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The magnetic moment of the muon

Interaction of particle with static magnetic field

V (~x) = −~µ · ~Bext

The magnetic moment ~µ is proportional to its spin (c = ~ = 1)

~µ = g
( e

2m

)
~S

The Landé g -factor is predicted from the free Dirac eq. to be

g = 2

for elementary fermions
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The magnetic moment of the muon

In interacting quantum (field) theory g gets corrections

qp1 p2

+
qp1 p2

k

+ . . .

γµ → Γµ(q) =

(
γµ F1(q2) + i

γµγν qν

2

F2(q2)

2m

)

which results from Lorentz and gauge invariance when the muon is
on-mass-shell.

F2(0) =
g − 2

2
≡ aµ (F1(0) = 1)

(the anomalous magnetic moment, or anomaly)
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The magnetic moment of the muon

Compute these corrections order-by-order in perturbation theory by
expanding Γµ(q2) in QED coupling constant

α =
e2

4π
=

1

137
+ . . .

Corrections begin at O(α); Schwinger term = α
2π = 0.0011614 . . .

hadronic contributions ∼ 6× 10−5 smaller, dominate theory error.
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Experiment - Standard Model Theory = difference

SM Contribution Value±Error (×1011) Ref

QED (5 loops) 116584718.951± 0.080 [Aoyama et al., 2012]

HVP LO 6923± 42 [Davier et al., 2011]

6949± 43 [Hagiwara et al., 2011]

HVP NLO −98.4± 0.7 [Hagiwara et al., 2011]

[Kurz et al., 2014]

HVP NNLO 12.4± 0.1 [Kurz et al., 2014]

HLbL 105± 26 [Prades et al., 2009]

Weak (2 loops) 153.6± 1.0 [Gnendiger et al., 2013]

SM Tot (0.42 ppm) 116591802± 49 [Davier et al., 2011]

(0.43 ppm) 116591828± 50 [Hagiwara et al., 2011]

(0.51 ppm) 116591840± 59 [Aoyama et al., 2012]

Exp (0.54 ppm) 116592089± 63 [Bennett et al., 2006]

Diff (Exp−SM) 287± 80 [Davier et al., 2011]

261± 78 [Hagiwara et al., 2011]

249± 87 [Aoyama et al., 2012]
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New experiments+new theory=new physics

Fermilab E989, begins in early 2017, aims for 0.14 ppm

J-PARC E34, “late 2010’s”, aims for 0.1 ppm

Today aµ(Expt)-aµ(SM) ≈ 2.9− 3.6σ

If both central values stay the same,

E989 (∼ 4× smaller error) → ∼ 5σ
E989+new HLBL theory (models+lattice, 10%) → ∼ 6σ
E989+new HLBL +new HVP (50% reduction) → ∼ 8σ

Big discrepancy! (New Physics ∼ 2× Electroweak)

Lattice calculations important to trust theory errors
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Hadronic vacuum polarization (HVP)

+

Using lattice QCD and continuum, ∞-volume QED
[Blum, 2003, Lautrup et al., 1971]

aHVP
µ =

(α
π

)2 ∫ ∞

0
dq2 f (q2) Π̂(q2)

f (q2) is known, Π̂(q2) is subtracted HVP, Π̂(q2) = Π(q2)− Π(0)

Πµν(q) =

∫
e iqx〈jµ(x)jν(0)〉 jµ(x) =

∑

i

Qi ψ̄(x)γµψ(x)

= Π(q2)(qµqν − q2δµν)
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Lattice setup (K. Wilson)

Compute correlation functions (e.g. 〈jµ(x)jν(y)〉, jµ = ψ̄γµψ)
in Feynman path integral formalism

4(5)D hypercubic lattice regularization, non-zero lattice
spacing a and finite volume V

Handle fermion integrals analytically. Propagators inverse of
large sparse matrix M, lattice Dirac operator (domain wall,
staggered, Wilson, ...)

Treat path integrals over gauge fields stochastically, using
Monte Carlo techniques: generate ensemble of gauge field
configurations {U} with weight det M(U) exp−Sg , 〈· · · 〉
simple average over ensemble

work entirely in Euclidean space time, analytically continue
back to Minkowski at the end (usually trivial)
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HVP from lattice QCD calculation
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T1, 56c, 50 configs
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Asqtad Hadronic Vacuum Polarization
1 light flavor (2+1 flavor QCD, a=0.06 fm)

2+1f Imp. staggered

MILC ensembles

a = 0.06 fm, (3.84 fm)3 box

220 ≤ mπ ≤ 315 MeV

mπL ∼ 4.3− 4.5

Aubin, Blum, Golterman, and Peris (MILC gauge ensembles)
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Fits

Need smooth parametrization of lattice HVP

Integral dominated by low momentum, mµ/2 <∼ 2π/L

Fit HVP, plug into integral. Use polynomials [Blum, 2003],
VMD [Gockeler et al., 2004], chiral perturbation
theory+VMD [Aubin and Blum, 2007]

Integral sensitive to model dependence because of low Q
uncertainties [Aubin and Blum, 2007, Aubin et al., 2012, Golterman et al., 2013]

VMD does not work [Golterman et al., 2013]

Use Padé approximants, model independent, based on
Stieltjes functions (nice convergence properties) [Aubin et al., 2012].

Π(Q2) = Π(0)− Q2

(
a0 +

N∑

n=1

an
bn + Q2

)
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Fits circa 2012 [Aubin and Blum, 2007, Aubin et al., 2012]

HVP Integrand
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FIG. 2: [1, 1] PA fits of Tables 3 (correlated, solid curve) and 4 (uncorrelated, dashed curve)

compared with data. Solid points have been included in the correlated fit while both solid and open

points have been included in the uncorrelated fit.

results of Table 3 as our optimal results (for more on this point, see the discussion around
Table 5 below). Uncorrelated fits are shown in Table 4, where, in line with Sec. IVA, fits
were carried out on the interval 0 < Q2 ≤ 1 GeV2.

It is again not surprising that the correlated fits become less good if one fits over a larger
range in Q2. As before, it is clear from the tables that, given the quality of the data, it is
very hard to fit a second pole. The value of aHLO,Q2≤1

µ is again completely insensitive to the

location of the second pole.10

We show the [1, 1] fits of Tables 3 and 4 in Fig. 2. As in Fig. 1 one notes the sensitivity

of the fit near Q2 = 0; this explains the different values for aHLO,Q2≤1
µ shown in the tables.

From the [1, 1] PA fit of Table 3 we take what we would expect to be our best result for
this data set:

aHLO,Q2≤1
µ = 572(41) × 10−10 . (4.3)

In Fig. 3 we show correlated and uncorrelated [1, 1] PA fits, now taking the range 0 < Q2 ≤
0.53 GeV2 as our fitting range also for the uncorrelated fit. We note that the uncorrelated
fit appears to do better than the uncorrelated [1, 1] PA fit shown in Fig. 2 at the lowest
Q2 value, but much less well than the correlated fit for Q2 > 0.53 GeV2. Accordingly,
uncorrelated fits are quite sensitive to the fitting range. For instance, the central value of
aHLO,Q2≤1

µ from the uncorrelated fit shown in Fig. 3 is 42% larger than from a similar fit on
the range 0 < Q2 ≤ 1 GeV2 (shown in Table 4). A correlated fit on the latter range gives a
central value which is only 3% larger than the value in Eq. (4.3), i.e., it is within the error

10 We even considered [2, 3] and [3, 3] fits, with the conclusion being the same.

11

0.05 0.10 0.15 0.20

-0.005

0.005

Integrand	  of	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  compared	  with	  data	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (MILC,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  )	  

⇒	  	  	  	  need	  more	  data	  at	  low	  	  	  	  	  	  	  	  with	  smaller	  errors!	  	  	  	  In	  progress…	  	  Q2

aHLO
µ /(4↵2)

a = 0.06 fm , m⇡ = 220 MeV2+1f Imp. staggered (MILC), 220 MeV pion, (3.84 fm)3

* [1,1] Padé

dominated by q ∼ mµ/2 (large box needed for access)

Fit uncertainty ↔ large uncertainty in aµ

need improved statistical errors and larger box for small q
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Moments method [Chakraborty et al., 2014] (HPQCD)

Alternative to fits: compute time moments of two-point
correlation function. Coefficients of Taylor exp. about q2 = 0

∑

t

∑

~x

t2n〈j i (~x , t)j i (0)〉 = (−1)n
∂2n

∂q2n
Π̂(q2)

∣∣∣∣
q2=0

(Finite difference in FV → FVE)

Use moments to construct Padé approximants for Π̂,

Higher moments → more statistical noise. OK since Padé’s
converge rapidly, integral dominated by low Q2

5

TABLE II: Columns 2-5 give the Taylor coefficients Πj (Eq. 6), in units of 1/GeV2j , for each of the lattice data sets in Table I.
The errors given include statistics and the (correlated) uncertainty from setting the lattice spacing using w0, which dominates.
Estimates of the connected contribution from s-quarks to aµ,HVP are given for each of the [1, 0], [1, 1], [2, 1] and [2, 2] Padé
approximants in columns 6-9; results are multiplied by 1010.

Set Π1 Π2 Π3 Π4 [1, 0]× 1010 [1, 1]× 1010 [2, 1]× 1010 [2, 2]× 1010

1 0.06598(76) −0.0516(11) 0.0450(15) −0.0403(19) 58.11(67) 53.80(59) 53.95(59) 53.90(59)
2 0.06648(75) −0.0523(11) 0.0458(15) −0.0408(18) 58.55(66) 54.19(58) 54.33(59) 54.29(59)
3 0.06618(75) −0.0523(11) 0.0466(15) −0.0425(20) 58.28(66) 53.93(58) 54.09(58) 54.04(58)
4 0.06614(74) −0.0523(11) 0.0467(15) −0.0427(19) 58.25(65) 53.90(57) 54.06(58) 54.01(57)
5 0.06626(74) −0.0527(11) 0.0473(15) −0.0438(19) 58.36(65) 53.99(57) 54.15(57) 54.10(57)
6 0.06829(77) −0.0557(12) 0.0514(17) −0.0490(22) 60.14(67) 55.55(59) 55.73(59) 55.67(59)
7 0.06619(74) −0.0524(11) 0.0468(15) −0.0430(19) 58.29(65) 53.93(57) 54.10(57) 54.05(57)
8 0.06625(74) −0.0526(11) 0.0470(15) −0.0429(19) 58.34(65) 53.98(57) 54.14(57) 54.09(57)
9 0.06616(77) −0.0531(12) 0.0483(17) −0.0450(22) 58.27(68) 53.87(59) 54.04(60) 53.99(59)
10 0.06630(72) −0.0534(11) 0.0487(16) −0.0458(20) 58.39(64) 53.98(56) 54.15(56) 54.10(56)

TABLE III: Error budgets for connected contributions to the
muon anomaly aµ from vacuum polarization of s and c quarks.

asµ acµ
Uncertainty in lattice spacing (w0, r1): 1.0% 0.6%

Uncertainty in ZV : 0.4% 2.5%
Monte Carlo statistics: 0.1% 0.1%
a2 → 0 extrapolation: 0.1% 0.4%

QED corrections: 0.1% 0.3%
Quark mass tuning: 0.0% 0.4%

Finite lattice volume: < 0.1% 0.0%
Padé approximants: < 0.1% 0.0%

Total: 1.1% 2.7%

mistuning of the sea and valence light-quark bare masses:

δxsea ≡
∑

q=u,d,s

msea
q −mphys

q

mphys
s

(10)

δxs ≡
mval
s −mphys

s

mphys
s

. (11)

For our lattices with physical u/d sea masses δxsea is very
small. a2 errors from staggered ‘taste-changing’ effects
will remain and they are handled by ca2 . The four fit
parameters are a2

µ, ca2 , csea and cval; we use the following
(broad) Gaussian priors for each:

asµ = 0± 100× 10−10

ca2 = 0(1) csea = 0(1) cval = 0(1). (12)

Our final result for the connected contribution for
s quarks to g − 2 is:

asµ = 53.41(59)× 10−10. (13)

The fit to [2, 2] Padé results from all 10 of our configu-
ration sets is excellent, with a χ2 per degree of freedom
of 0.22 (p-value of 0.99). In Fig. 4 we compare our fit
with the data from configurations with ms/m` equal 5
and with the physical mass ratio.

0.005 0.010 0.015 0.020 0.025

a2 (fm2)

52.5

53.0

53.5

54.0

54.5

55.0

a
s µ
×

10
1
0

FIG. 4: Lattice QCD results for the connected contribution to
the muon anomaly aµ from vacuum polarization of s quarks.
Results are for three lattice spacings, and two light-quark
masses: mlat

` = ms/5 (lower, blue points), and mlat
` = mphys

`

(upper, red points). The dashed lines are the corresponding
values from the fit function, with the best-fit parameter val-
ues: ca2 = 0.29(13), csea = −0.020(6) and cval = −0.61(4).
The gray band shows our final result, 53.41(59)×10−10, with

mlat
` = mphys

` , after extrapolation to a = 0.

TABLE IV: Contributions to aµ from s and c quark vacuum
polarization. Only connected parts of the vacuum polariza-
tion are included. Results, multiplied by 1010, are shown for
each of the Padé approximants.

Quark [1, 0]× 1010 [1, 1]× 1010 [2, 1]× 1010 [2, 2]× 1010

s 57.63(67) 53.28(58) 53.46(59) 53.41(59)
c 14.58(39) 14.41(39) 14.42(39) 14.42(39)

The error budget for our result is given in Table III.
The dominant error, by far, comes from the uncertainty
in the physical value of the Wilson flow parameter w0,
which we use to set the lattice spacings. We estimate the
uncertainty from QED corrections to the vacuum polar-

all systematics controlled

astrangeµ = 53.41(59)× 10−10

[Chakraborty et al., 2014] (HPQCD)

Next, apply to light quark HVP
(same difficulty as q → 0)
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Finite volume HVP [Bernecker and Meyer, 2011]

Finite volume Πµν transforms under 5 Irreps (1, 1, 2, 3, 3)d:
A1, A2, E , T1, T2 for L 6= T

Πµµ(0) 6= 0 in FV because Euclidean O(4) symmetry is
broken. Terms not constrained by WI, exponentially small

Πµν(q) is discontinuous at q = 0

Π(q2) depends on irrep

full O(4) symmetry restored as L,T →∞

Tom Blum (UCONN / RBRC) Progress on the muon anomalous magnetic moment from lattice QCD
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Finite volume effects

Zero mom subtraction Πνν(0) seen to reduce FV effect
[Malak et al., 2015] (BMWc)

FV corrections to aHV P,LO
µ Rehan Malak

Q2(GeV 2)
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Figure 1: (Left panel) Πud(Q2) vs Q2 for Mπ ∼ 292MeV, as obtained using the usual and 2nd derivative
(Eq. (2.5)) methods in four volumes and with all other lattice parameters fixed. The data points are the
values obtained from the current-current correlation function and its Fourier derivatives. The curves are the
corresponding fits. (Right panel) aHVP,LO

µ,ud (Q2 ≤ 1GeV2) vs 1/Mπ L obtained from the polarization functions
in the left panel.

While results from the three methods converge in the large-volume limit, in smaller volumes
the finite-size corrections are significant in some cases. In the smallest volume, with L = 2.5fm
or LMπ = 3.7, the finite-volume correction on aHVP,LO

µ,ud (Q2 ≤ 1GeV2), obtained using the 2nd
derivative method, is ∼ 35%. It is even larger for the usual method without subtraction: around
200%. In the 2nd derivative case, it is reduced to below 10% by the time L >∼ 5fm. Only results
obtained from the usual method with subtraction do the finite-volume effects remain small for all
volumes considered.

An interesting feature of the 2nd derivative method is that it features significantly smaller
statistical errors on aHVP,LO

µ (Q2 ≤ 1GeV2) than the usual method without subtraction. This remain
true to a much smaller extent for the usual method with subtraction. In the former case, it is
mainly due to the fact that the 2nd derivative method eliminates the noisy Πud

µν(0), as does usual
method with subtraction. The additional statistical improvement compared to the usual method with
subtraction results from the fact that the 2nd derivative method allows the extraction of Π(Q2 = 0).
This constrains the statistical fluctuations of the fitted Π(Q2) vs Q2 in the very important low-Q2

region. And though we do not investigate this issue here, this additional constraint will also reduce
systematic errors by replacing the usual extrapolation by an interpolation.

We now turn to the strange-quark contribution to aHVP,LO
µ and perform the same study of

finite-volume effects as for the light contribution. The corresponding results for Πs(Q2) vs Q2

and aHVP,LO
µ,s (Q2 ≤ 1GeV2) vs 1/MπL are shown in Fig. 2. For both quantities, the same general

features, as were observed for the light contribution, are seen here. In particular, the results obtained
from the usual method with subtraction show no volume dependence for the lattices considered.
On the other hand, significant finite-volume effects are still observed for the two other methods
in smaller volumes, but these disappear as one goes to larger lattices. They are, nevertheless,
much smaller than in the light case. For the strange contribution, the finite-volume correction,
in the smallest volume with L = 2.5fm or LMπ = 3.7, is now ∼ 25% on aHVP,LO

µ (Q2 ≤ 1GeV2)

obtained using the derivative method and ∼ 20% when it is obtained using the usual approach

5

2.5 ≤ L ≤ 8.3 fm, 5 ≤ T ≤ 10 fm,
a = 0.104 fm, mπ = 292 MeV, 3.7 ≤ mπL ≤ 12.3

100% error for “small” box, 40% even for mπL = 4.9
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FV effects: M. Golterman’s talk at Lattice 2015 [Aubin et al., 2015]

FVE small, but visible, so fit HVP for each irrep separately
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0 0.1 0.2 0.3 0.4
Q2 (GeV2)

0.15

0.16

0.17

0.18

-Π
(Q

2 )

A1 sub, 64c, 49 configs
A1 sub, 56c, 50 configs
A1 sub, 48c, 21 configs
T1, 48c, 21 configs
T1, 56c, 50 configs
T1, 64c, 49 configs

Asqtad Hadronic Vacuum Polarization
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Statistical errors < 0.4% ! All mode averaging [Izubuchi et al., 2013]
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Finite volume effects [Aubin et al., 2015]

Use FV SU2 chiral perturbation theory to compute differences
between irreps, and same irreps with and without subtraction
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A1 irrep has lowest Q2, largest FV effect, O(∼ 40%)!,
mπL = 4.2

FVE O(few%) of full HVP, mπL = 4.2

Lattice / χPT show good agreement for differences
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Finite volume effects [Aubin et al., 2015]

Compare lattice and NLO χPT (both in FV)

0.2 0.3 0.4 0.5

-0.0005

0.0005

0.0010

Difference of A1 (subtracted) and A44
1 irreps

Differences are <∼ 0.5% of total HVP @ mπL = 4.2 after zero
mom subtraction

Reasonable assumption: FV effects dominated my pions,
negligible for ρ
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Fits and the aµ integrand [Aubin et al., 2012, Aubin et al., 2015]

0.05 0.10 0.15 0.20

-0.005

0.005

Integrand	  of	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  compared	  with	  data	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (MILC,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  )	  

⇒	  	  	  	  need	  more	  data	  at	  low	  	  	  	  	  	  	  	  with	  smaller	  errors!	  	  	  	  In	  progress…	  	  Q2

aHLO
µ /(4↵2)

a = 0.06 fm , m⇡ = 220 MeV

0.00 0.05 0.10 0.15 0.20
0.000

0.002

0.004

0.006

0.008

0.010

0.012

old statistics (2012) new statistics (AMA)

dominated by q ∼ mµ/2 (large box needed to access)

2+1f Imp. staggered (MILC), 220 MeV pion, (3.84 fm)3

A1 irrep (subtracted)

better, but still larger box needed
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Finite volume errors [Aubin et al., 2015]

2+1f Imp. staggered (MILC), 220 MeV pion, (3.84 fm)3

A1 irrep (subtracted), aµ = 4.54± 0.25× 10−8

A44
1 irrep, aµ = 5.26± 0.32× 10−8

Difference ∼ 15%

χPT: irreps straddle ∞ volume result

FV error <∼ 7− 8% in this case

Solid understanding of low Q2 region emerging
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Finite volume effects [Lehner and Izubuchi, 2015]

∞-volume for valence quarks by average over twisted bc’s

Towards the large volume limit Christoph Lehner

Figure 3 shows a numerical comparison of results using RBC/UKQCD’s 163 and 243 en-
sembles that only differ in their respective physical volume. This allows for a test of remnant
finite-volume errors introduced by the sea sector. The integral over q2 is performed using both the
Trapezoidal and Simpson’s rule, choosing a step-size such that their difference is below 1/100 of
the statistical error. We find that the relative error of aµ is consistent with the almost q2-independent
integrand uncertainty shown in Fig. 4.
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Figure 3: Strange quark contribution on RBC/UKQCD’s 163 and 243 ensembles with a−1 ≈ 1.73 GeV,
ml = 0.01 (mπ ≈ 422 MeV), and ms = 0.04. The 163 (243) measurement was performed using 2 (1) exact
and 32 (16) inexact sources on 60 (78) configurations. The left figure shows the times-lice t contribution to
Π̂(k = mµ), where mµ is the physical muon mass. The right figure shows the integrand of aµ as a function
of q2. Note that the stochastic noise is well-behaved for small momenta.

4. Stochastic integration of photon momenta

In this section we demonstrate an efficient method to use the twist-averaging procedure to
sample over the photon momenta. A wise choice of sampling weight, i.e., the use of importance-
sampling techniques can yield a substantial benefit. The following discussion is explicitly given
in one dimension but all expressions and methods translate in a straightforward way to the more
general four-dimensional case.

We continue the discussion of the HVP diagram to illustrate the method. The full diagram
with lattice regulator can be written as
∫ π

−π
dk Γµν(k)Πµν(k) =

∫ π

−π
dk Γµν(k)

∫ 2π

0

dθ1

2π
dθ2

2π ∑
x∈{0,...,L−1},n∈N

eik(nL+x)+in(θ1−θ2)Cµν(x,θ1,θ2)

(4.1)

for an appropriately defined Γµν . Poisson’s summation formula yields
∫ π

−π
dk Γµν(k)

∫ 2π

0

dθ1

2π
dθ2

2π ∑
x∈{0,...,L−1}

eikxδ̂ (k− (θ2−θ1)/L)Cµν(x,θ1,θ2) (4.2)

with δ̂ (k) = 2π
L ∑n∈N δ (k + 2πn/L). By writing

∫ π
−π dk g(k) = 1

L ∑n=0,...,L−1
∫ 2π

0 dθkg(2πn/L +

θk/L) and performing the integral over θk, we obtain a method to stochastically sample the photon
momenta through the random choice of twist angles.

5

Allows continuous variation of momentum (avoid fit. also
sine-cardinal constr: exp. small errors [del Debbio and Portelli, 2015])
“direct double subtraction” found ind. of [Bernecker and Meyer, 2011]

Π̂(q2) =

〈∑

t

<
(

e iqt − 1

q2
+

1

2
t2
)
<Cµµ(t)

〉

sub Πµµ(0) and Π(0) on each config: reduced statistical errors
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C. Lehner’s talk at Lattice 2015 (Kobe)

Reducing finite volume effects in QCD+QED simulations

∞ volume photon on finite lattice (QED∞)

mass correction in simple scalar model
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Analytic V=∞ result

k̂µ = 2 sin kµ/2

G (x) =

∫ π

−π

d4k

(2π)4
e ikx

k̂2

GI (k ′) =
∑

x∈V
G (x)e−ik

′x

k ′ = 2πnµ/Lµ
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Strange: Matt Spraggs’s talk at Lattice 2015 (Kobe)

Strange contribution, 2+1 f Möbius DWF, continuum limit

Physical masses

a = 0.114 and 0.09 fm

(5.5 fm)3 boxes
RBC/UKQCD

results independent of analysis method (fits or moments)

remarkable agreement with HPQCD 2+1+1 staggered
fermion result 53.41 (59) (1% level) [Chakraborty et al., 2014]
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Disconnected diagrams

Zero contribution in the SU3 flavor limit

10% of connected in χPT [Della Morte and Juttner, 2010]

Computed by several groups so far
[Feng et al., 2011, Gulpers et al., 2014, Burger et al., 2015]

Compute light-strange to cancel noise (Mainz Group)

The leading disconnected contribution to the anomalous magnetic moment of the muon Vera Gülpers

For convenience, we consider the disconnected correlator G`s
disc(t) for light and strange quarks

combined, since one can write the disconnected Wick contractions as

G`s
disc(x0) =−

∫
d3x
〈

j`sk (x) j`sk (0)
〉

disc

=−
∫

d3x
〈
( j`k(x)− js

k(x))( j`k(0)− js
k(0))

〉
disc

,
(2.3)

i.e. we only need differences of light and strange quark loops. Thus, we expect that stochastic
noise can be canceled when light and strange quark loops are calculated using the same stochastic
sources. Figure 2 shows our results for the disconnected correlator for light quarks only in red and
for combined light and strange quarks in green for the E5 ensemble (cf. table 1). As expected,
we find that the stochastic error for the combined light and strange disconnected correlator is sig-
nificantly smaller than the error on the light quark correlator alone. Although we can reduce the

G
d
is
c
(t

)

t/a

light
light and strange

−4e − 04
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Figure 2: The disconnected vector correlator for light quarks (red) and combined light and strange quarks
(green). Note, that the scales on both plots are different.

statistical error significantly when light and strange loops are calculated with the same stochastic
sources, we find that the disconnected correlator G`s

disc(x0) is still consistent with zero within our
current accuracy.

We can add the disconnected correlator to the connected one to obtain the total vector correla-
tor. Figure 3 shows the connected (red) and the total vector correlator (yellow) for the E5 ensemble.
Results for light quarks as well as light and strange quarks combined are shown on the left- and the
right-hand side, respectively. The horizontal line in both plots shows the level of the statistical error
on the disconnected contribution, i.e. it indicates the point from which on our total vector correla-
tor is dominated by the noise of the disconnected contribution. This point sets in for significantly
larger euclidean times in the case of the combined light and strange quark correlator.

Although we do not find a non-vanishing signal for the disconnected correlator, we can still
use our results to give a limit for the maximum possible contribution to the hadronic vacuum
polarization from quark-disconnected diagrams. Here, we will solely consider the case of combined
light and strange quarks, for which the statistical error is significantly smaller.

3

Zero within ∼ 3% statistical errors for heavier quarks
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HVP summary
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aµ
HVP
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(stat. only)
Aubin and Blum 2006

UKQCD 2011
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Mainz 2011
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(preliminary, stat. only)

BMW 2013
(preliminary, stat. only)

e
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-
 (Davier 2011)

u, d, s, c sea

u, d, s sea

u, d sea

Systematic errors
incomplete,
underestimated, or
missing

Connected
contribution only

Some way to go to
match precision of
dispersive result
S. Eidelman’s talk

Plot courtesy of R. Van de Water
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Outline I

1 Introduction
Nature - Standard Model

2 HVP
Doing the integral: fits, moments, sums, ...
finite volume effects
strange
disconnected diagrams
HVP summary

3 HLbL
non-perturbative QED
Perturbative QED in configuration space
disconnected diagrams

4 Summary/Outlook

5 References
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Hadronic light-by-light (HLbL) scattering

+ + · · ·

Model calculations: (105± 26)× 10−11

[Prades et al., 2009, Benayoun et al., 2014]

Model systematic errors difficult to quantify

Dispersive approach difficult, but progress is being made
[Colangelo et al., 2014b, Colangelo et al., 2014a, Pauk and Vanderhaeghen, 2014b,

Pauk and Vanderhaeghen, 2014a, Colangelo et al., 2015]

First non-PT QED+QCD calculation [Blum et al., 2015]

Very rapid progress with Pert. QED+QCD [Jin et al., 2015]
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Non-perturbative QED method [Blum et al., 2015]

Subtraction Method 12/32

• Evalutate the quark and muon propagators in the background quenched QED fields. Thus
generate all kinds of diagrams.

〈 quark 〉

QCD+quenched QEDA

−
〈

quark

〉

QCD+quenched QEDB〈 〉

quenched QEDA

= 3×

xsrc xsnky′, σ′ z′, ν′ x′, ρ′

xop, µ

z, ν
y, σ x, ρ

Figure 7. PoS LAT2005 (2006) 353. hep-lat/0509016. One typical diagram remains after subtraction
is shown on the left, 5 others are not shown.

• After subtraction, the lowest order signal remains is O(e6) which is exact LbL diagram.

• Solved the 3-loop problem. Now we only need to compute point source propagators in
the backgrounds of QED fields.

• Lower order noise problem. The signal after subtraction is O(e6). But even after charge
conjugation average on the muon line, the noise is still O(e4).

• Unwanted higher order effects. In practice, one normally choose e = 1.

• “Disconnect diagram” problem. Noise will likely increase in larger volume.

5 10 15 20 25 30
tsep

-0.1

0

0.1

0.2

0.3

0.4

F 2((
2π

/L
)2 )

QED (mloop=mµ=0.1, 243)

QED, (mloop=mµ=0.1, 163)

QED pert. theory, F2(0)
QCD+QED (mπ=330 MeV)
hadronic models, F2(0)

quark-connected part of HLbL

a−1 = 1.7848 GeV, (2.7 fm)3

mπ = 330 MeV, mµ = 190 MeV

Consistent with model
expectations (J. Bijnens)

Agreement with models accidental

O(α2) noise, O(α4) corrections
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HLbL: Pert. QED, L. Jin’s talk, Lattice 2015 [Jin et al., 2015]

xsrc xsnky′, σ′ z′, ν′ x′, ρ′

xop, µ

z, ν
y, σ x, ρ

+ xsrc xsnky′, σ′ x′, ρ′ z′, ν′

xop, µ

z, ν
y, σ x, ρ

+ permutations

Compute quark loop non-perturbatively

Photons, muon on lattice, but use (exact) tree-level
propagators

Work in configuration space

Do QED (two) loop integrals stochastically

Key insight: quark loop exponentially suppressed with x and y
separation. Concentrate on short distance

Chiral (DW) fermions at finite lattice spacing: UV properties
like in continuum, modified by O(a2)
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HLbL: Perturbative QED [Jin et al., 2015]

xsrc xsnky′, σ′ z′, ν′ x′, ρ′

xop, µ

z, ν
y, σ x, ρ

+ xsrc xsnky′, σ′ x′, ρ′ z′, ν′

xop, µ

z, ν
y, σ x, ρ

+ permutations

Fν(x , y , z , xop, xsnk, xsrc) =

−(−ie)3
∑

q=u,d,s

(ieq)4
〈
tr
[
γνSq (xop, x) γρSq(x , z)γκSq(z , y)γσSq (y , xop)

]〉
QCD

·
∑

x′,y ′,z′

Gρρ′(x , x ′)Gσσ′(y , y ′)Gκκ′(z , z ′)

·
[
Sµ (xsnk, x

′) γρ′Sµ(x ′, z ′)γκ′Sµ(z ′, y ′)γσ′Sµ (y ′, xsrc)

+Sµ (xsnk, z
′) γκ′Sµ(z ′, x ′)γρ′Sµ(x ′, y ′)γσ′Sµ (y ′, xsrc)

+4 other permutations
]
.
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HLbL: Perturbative QED, point source method [Jin et al., 2015]

xsrc xsnky′, σ′ z′, ν′ x′, ρ′

xop, µ

z, ν
y, σ x, ρ

Fν(~q, x , y , z , xop) =

lim
tsrc→−∞
tsnk→∞

eEq/2(tsnk−tsrc)
∑

~xsnk,~xsrc

e−i
~q
2 ·(~xsnk+~xsrc)e i~q·~xop

Fν(x , y , z , xop, xsnk, xsrc)

with momentum transfer ~q = 2π~z/L
and translational invariance

Mν(~q) =
∑

x,y ,z

Fν(~q,
x − y

2
,−x − y

2
, z − x , xop − x)

=
∑

r




∑

z′,x′op

Fν(~q,
r

2
,− r

2
, z ′, x ′op)





x =
x + y

2
, r =

x − y

2
, z ′ = z − x and x ′op = xop − x

Sum over r and x stochastically, x ′op and z ′ exact
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HLbL: Perturbative QED, point source method [Jin et al., 2015]

xsrc xsnky′, σ′ z′, ν′ x′, ρ′

xop, µ

z, ν
y, σ x, ρ

G (x , x ′)ρρ′ =
∑

k

1

(2 sin k/2)2
e ik(x−x′)

QEDL [Hayakawa and Uno, 2008]

Muon propagators FV (analytic),
tree-level DWF with Ls =∞
Compute 2 point source props in QCD
at x , y , connect sink points at x ′op and
z ′, do the latter sums exactly

tsrc, tsnk chosen for each x ± T/2

Do sums over r , x (x , y)
stochastically, average over QCD
configurations then yields Mν(~q)
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HLbL: Perturbative QED, point source method [Jin et al., 2015]

Use importance sampling to do sum over r efficiently
(sample |r | <∼ 1 fm most frequently)

p(|xi − x |) ∝
{

1 (|xi − x | < R)
1/|xi − x |3.5 (|xi − x | > R)

,

The distribution of the relative distance |r | between any two
points drawn from this set is:

P(r) =
∑

x

p(|x − r |)p(|x |).
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Figure 3. Distribution of the r for 32ID lattice.

For simplicity, we only write local current in above formulas. In actual computation,

however, we need to compute lattice conserved current at xop to ensure the quark loop to

be finite at short distance. We can then use three local current at x, y, and z, provided that

Z3
V is multiplied to the final results. See Appendix ???.

We use domain wall action not only for quarks but for the muon as well. We compute

the muon propagators with domain wall height M5 = 1 and infinite Ls. Since all the muon

photon interactions have been explicitly included in the formula, all the muon propagators

are free field fermion propagators. To calculate these free propagators, we can use Fourier

transformations and analytical expressions. So we can enjoys the nice properties without

addition cost compare with the conventional cheaper fermions, e.g. Wilson fermion. We

also use local currents for the photon muon interactions at x′, y′, and z′.

Since we need to sum over all six different permutations of the three internal photons, all

pairs of x, y and combinations of photon polarizations should be computed separately. The

work need to be done for the muon line is proportion to M2. So for large M , the cost for

the free muon propagators can be comparable with the cost for quark propagators. In our

simulations, we usually choose M = 16, which balances the cost for muon and quarks. Also,

M = 16 is not yet too large, so the over all statistics is still roughly proportion to M2.

Above derivation take the limit that tsep → +∞. In practice, if we calculate the QED

part using lattice, we will have finite tsep, which is set to be half of the lattice time extent

11

2+1f DWF+I-DSDR ensemble
RBC/UKQCD

171 MeV pion mass

R = 4
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HLbL: point source method results [Jin et al., 2015]Point Source Photon Method 20/32

Label size mπ L mπ/GeV #qcdtraj tsep
F2 ±Err
(α/π)3

Cost
BG/Q rack days

16I 163 × 32 3.87 0.423 16 16 0.1235± 0.0026 0.63
24I 243 × 64 5.81 0.423 17 32 0.2186± 0.0083 3.0
24IL 243 × 64 4.57 0.333 18 32 0.1570± 0.0069 3.2
32ID 323 × 64 4.00 0.171 47 32 0.0693± 0.0218 10

Table 2. Central values and errors. a−1 = 1.747GeV except for 32ID where a−1 = 1.371GeV.
Muon mass and pion mass ratio is fixed at physical value. For comparison, at physical point, model
estimation is 0.08± 0.02.
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Figure 13. 323 × 64 lattice, with a−1 = 1.371GeV, mπ = 171MeV, mµ = 134MeV.
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HLbL: Current conservation [Jin et al., 2015]

To ensure small statistical errors as q → 0, Ward Identity
(conserved current) must be exact on each configuration

∂µ〈jµ(xop)ψ̄(x)γρψ(x) · · · 〉 = iδ(xop − x)〈ψ̄(x)γνψ(x) · · · 〉
−iδ(xop − x)〈ψ̄(x)γνψ(x) · · · 〉+ · · ·

〈jµ(xop)ψ̄(x)γρψ(x)ψ̄(z)γνψ(z)ψ̄(y)γσψ(y)〉 =

Conserved External Current Improvement 23/32

xsrc xsnky′, σ′ z′, ν′ x′, ρ′

xop, µ

z, ν

y, σ x, ρ

xsrc xsnky′, σ′ z′, ν′ x′, ρ′

xop, µ

z, ν

y, σ x, ρ

xsrc xsnky′, σ′ z′, ν′ x′, ρ′

xop, µ

z, ν

y, σ x, ρ

Figure 15. All three different possible insertions for the external photon. They are equal to each other
after stochastic average. 5 other possible permutations of the three internal photons are not shown.

(Left). This is the diagram that we have already calculated.

(Middle). We need to compute sequential source propagators at xop for each polarizations
of the external photon.

(Right). We also need to compuate sequential source propagators at xop, but with the
external photon momentum in opposite direction, since we need use γ5-hermiticity to
reverse the direction of the propagators, which reverses the momentum of the external
photon as well.

after doing Wick contractions. Compute all 3 diagrams
WI exact (to numerical precision) on each configuration
signal and error both vanish as q → 0. Error on F2(q2) ∼
constant
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HLbL: Moment method for F2(0) in FV [Jin et al., 2015]

Can do calculation directly at zero momentum for large L

ū(p′)

[
i
F2(q2)

4m
[γµ, γν ]qν

]
u(p) =

∑

xop

exp (iq · xop)M′µ(q, xop)

≈
∑

xop

(1 + iq · xop)M′µ(q, xop)

≈
∑

xop

iq · xopM′µ(q, xop)

The “1” term vanishes in ∞ volume, exponentially small in FV

ū(p′ = 0)

[
i
F2(q2)

4m
[γµ, γν ]qν

]
u(p = 0) =

∑

xop

iq · xopM′(q = 0, xop)

Can use local (not conserved) current for all four currents since
xop = 0 kills contact terms
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Continuum and ∞ volume limits in QED [Jin et al., 2015]
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25

QED ∞ volume limit

q = 0
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Dramatic improvement [Jin et al., 2015]

Including all improvements, statistical errors reduced by 10×

Zero External Momentum Transfer Improvement 29/32
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Figure 20. Phys.Rev.Lett. 114 (2015) 1, 012001. arXiv:1407.2923. Compare with latest method and
result.

• 243 × 64 lattice with a−1 = 1.747GeV and mπ = 333MeV. mµ = 175MeV.

• For comparison, at physical point, model estimation is 0.08 ± 0.02. The agreement is
accidental, the lattice value has a strong dependence on mµ.

quark-connected part of HLbL

a−1 = 1.7848 GeV, (2.7 fm)3

mπ = 330 MeV, mµ = 190 MeV

q = 2π/L
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M. Hayakawa’s talk at Lattice 2015 [Jin et al., 2015]NOT Yet Disconnected Diagrams 10/32

xsrc xsnky′, σ′ x′, ρ′ z′, ν′

xop, µ

z, νy, σ x, ρ

xsrc xsnkz′, ν′ y′, σ′ x′, ρ′

xop, µ

z, ν y, σ x, ρ

xsrc xsnkz′, ν′ y′, σ′ x′, ρ′

xop, µ

z, ν y,σ x, ρ

xsrc xsnky′, σ′ z′, ν′ x′, ρ′

xop, µ

z, νy, σ x, ρ

xsrc xsnky′, σ′ x′, ρ′ z′, ν′

xop, µ

z, ν
y, σ x, ρ

xsrc xsnkz′, ν′
y′, σ′ x′, ρ′

xop, µ

z, ν y,σ x, ρ

Figure 6. All possible disconnected diagrams. Permutations of the three internal photons are not
shown.

• We will not discuss disconnected diagrams in this talk.

• The gluons exchange between and with quark loops are not drawn. Common practice in
lattice QCD.

• Possible strategies for the calculation of all disconnected diagrams are being developed
and we hope to begin numerical experiments this year.

Use dynamical QED+QCD or only valence quarks

Requires explicit HVP subtraction when any quark loop with
two photons is not connected to others by gluons
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Next calculation

Applying improved point source method to physical light quark
mass 2+1f Möbius DWF ensemble (RBC/UKQCD, ANL ALCF)

(5.5 fm)3 QCD box, a = 0.114 fm (a−1 = 1.7848 GeV)

Different size boxes for QCD and QED

Parasitic studies: HVP, mass splittings, ...
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Summary/Outlook

HVP

Very high statistical precision required
Progress in understanding systematics, FV, fits, moments, ...
Strange contribution done very well X
physical quark mass, large volume calcs in progress
Disconnected challenging, maybe small

HLBL

First calculations for connected part very promising–
calculation within reach of lattice methods
FV effects large but controllable. 1/L2 dependence in QED,
∞ volume limit consistent with PT. Put QCD and QED in
different boxes
Applying improved point source method to physical quark
mass 2+1f Möbius DWF ensemble RBC/UKQCD

Disconnected part challenging, new ideas under investigation
Lattice important to compare (SM) with experiment
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