance≈2%)  we keep 
fV-fA fixed to the ChPT O(p6) prediction 

fV0 +fA = (0.125±0.007)

λ = 0.38 ± 0.21 
          

χ2=1.9/3

Compare to ChPT O(p6) : fV0 +fA ≈ 0.116,  λ≈0.4
 Phys. Rev. D77 (2008) 014004  

data
fit



Ke2γ spectrum vs LFQM 
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The spectrum predicted by the
Light Front Quark Model
is excluded by our data, 
χ2=127/5 

Eγ (MeV)



1
 K 2 

d K e2,E 10M eV, pe
¿200MeV

dE

We also presented today the first measurement of the decay 
spectrum in a region dominated by SD 

Results are in good agreement with expectations from ChPT  

 CONCLUSION  

We have performed the most accurate measurement of
The K

S
 lifetime: 

   
S
= (89.562 ± 0.029

s t a t
 ± 0.043

s y s t
) ps

.. and a funny test of isotropy (the most accurate with lifetime 
to my knowledge)  



Reconstruction efficiencies
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We use MC, with corrections from data control samples 

1)  kink reconstruction (tracking): K+e3 and K+µ2 data control 
samples selected with tagging and additional criteria based on EMC 
info’s only  (next slide)  

2)  cluster efficiency (e, µ):  KL control samples, selected with 
tagging and kinematic criteria based on DC info’s only  

3)  trigger: exploit the OR combination of EMC and DC triggers 
(almost uncorrelated); downscaled samples are used to measure 
efficiencies for cosmic-ray and machine background vetoes 

we obtain:
ε(Ke2)/ε(Kµ2) = 0.946±0.007  
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Just an example: selection of K+e3 control sample to 
measure tracking efficiency for electrons

Control samples for tracking  efficiencies

0)  Tagging decay (Kµ2 or Kπ2) coming 
from IP



Just an example: selection of K+e3 control sample to 
measure tracking efficiency for electrons

0)  Tagging decay (Kµ2 or Kπ2) coming from IP

41

1)  Tagging decay (Kµ2 or Kπ2): 
reconstruction of the opposite 
charge kaon flight path  

Control samples for tracking  efficiencies
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2)  A π0→γγ  decay vertex is reconstructed 
along the K decay path, using TOF

Control samples for tracking  efficiencies
Just an example: selection of K+e3 control sample to 
measure tracking efficiency for electrons

0)  Tagging decay (Kµ2 or Kπ2) coming from IP

1)  Tagging decay (Kµ2 or Kπ2): 
reconstruction of the opposite charge kaon 
flight path  



Control samples for tracking  efficiencies
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2)  A π0->γγ decay vertex is reconstructed 
along the K decay path, using TOF

3)  Electron cluster required; pe 
estimated from  a kinematic fit with 
constraints on E/p, TOF, re and Emiss − Pmiss

We evaluate the K + electron kink reconstruction 
efficiency

Just an example: selection of K+e3 control sample to 
measure tracking efficiency for electrons

0)  Tagging decay (Kµ2 or Kπ2) coming from IP

1)  Tagging decay (Kµ2 or Kπ2): 
reconstruction of the opposite charge kaon 
flight path  



p  -p
K M  C  t r u e

 (MeV)

Decay point correction using 2nd

 determination of kaon momenta

 p


- p
Kboost

 (MeV) 



Stability with/out corrections

without
with
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pe(fit)-pe(reco)    (MeV) pµ(fit)-pµ(reco)    (MeV)

Control samples for tracking  efficiencies

σ ≈ 19 MeV
with a similar method, we get 
σ ≈ 7 MeV for muon tracks
 



Systematics and checks
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Rl3 = 1.507 ± 0.005 for K+  
Rl3 = 1.510 ± 0.006 for K−

Tracking
Trigger
syst on Ke2 counts  
Ke2γ  SD component
Clustering for e, µ

0.6%      K+ control samples     
0.4%      downscaled events
0.3%      fit stability    
0.2%      measurement on data     

Cross-check on efficiencies: use same algorithms to 
measure  Rl3 = Γ(Ke3)/Γ(Kµ3) 

SM expectation (FlaviaNet) 
Rl3 = 1.506± 0.003  

Summary of systematics:

0.6% from statistics of control samples

Total  Syst              0.8%       



RK : KLOE result
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RK = (2.493 ± 0.025 ± 0.019)×10−5

Total error     1.3%  =   1.0%stat      +      0.8%syst        

0.9% from 14k Ke2 
+ bkg subtraction 

dominated 
by statistics 

• The result  does not depend upon the kaon charge:

K+: 2.496(37)   vs    K+: 2.490(38)     uncorrelated errors only  

• Our  measurement agrees with SM prediction,

 RK = 2.477(1)×10−5



RK : world average

49

Clark, 1972

Heard, 1975

Heintze, 1976

NA48/2  
(2003) 

NA48/2 (2004) 

KLOE  

SM 
 

PDG2008 
 

         4.5% accuracy

RK = (2.468 ±0.025) × 10-5      

                 
 1% accuracy

New world average:            

       RK = (2.45 ±0.11) × 10-5        

PDG 2008:     
  

RK
SM  = 2.477(1)×10−5



RK : sensitivity to new physics
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KLOE

Sensitivity shown as 95% CL excluded  regions in the MH - tanβ plane, for 
different values of the LFV effective coupling, ∆13  = 10−3 , 5×10−4 , 10−4



Kµ2
 : sensitivity to new physics

5/25/09 51

R l 23=∣
V usK m 2
V usK l3 

´
V ud

00 
V ud pm 2

∣

Scalar currents, e.g. due to Higgs exchange, affect  K→ µν  width

=∣1−
m

K

2

m
H

2 1− m
p
2

m
K

2  tan2 β
1−e0 tanβ

∣

Rl23  =1 in SM  

we find   

Rl23  = 1.008 ± 0.008   

From direct searches (LEP), MH+ > 80 GeV, tanβ > 2

[Hou, Isidori-Paradisi]

limited by lattice uncertainty on f+(0) and fK/fπ   
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