Dispersive treatment of the hadronic light-by-light contribution to $(g-2)_{\mu}$

Gilberto Colangelo

Chiral Dynamics 2015
Pisa, 29.6-3.7. 2015

Outline

Introduction: $(g-2)_{\mu}$ and hadronic light-by-light (HLbL)
Status of $(g-2)_{\mu}$
Approaches to the calculation of HLbL
The HLbL tensor: gauge invariance and crossing symmetry
A dispersion relation for HLbL
Master Formula
Dispersive calculation
Pion transition form factor
Pion box contribution
Pion rescattering contribution
Outlook and Conclusions

Outline

Introduction: $(g-2)_{\mu}$ and hadronic light-by-light (HLbL)
Status of $(g-2)_{\mu}$
Approaches to the calculation of HLbL
The HLbL tensor: gauge invariance and crossing symmetry
A dispersion relation for HLbL
Master Formula
Dispersive calculation
Pion transition form factor
Pion box contribution
Pion rescattering contribution
Outlook and Conclusions
JHEP09(2014)091, arXiv:1506.01386
in collab. with M. Hoferichter, M. Procura and P. Stoffer and
PLB738 (2014) 6 ... +B. Kubis

Outline

Introduction: $(g-2)_{\mu}$ and hadronic light-by-light (HLbL)
Status of $(g-2)_{\mu}$
Approaches to the calculation of HLbL
The HLbL tensor: gauge invariance and crossing symmetry
A dispersion relation for HLbL
Master Formula
Dispersive calculation
Pion transition form factor
Pion box contribution
Pion rescattering contribution
Outlook and Conclusions

Status of $(g-2)_{\mu}$, experiment vs SM

Status of $(g-2)_{\mu}$, experiment vs $S M$

	$a_{\mu}\left[10^{-11}\right]$	$\Delta a_{\mu}\left[10^{-11}\right]$
experiment	116592089.	63.
QED $\mathcal{O}(\alpha)$	116140973.21	0.03
QED $\mathcal{O}\left(\alpha^{2}\right)$	413217.63	0.01
QED $\mathcal{O}\left(\alpha^{3}\right)$	30141.90	0.00
QED $\mathcal{O}\left(\alpha^{4}\right)$	381.01	0.02
QED $\mathcal{O}\left(\alpha^{5}\right)$	5.09	0.01
QED total	116584718.95	0.04
electroweak, total	153.6	1.0
HVP (LO) [Hagiwara et al. 11]	6949.	43.
HVP (NLO) [Hagiwara et al. 11]	-98.	1.
HLbL [Jegerlehner-Nyffeler 09]	116.	40.
HVP (NNLO) [Kurz, Liu, Marquard, Steinhauser 14]	12.4	0.1
HLbL (NLO) [GC, Hoferichter, Nyffeler, Passera, Stoffer 14]	3.	2.
theory	116591855.	59.

Hadronic light-by-light: irreducible uncertainty?

- Hadronic contributions responsible for most of the theory uncertainty
- Hadronic vacuum polarization (HVP) can be systematically improved

Hadronic light-by-light: irreducible uncertainty?

- Hadronic contributions responsible for most of the theory uncertainty
- Hadronic vacuum polarization (HVP) can be systematically improved

- basic principles: unitarity and analyticity
- direct relation to experiment: total hadronic cross section $\sigma_{\mathrm{tot}}\left(e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow\right.$ hadrons $)$
- dedicated $e^{+} e^{-}$program (BaBar, Belle, BESIII, CMD3, KLOE2, SND)

Hadronic light-by-light: irreducible uncertainty?

- Hadronic contributions responsible for most of the theory uncertainty
- Hadronic vacuum polarization (HVP) can be systematically improved
- Hadronic light-by-light (HLbL) is more problematic:

- 4-point fct. of em currents in QCD
- "it cannot be expressed in terms of measurable quantities"
- up to now, only model calculations
- lattice QCD not yet competitive

Different evaluations of HLbL

Jegerlehner Nyffeler 2009

Table 13
Summary of the most recent results for the various contributions to $a_{\mu}^{\text {tbL had }} \times 10^{11}$. The last column is our estimate based on our new evaluation for the pseudoscalars and some of the other results.

Contribution	BPP	HKS	KN	MV	BP	PdRV	N/JN
$\pi^{0}, \eta, \eta^{\prime}$	85 ± 13	82.7 ± 6.4	83 ± 12	114 ± 10	-	114 ± 13	99 ± 16
π, K loops	-19 ± 13	-4.5 ± 8.1	-	-	-	-19 ± 19	-19 ± 13
π, K loops + other subleading in N_{c}	-	-	-	0 ± 10	-	-	-
Axial vectors	2.5 ± 1.0	1.7 ± 1.7	-	22 ± 5	-	-	-7 ± 7
Scalars	-6.8 ± 2.0	-	-	-	-	22 ± 5	
Quark loops	21 ± 3	9.7 ± 11.1	-	-	-7 ± 2		
Total	83 ± 32	89.6 ± 15.4	80 ± 40	136 ± 25	110 ± 40	105 ± 26	116 ± 39

- large uncertainties (and differences among calculations) in individual contributions
- pseudoscalar pole contributions most important
- second most important: pion loop, i.e. two-pion cuts (Ks are subdominant)
- heavier single-particle poles decreasingly important (unless one models them to resum the high-energy tail)

Approaches to Hadronic light-by-light

- Model calculations
- ENJL
- NJL and hidden gauge
- nonlocal $\chi \mathrm{QM}$
- AdS/CFT
- Dyson-Schwinger
- constituent $\chi \mathrm{QM}$
- resonances in the narrow-width limit

Bijnens, Pallante, Prades (95-96)
Hayakawa, Kinoshita, Sanda (95-96)
Dorokhov, Broniowski (08)
Cappiello, Cata, D'Ambrosio (10)
Goecke, Fischer, Williams (11)
Greynat, de Rafael (12)
Pauk, Vanderhaeghen (14)

- Impact of rigorously derived constraints
- high-energy constraints taken into account in several models above addressed specifically by
- high-energy constraints related to the axial anomaly
- sum rules for $\gamma^{*} \gamma \rightarrow X$
- low-energy constraints-pion polarizabilities

Melnikov, Vainshtein (04) and Nyffeler (09) Pascalutsa, Pauk, Vanderhaeghen (12) see also: workshop MesonNet (13)

Engel, Ramsey-Musolf (13)

- Lattice

Dispersive approach of Pauk-Vanderhaeghen

- Dispersive representation of the Pauli form factor (the HLbL contribution to it)
- cut through the three photon legs \Rightarrow HLbL tensor with photons on-shell \Rightarrow easier to use experimental input

Dispersive approach of Pauk-Vanderhaeghen

- Dispersive representation of the Pauli form factor (the HLbL contribution to it)
- cut through the three photon legs \Rightarrow HLbL tensor with photons on-shell \Rightarrow easier to use experimental input
- other cuts \Rightarrow make the calculation at least as complicated as in other approaches

Dispersive approach of Pauk-Vanderhaeghen

- Dispersive representation of the Pauli form factor (the HLbL contribution to it)
- cut through the three photon legs \Rightarrow HLbL tensor with photons on-shell \Rightarrow easier to use experimental input
- other cuts \Rightarrow make the calculation at least as complicated as in other approaches

Dispersive approach of Pauk-Vanderhaeghen

- Dispersive representation of the Pauli form factor (the HLbL contribution to it)
- cut through the three photon legs \Rightarrow HLbL tensor with photons on-shell \Rightarrow easier to use experimental input
- other cuts \Rightarrow make the calculation at least as complicated as in other approaches

Dispersive approach of Pauk-Vanderhaeghen

- Dispersive representation of the Pauli form factor (the HLbL contribution to it)
- cut through the three photon legs \Rightarrow HLbL tensor with photons on-shell \Rightarrow easier to use experimental input
- other cuts \Rightarrow make the calculation at least as complicated as in other approaches
- for the pseudoscalar pole contribution, the dispersive calculation done this way reproduces the known result

Our approach to hadronic light-by-light

We address the calculation of the hadronic light-by-light tensor

- model independent \Rightarrow rely on dispersion relations (or at least on a dispersive approach/language)
- as data-driven as possible
- takes into account high-energy constraints [OPE, perturbative QCD] (exact implementation not discussed here)

Outline

Introduction: $(g-2)_{\mu}$ and hadronic light-by-light (HLbL) Status of $(g-2)_{\mu}$ Approaches to the calculation of HLbL

The HLbL tensor: gauge invariance and crossing symmetry
A dispersion relation for HLbL
Master Formula
Dispersive calculation
Pion transition form factor
Pion box contribution
Pion rescattering contribution
Outlook and Conclusions

Some notation

HLbL tensor:
$\Pi^{\mu \nu \lambda \sigma}=i^{3} \int d x \int d y \int d z e^{-i\left(x \cdot q_{1}+y \cdot q_{2}+z \cdot q_{3}\right)}\langle 0| T\left\{j^{\mu}(x) j^{\nu}(y) j^{\lambda}(z) j^{\sigma}(0)\right\}|0\rangle$
where $j^{\mu}(x)=\sum_{i} Q_{i} \bar{q}_{i}(x) \gamma^{\mu} q_{i}(x), i=u, d, s$

$$
q_{4}=k=q_{1}+q_{2}+q_{3} \quad k^{2}=0
$$

with Mandelstam variables

$$
s=\left(q_{1}+q_{2}\right)^{2} t=\left(q_{1}+q_{3}\right)^{2} \quad u=\left(q_{2}+q_{3}\right)^{2}
$$

Some notation

HLbL tensor:
$\Pi^{\mu \nu \lambda \sigma}=i^{3} \int d x \int d y \int d z e^{-i\left(x \cdot q_{1}+y \cdot q_{2}+z \cdot q_{3}\right)}\langle 0| T\left\{j^{\mu}(x) j^{\nu}(y) j^{\lambda}(z) j^{\sigma}(0)\right\}|0\rangle$
where $j^{\mu}(x)=\sum_{i} Q_{i} \bar{q}_{i}(x) \gamma^{\mu} q_{i}(x), i=u, d, s$

$$
q_{4}=k=q_{1}+q_{2}+q_{3} \quad k^{2}=0
$$

General Lorentz-invariant decomposition:
$\Pi^{\mu \nu \lambda \sigma}=g^{\mu \nu} g^{\lambda \sigma} \Pi^{1}+g^{\mu \lambda} g^{\nu \sigma} \Pi^{2}+g^{\mu \sigma} g^{\nu \lambda} \Pi^{3}+\sum_{i, j, k, l} q_{i}^{\mu} q_{j}^{\nu} q_{k}^{\lambda} q_{l}^{\sigma} \Pi_{i j k l}^{4}+\ldots$
consists of 138 scalar functions $\left\{\Pi^{1}, \Pi^{2}, \ldots\right\}$, but in $d=4$ only 136 are linearly independent

Some notation

HLbL tensor:
$\Pi^{\mu \nu \lambda \sigma}=i^{3} \int d x \int d y \int d z e^{-i\left(x \cdot q_{1}+y \cdot q_{2}+z \cdot q_{3}\right)}\langle 0| T\left\{j^{\mu}(x) j^{\nu}(y) j^{\lambda}(z) j^{\sigma}(0)\right\}|0\rangle$
where $j^{\mu}(x)=\sum_{i} Q_{i} \bar{q}_{i}(x) \gamma^{\mu} q_{i}(x), i=u, d, s$

$$
q_{4}=k=q_{1}+q_{2}+q_{3} \quad k^{2}=0
$$

General Lorentz-invariant decomposition:
$\Pi^{\mu \nu \lambda \sigma}=g^{\mu \nu} g^{\lambda \sigma} \Pi^{1}+g^{\mu \lambda} g^{\nu \sigma} \Pi^{2}+g^{\mu \sigma} g^{\nu \lambda} \Pi^{3}+\sum_{i, j, k, l} q_{i}^{\mu} q_{j}^{\nu} q_{k}^{\lambda} q_{l}^{\sigma} \Pi_{i j k l}^{4}+\ldots$
consists of 138 scalar functions $\left\{\Pi^{1}, \Pi^{2}, \ldots\right\}$, but in $d=4$ only 136 are linearly independent

Constraints due to gauge invariance? (see also Eichmann, Fischer, Heupel (2015))

Detour: the subprocess $\gamma^{*} \gamma^{*} \rightarrow \pi \pi$

Consider $\gamma^{*}\left(q_{1}, \lambda_{1}\right) \gamma^{*}\left(q_{2}, \lambda_{2}\right) \rightarrow \pi^{a}\left(p_{1}\right) \pi^{b}\left(p_{2}\right):$
$W_{a b}^{\mu \nu}\left(p_{1}, p_{2}, q_{1}\right)=i \int d^{4} x e^{-i q_{1} \cdot x}\left\langle\pi^{a}\left(p_{1}\right) \pi^{b}\left(p_{2}\right)\right| T\left\{j_{\mathrm{em}}^{\mu}(x) j_{\mathrm{em}}^{\nu}(0)\right\}|0\rangle$
General tensor decomposition $\left(q_{i}, i=1, \ldots, 3, q_{3}=p_{2}-p_{1}\right)$:

$$
W^{\mu \nu}=g^{\mu \nu} W_{1}+\sum_{i, j} q_{i}^{\mu} q_{j}^{\nu} W_{2}^{i j}
$$

gives ten independent scalar functions.
Gauge invariance requires:

$$
q_{1}^{\mu} W_{\mu \nu}=q_{2}^{\nu} W_{\mu \nu}=0
$$

Gauge invariance: Bardeen-Tung-Tarrach approach

Consider the projector

$$
I^{\mu \nu}=g^{\mu \nu}-\frac{q_{2}^{\mu} q_{1}^{\nu}}{q_{1} \cdot q_{2}}
$$

which satisfies

$$
I_{\mu}{ }^{\lambda} W_{\lambda \nu}=W_{\mu \lambda} I_{\nu}^{\lambda}=W_{\mu \nu}, \quad q_{1}^{\mu} I_{\mu \nu}=q_{2}^{\nu} I_{\mu \nu}=0
$$

and contract it twice with $W_{\mu \nu}$, leaving it invariant:

$$
W_{\mu \nu}=I_{\mu \mu^{\prime}} I_{\nu^{\prime} \nu} W^{\mu^{\prime} \nu^{\prime}}=\sum_{i=1}^{5} \bar{T}_{\mu \nu}^{i} \bar{A}_{i}=\sum_{i=1}^{5} T_{\mu \nu}^{i} A_{i}
$$

The \bar{A}_{i} are free of kinematic singularities, but have zeros. To remove the zeros from the $\bar{A}_{i} \Rightarrow$ remove the poles from the $\bar{T}_{i}^{\mu \nu}$

Gauge invariance: Bardeen-Tung-Tarrach approach

$$
\begin{aligned}
& T_{1}^{\mu \nu}=q_{1} \cdot q_{2} g^{\mu \nu}-q_{2}^{\mu} q_{1}^{\nu}, \\
& T_{2}^{\mu \nu}=q_{1}^{2} q_{2}^{2} g^{\mu \nu}+q_{1} \cdot q_{2} q_{1}^{\mu} q_{2}^{\nu}-q_{1}^{2} q_{2}^{\mu} q_{2}^{\nu}-q_{2}^{2} q_{1}^{\mu} q_{1}^{\nu}, \\
& T_{3}^{\mu \nu}=q_{1}^{2} q_{2} \cdot q_{3} g^{\mu \nu}+q_{1} \cdot q_{2} q_{1}^{\mu} q_{3}^{\nu}-q_{1}^{2} q_{2}^{\mu} q_{3}^{\nu}-q_{2} \cdot q_{3} q_{1}^{\mu} q_{1}^{\nu}, \\
& T_{4}^{\mu \nu}=q_{2}^{2} q_{1} \cdot q_{3} g^{\mu \nu}+q_{1} \cdot q_{2} q_{3}^{\mu} q_{2}^{\nu}-q_{2}^{2} q_{3}^{\mu} q_{1}^{\nu}-q_{1} \cdot q_{3} q_{2}^{\mu} q_{2}^{\nu}, \\
& T_{5}^{\mu \nu}=q_{1} \cdot q_{3} q_{2} \cdot q_{3} g^{\mu \nu}+q_{1} \cdot q_{2} q_{3}^{\mu} q_{3}^{\nu}-q_{1} \cdot q_{3} q_{2}^{\mu} q_{3}^{\nu}-q_{2} \cdot q_{3} q_{3}^{\mu} q_{1}^{\nu},
\end{aligned}
$$

This is a basis of gauge-invariant tensors, but for $q_{1} \cdot q_{2}=0$ it becomes degenerate: need one more structure:

$$
T_{6}^{\mu \nu}=\left(q_{1}^{2} q_{3}^{\mu}-q_{1} \cdot q_{3} q_{1}^{\mu}\right)\left(q_{2}^{2} q_{3}^{\nu}-q_{2} \cdot q_{3} q_{2}^{\nu}\right)
$$

Back to hadronic light-by-light

Applying the Bardeen-Tung-Tarrach method to $\Pi^{\mu \nu \lambda \sigma}$ one ends up with:

GC, Hoferichter, Procura, Stoffer (2015) \rightarrow talk by P. Stoffer

- 43 basis tensors (BT)
- 11 additional ones (T)
- of these 54 only 7 are completely independent

$$
\Pi^{\mu \nu \lambda \sigma}=\sum_{i=1}^{54} T_{i}^{\mu \nu \lambda \sigma} \Pi_{i}
$$

Back to hadronic light-by-light

Applying the Bardeen-Tung-Tarrach method to $\Pi^{\mu \nu \lambda \sigma}$ one ends

 up with:GC, Hoferichter, Procura, Stoffer (2015) $\quad \rightarrow$ talk by P. Stoffer

$$
\begin{aligned}
& T_{1}^{\mu \nu \lambda \sigma}=\epsilon^{\mu \nu \alpha \beta} \epsilon^{\lambda \sigma \gamma \delta} q_{1 \alpha} q_{2 \beta} q_{3 \gamma} q_{4 \delta}, \\
& T_{4}^{\mu \nu \lambda \sigma}=\left(q_{2}^{\mu} q_{1}^{\nu}-q_{1} \cdot q_{2} g^{\mu \nu}\right)\left(q_{4}^{\lambda} q_{3}^{\sigma}-q_{3} \cdot q_{4} g^{\lambda \sigma}\right), \\
& T_{7}^{\mu \nu \lambda \sigma}=\left(q_{2}^{\mu} q_{1}^{\nu}-q_{1} \cdot q_{2} g^{\mu \nu}\right)\left(q_{1} \cdot q_{4}\left(q_{1}^{\lambda} q_{3}^{\sigma}-q_{1} \cdot q_{3} g^{\lambda \sigma}\right)+q_{4}^{\lambda} q_{1}^{\sigma} q_{1} \cdot q_{3}-q_{1}^{\lambda} q_{1}^{\sigma} q_{3} \cdot q_{4}\right) \text {, } \\
& T_{19}^{\mu \nu \lambda \sigma}=\left(q_{2}^{\mu} q_{1}^{\nu}-q_{1} \cdot q_{2} g^{\mu \nu}\right)\left(q_{2} \cdot q_{4}\left(q_{1}^{\lambda} q_{3}^{\sigma}-q_{1} \cdot q_{3} g^{\lambda \sigma}\right)+q_{4}^{\lambda} q_{2}^{\sigma} q_{1} \cdot q_{3}-q_{1}^{\lambda} q_{2}^{\sigma} q_{3} \cdot q_{4}\right) \text {, } \\
& T_{31}^{\mu \nu \lambda \sigma}=\left(q_{2}^{\mu} q_{1}^{\nu}-q_{1} \cdot q_{2} g^{\mu \nu}\right)\left(q_{2}^{\lambda} q_{1} \cdot q_{3}-q_{1}^{\lambda} q_{2} \cdot q_{3}\right)\left(q_{2}^{\sigma} q_{1} \cdot q_{4}-q_{1}^{\sigma} q_{2} \cdot q_{4}\right) \text {, } \\
& T_{37}^{\mu \nu \lambda \sigma}=\left(q_{3}^{\mu} q_{1} \cdot q_{4}-q_{4}^{\mu} q_{1} \cdot q_{3}\right)\left(q_{3}^{\nu} q_{4}^{\lambda} q_{2}^{\sigma}-q_{4}^{\nu} q_{2}^{\lambda} q_{3}^{\sigma}+g^{\lambda \sigma}\left(q_{4}^{\nu} q_{2} \cdot q_{3}-q_{3}^{\nu} q_{2} \cdot q_{4}\right)\right. \\
& \left.+g^{\nu \sigma}\left(q_{2}^{\lambda} q_{3} \cdot q_{4}-q_{4}^{\lambda} q_{2} \cdot q_{3}\right)+g^{\lambda \nu}\left(q_{3}^{\sigma} q_{2} \cdot q_{4}-q_{2}^{\sigma} q_{3} \cdot q_{4}\right)\right), \\
& T_{49}^{\mu \nu \lambda \sigma}=q_{3}^{\sigma}\left(q_{1} \cdot q_{3} q_{2} \cdot q_{4} q_{4}^{\mu} g^{\lambda \nu}-q_{2} \cdot q_{3} q_{1} \cdot q_{4} q_{4}^{\nu} g^{\lambda \mu}+q_{4}^{\mu} q_{4}^{\nu}\left(q_{1}^{\lambda} q_{2} \cdot q_{3}-q_{2}^{\lambda} q_{1} \cdot q_{3}\right)\right. \\
& \left.+q_{1} \cdot q_{4} q_{3}^{\mu} q_{4}^{\nu} q_{2}^{\lambda}-q_{2} \cdot q_{4} q_{4}^{\mu} q_{3}^{\nu} q_{1}^{\lambda}+q_{1} \cdot q_{4} q_{2} \cdot q_{4}\left(q_{3}^{\nu} g^{\lambda \mu}-q_{3}^{\mu} g^{\lambda \nu}\right)\right) \\
& -q_{4}^{\lambda}\left(q_{1} \cdot q_{4} q_{2} \cdot q_{3} q_{3}^{\mu} g^{\nu \sigma}-q_{2} \cdot q_{4} q_{1} \cdot q_{3} q_{3}^{\nu} g^{\mu \sigma}+q_{3}^{\mu} q_{3}^{\nu}\left(q_{1}^{\sigma} q_{2} \cdot q_{4}-q_{2}^{\sigma} q_{1} \cdot q_{4}\right)\right. \\
& \left.+q_{1} \cdot q_{3} q_{4}^{\mu} q_{3}^{\nu} q_{2}^{\sigma}-q_{2} \cdot q_{3} q_{3}^{\mu} q_{4}^{\nu} q_{1}^{\sigma}+q_{1} \cdot q_{3} q_{2} \cdot q_{3}\left(q_{4}^{\nu} g^{\mu \sigma}-q_{4}^{\mu} g^{\nu \sigma}\right)\right) \\
& +q_{3} \cdot q_{4}\left(\left(q_{1}^{\lambda} q_{4}^{\mu}-q_{1} \cdot q_{4} g^{\lambda \mu}\right)\left(q_{3}^{\nu} q_{2}^{\sigma}-q_{2} \cdot q_{3} g^{\nu \sigma}\right)-\left(q_{2}^{\lambda} q_{4}^{\nu}-q_{2} \cdot q_{4} g^{\lambda \nu}\right)\left(q_{3}^{\mu} q_{1}^{\sigma}-q_{1} \cdot q_{3} g^{\mu \sigma}\right)\right) .
\end{aligned}
$$

Back to hadronic light-by-light

Applying the Bardeen-Tung-Tarrach method to $\Pi^{\mu \nu \lambda \sigma}$ one ends up with:

GC, Hoferichter, Procura, Stoffer (2015) $\quad \rightarrow$ talk by P. Stoffer

- 43 basis tensors (BT)
- 11 additional ones (T)
- of these 54 only 7 are completely independent
- all remaining 47 can be obtained by crossing transformations of these 7

$$
\Pi^{\mu \nu \lambda \sigma}=\sum_{i=1}^{54} T_{i}^{\mu \nu \lambda \sigma} \Pi_{i}
$$

Back to hadronic light-by-light

Applying the Bardeen-Tung-Tarrach method to $\Pi^{\mu \nu \lambda \sigma}$ one ends up with:

```
GC, Hoferichter, Procura, Stoffer (2015) }->\mathrm{ talk by P. Stoffer
```

- 43 basis tensors (BT)
- 11 additional ones (T)
- of these 54 only 7 are completely independent
- all remaining 47 can be obtained by crossing transformations of these 7
- the dynamical calculation needed to fully determine the LbL tensor concerns these 7 scalar amplitudes

$$
\Pi^{\mu \nu \lambda \sigma}=\sum_{i=1}^{54} T_{i}^{\mu \nu \lambda \sigma} \Pi_{i}
$$

Back to hadronic light-by-light

Applying the Bardeen-Tung-Tarrach method to $\Pi^{\mu \nu \lambda \sigma}$ one ends up with:

```
GC, Hoferichter, Procura, Stoffer (2015) }->\mathrm{ talk by P. Stoffer
```

- 43 basis tensors (BT)
- 11 additional ones (T)
- of these 54 only 7 are completely independent
- all remaining 47 can be obtained by crossing transformations of these 7
- the dynamical calculation needed to fully determine the LbL tensor concerns these 7 scalar amplitudes

$$
\Pi^{\mu \nu \lambda \sigma}=\sum_{i=1}^{54} T_{i}^{\mu \nu \lambda \sigma} \Pi_{i}
$$

The 54 scalar functions Π_{i} are free of kinematic singularities and zeros and as such are amenable to a dispersive treatment

Outline

Introduction: $(g-2)_{\mu}$ and hadronic light-by-light (HLbL) Status of $(g-2)_{\mu}$
 Approaches to the calculation of HLbL

The HLbL tensor: gauge invariance and crossing symmetry
A dispersion relation for HLbL
Master Formula
Dispersive calculation
Pion transition form factor
Pion box contribution
Pion rescattering contribution
Outlook and Conclusions

HLbL contribution to a_{μ}

From gauge invariance:

$$
\Pi_{\mu \nu \lambda \sigma}\left(q_{1}, q_{2}, k-q_{1}-q_{2}\right)=-k^{\rho} \frac{\partial}{\partial k^{\sigma}} \Pi_{\mu \nu \lambda \rho}\left(q_{1}, q_{2}, k-q_{1}-q_{2}\right)
$$

Contribution to a_{μ} :

$$
m:=m_{\mu}
$$

$$
\begin{aligned}
a_{\mu}= & \frac{-1}{48 m} \operatorname{Tr}\left\{(\not p+m)\left[\gamma^{\rho}, \gamma^{\sigma}\right](\not p+m) \Gamma_{\rho \sigma}^{\mathrm{HLbL}}(p)\right\} \\
\Gamma_{\rho \sigma}= & e^{6} \int \frac{\mathrm{~d}^{4} q_{1}}{(2 \pi)^{4}} \int \frac{\mathrm{~d}^{4} q_{2}}{(2 \pi)^{4}} \frac{1}{q_{1}^{2} q_{2}^{2}\left(q_{1}+q_{2}\right)^{2}} \frac{\gamma^{\mu}\left(\not p+q_{1}+m\right) \gamma^{\lambda}\left(\not p-q_{2}+m\right) \gamma^{\nu}}{\left(\left(p+q_{1}\right)^{2}-m^{2}\right)\left(\left(p-q_{2}\right)^{2}-m^{2}\right)} \times \\
& \times\left.\frac{\partial}{\partial k^{\rho}} \Pi_{\mu \nu \lambda \sigma}\left(q_{1}, q_{2}, k-q_{1}-q_{2}\right)\right|_{k=0}
\end{aligned}
$$

The BTT method allows us to take the limit $k_{\mu} \rightarrow 0$ explicitly at this point (no kinematic singularities!)

Master Formula

$$
a_{\mu}^{\mathrm{HLLL}}=-e^{6} \int \frac{d^{4} q_{1}}{(2 \pi)^{4}} \frac{d^{4} q_{2}}{(2 \pi)^{4}} \frac{\sum_{i=1}^{12} \hat{T}_{i}\left(q_{1}, q_{2} ; p\right) \hat{\Pi}_{i}\left(q_{1}, q_{2},-q_{1}-q_{2}\right)}{q_{1}^{2} q_{2}^{2}\left(q_{1}+q_{2}\right)^{2}\left[\left(p+q_{1}\right)^{2}-m_{\mu}^{2}\right]\left[\left(p-q_{2}\right)^{2}-m_{\mu}^{2}\right]}
$$

- \hat{T}_{i} : known kernel functions
- $\hat{\Pi}_{i}$: linear combinations of the Π_{i}
- 5 integrals can be performed with Gegenbauer polynomial techniques

Master Formula

After performing the 5 integrations:

$$
\begin{aligned}
a_{\mu}^{\text {HLbL }} & =\frac{2 \alpha^{3}}{3 \pi^{2}} \times \\
& \times \int_{0}^{\infty} d Q_{1} \int_{0}^{\infty} d Q_{2} \int_{-1}^{1} d \tau \sqrt{1-\tau^{2}} Q_{1}^{3} Q_{2}^{3} \sum_{i=1}^{12} T_{i}\left(Q_{1}, Q_{2}, \tau\right) \bar{\Pi}_{i}\left(Q_{1}, Q_{2}, \tau\right)
\end{aligned}
$$

where Q_{i}^{μ} are the Wick-rotated ${ }^{a}$ four-momenta and τ the four-dimensional angle between Euclidean momenta:

$$
Q_{1} \cdot Q_{2}=\left|Q_{1}\right|\left|Q_{2}\right| \tau
$$

The integration variables $Q_{1}:=\left|Q_{1}\right|, Q_{2}:=\left|Q_{2}\right|$.

[^0]
Setting up the dispersive calculation

We split the HLbL tensor as follows:

$$
\Pi_{\mu \nu \lambda \sigma}=\Pi_{\mu \nu \lambda \sigma}^{\pi^{0} \text {-pole }}+\Pi_{\mu \nu \lambda \sigma}^{\mathrm{FsQED}}+\bar{\Pi}_{\mu \nu \lambda \sigma}+\cdots
$$

Pion pole: known
Projection on the BTT basis: done
Our master formula=explicit expressions in the literature

Setting up the dispersive calculation

We split the HLbL tensor as follows:

$$
\Pi_{\mu \nu \lambda \sigma}=\Pi_{\mu \nu \lambda \sigma}^{\pi^{0}-\text { pole }}+\Pi_{\mu \nu \lambda \sigma}^{\text {FsQED }}+\bar{\Pi}_{\mu \nu \lambda \sigma}+\cdots
$$

In JHEP '14:

Contribution with two simultaneous cuts

- analytic properties like the box diagram in sQED
- triangle and bulb diagram required by gauge invariance
- multiplication with F_{π}^{V} gives the correct q^{2} dependence Claim: FsQED is not an approximation!

Setting up the dispersive calculation

We split the HLbL tensor as follows:

$$
\Pi_{\mu \nu \lambda \sigma}=\Pi_{\mu \nu \lambda \sigma}^{\pi^{0} \text {-pole }}+\Pi_{\mu \nu \lambda \sigma}^{\mathrm{FsQED}}+\bar{\Pi}_{\mu \nu \lambda \sigma}+\cdots
$$

Now, with BTT:

- we have constructed a Mandelstam representation for the contribution of the 2-pion cut with LHC due to a pion pole
- we have explicitly checked that this is identical to FsQED

Proven: FsQED is not an approximation!

Setting up the dispersive calculation

We split the HLbL tensor as follows:

$$
\Pi_{\mu \nu \lambda \sigma}=\Pi_{\mu \nu \lambda \sigma}^{\pi^{0} \text {-pole }}+\Pi_{\mu \nu \lambda \sigma}^{\mathrm{FsQED}}+\bar{\Pi}_{\mu \nu \lambda \sigma}+\cdots
$$

The "rest" with 2π intermediate states has cuts only in one channel and will be
calculated dispersively after partial-wave expansion

Setting up the dispersive calculation

We split the HLbL tensor as follows:

$$
\Pi_{\mu \nu \lambda \sigma}=\Pi_{\mu \nu \lambda \sigma}^{\pi^{0} \text {-pole }}+\Pi_{\mu \nu \lambda \sigma}^{\mathrm{FsQED}}+\bar{\Pi}_{\mu \nu \lambda \sigma}+\cdots
$$

Contributions of cuts with anything else other than one and two pions in intermediate states will be neglected for the time being

Dispersive analysis of the pion transition form factor

$$
\Pi_{\mu \nu \lambda \sigma}=\Pi_{\mu \nu \lambda \sigma}^{\pi^{0}-\text { pole }}+\Pi_{\mu \nu \lambda \sigma}^{\mathrm{FsQED}}+\bar{\Pi}_{\mu \nu \lambda \sigma}+\cdots
$$

Pion pole: $\Pi_{i}^{\pi^{0}-\text { pole }}(s, t, u)=\frac{\rho_{i, s}}{s-M_{\pi}^{2}}+\frac{\rho_{i, t}}{t-M_{\pi}^{2}}+\frac{\rho_{i, u}}{u-M_{\pi}^{2}}$

$$
\begin{aligned}
\rho_{i, s} & =\delta_{i 1} \mathcal{F}_{\pi^{0} \gamma^{*} \gamma^{*}}\left(q_{1}^{2}, q_{2}^{2}\right) \mathcal{F}_{\pi^{0} \gamma^{*} \gamma^{*}}\left(q_{3}^{2}, q_{4}^{2}\right), \\
\rho_{i, t} & =\delta_{i 2} \mathcal{F}_{\pi^{0} \gamma^{*} \gamma^{*}}\left(q_{1}^{2}, q_{3}^{2}\right) \mathcal{F}_{\pi^{0} \gamma^{*} \gamma^{*}}\left(q_{2}^{2}, q_{4}^{2}\right), \\
\rho_{i, u} & =\delta_{i 3} \mathcal{F}_{\pi^{0} \gamma^{*} \gamma^{*}}\left(q_{1}^{2}, q_{4}^{2}\right) \mathcal{F}_{\pi^{0} \gamma^{*} \gamma^{*}}\left(q_{2}^{2}, q_{3}^{2}\right),
\end{aligned}
$$

Dispersive analysis of the pion transition form factor

- To calculate the pion-pole contribution the crucial ingredient is the pion transition form factor
- a dispersive representation thereof requires as input:
- the pion vector form factor
[dispersive repr. well known]
- the $\gamma^{*} \rightarrow 3 \pi$ amplitude
- the $\pi \pi$ scattering amplitude

Results for $e^{+} e^{-} \rightarrow 3 \pi$ and $e^{+} e^{-} \rightarrow \pi^{0} \gamma$

fit to $\sigma\left(e^{+} e^{-} \rightarrow 3 \pi\right)$ Hoferichter, Kubis, Leupold, Niecknig, Schneider (2014)

Results for $e^{+} e^{-} \rightarrow 3 \pi$ and $e^{+} e^{-} \rightarrow \pi^{0} \gamma$

prediction for $\sigma\left(\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \pi^{0} \gamma\right)$ Hoferichter, Kubis, Leupold, Niecknig,

Results for $e^{+} e^{-} \rightarrow 3 \pi$ and $e^{+} e^{-} \rightarrow \pi^{0} \gamma$

Results for the doubly-virtual pion transition form factor not yet available - data from e.g. KLOE on $\phi \rightarrow \pi^{0} e^{+} e^{-}$, or the old, puzzling ones on $\omega \rightarrow \pi^{0} e^{+} e^{-}$represent useful input

Pion box contribution

$$
\Pi_{\mu \nu \lambda \sigma}=\Pi_{\mu \nu \lambda \sigma}^{\pi^{0}-\text { pole }}+\Pi_{\mu \nu \lambda \sigma}^{\mathrm{FsQED}}+\bar{\Pi}_{\mu \nu \lambda \sigma}+\cdots
$$

where B_{0}, C_{0} and D_{0} are Passarino-Veltman functions.

Pion box contribution

The only ingredient needed for the pion-box contribution is the vector form factor

$$
\begin{aligned}
& \quad \Pi_{i}^{\text {FsQED }}=F_{V}^{\pi}\left(q_{1}^{2}\right) F_{V}^{\pi}\left(q_{2}^{2}\right) F_{V}^{\pi}\left(q_{3}^{2}\right) \bar{\Pi}_{i}^{\mathrm{sQED}}(s, t, u) \\
& \bar{\Pi}_{i}^{s \text { sed }}= p_{i}+a_{i} A_{0}\left(M_{\pi}^{2}\right) \\
&+b_{i}^{1} B_{0}\left(q_{1}^{2}, M_{\pi}^{2}, M_{\pi}^{2}\right)+b_{i}^{2} B_{0}\left(q_{2}^{2}, M_{\pi}^{2}, M_{\pi}^{2}\right)+b_{i}^{3} B_{0}\left(q_{3}^{2}, M_{\pi}^{2}, M_{\pi}^{2}\right)+b_{i}^{4} B_{0}\left(q_{4}^{2}, M_{\pi}^{2}, M_{\pi}^{2}\right) \\
&+b_{i}^{s B_{0}\left(s, M_{\pi}^{2}, M_{\pi}^{2}\right)+b_{i}^{t} B_{0}\left(t, M_{\pi}^{2}, M_{\pi}^{2}\right)+b_{i}^{u} B_{0}\left(u, M_{\pi}^{2}, M_{\pi}^{2}\right)} \\
&+c_{i}^{12} C_{0}\left(q_{1}^{2}, q_{2}^{2}, s, M_{\pi}^{2}, M_{\pi}^{2}, M_{\pi}^{2}\right)+c_{i}^{13} c_{0}\left(q_{1}^{2}, q_{3}^{2}, t, M_{\pi}^{2}, M_{\pi}^{2}, M_{\pi}^{2}\right)+c_{i}^{14} C_{0}\left(q_{1}^{2}, q_{4}^{2}, u, M_{\pi}^{2}, M_{\pi}^{2}, M_{\pi}^{2}\right) \\
&+c_{i}^{34} C_{0}\left(q_{3}^{2}, q_{4}^{2}, s, M_{\pi}^{2}, M_{\pi}^{2}, M_{\pi}^{2}\right)+c_{i}^{24} C_{0}\left(q_{2}^{2}, q_{4}^{2}, t, M_{\pi}^{2}, M_{\pi}^{2}, M_{\pi}^{2}\right)+c_{i}^{23} C_{0}\left(q_{2}^{2}, q_{3}^{2}, u, M_{\pi}^{2}, M_{\pi}^{2}, M_{\pi}^{2}\right) \\
&+d_{i}^{\text {st } D_{0}\left(q_{1}^{2}, q_{2}^{2}, q_{4}^{2}, q_{3}^{2}, s, t, M_{\pi}^{2}, M_{\pi}^{2}, M_{\pi}^{2}, M_{\pi}^{2}\right)} \\
&+d_{i}^{s u} D_{0}\left(q_{1}^{2}, q_{2}^{2}, q_{3}^{2}, q_{4}^{2}, s, u, M_{\pi}^{2}, M_{\pi}^{2}, M_{\pi}^{2}, M_{\pi}^{2}\right) \\
&+d_{i}^{t u} D_{0}\left(q_{1}^{2}, q_{3}^{2}, q_{2}^{2}, q_{4}^{2}, t, u, M_{\pi}^{2}, M_{\pi}^{2}, M_{\pi}^{2}, M_{\pi}^{2}\right),
\end{aligned}
$$

where B_{0}, C_{0} and D_{0} are Passarino-Veltman functions.

Pion box contribution

where B_{0}, C_{0} and D_{0} are Passarino-Veltman functions.

Uncertainties will be tiny
Preliminary! numbers:

$$
a_{\mu}^{\mathrm{FsQED}}=-15.9 \cdot 10^{-11} \quad a_{\mu}^{\mathrm{FsQED}, \mathrm{VMD}}=-16.4 \cdot 10^{-11}
$$

Pion box contribution

where B_{0}, C_{0} and D_{0} are Passarino-Veltman functions.

Table 13
Summary of the most recent results for the various contributions to $a_{\mu}^{\text {iblihad }} \times 10^{11}$. The last column is our estimate based on our new evaluation for the pseudoscalars and some of the other results.

Contribution	BPP	HKS	KN	MV	BP	PdRV	N/JN
$\pi^{0}, \eta, \eta^{\prime}$	85 ± 13	82.7 ± 6.4	83 ± 12	114 ± 10	-	114 ± 13	99 ± 16
π, K loops	-19 ± 13	-4.5 ± 8.1	-	-	-	-19 ± 19	-19 ± 13
π, K loops + other subleading in N_{c}	-	-	-	0 ± 10	-	-	
Axial vectors	2.5 ± 1.0	1.7 ± 1.7	-	22 ± 5	-	-	-7 ± 7
Scalars	-6.8 ± 2.0	-	-	-	-	22 ± 5	
Quark loops	21 ± 3	9.7 ± 11.1	-	-	-7 ± 2		
Total	83 ± 32	89.6 ± 15.4	80 ± 40	136 ± 25	110 ± 40	105 ± 26	116 ± 39

Uncertainties will be tiny

Preliminary! numbers:

$$
a_{\mu}^{\mathrm{FsQED}}=-15.9 \cdot 10^{-11} \quad a_{\mu}^{\mathrm{FsQED}, \mathrm{VMD}}=-16.4 \cdot 10^{-11}
$$

Our dispersive representation of the $\bar{\Pi}^{\mu \nu \lambda \sigma}$ tensor

GC, Hoferichter, Procura, Stoffer (2014)

$$
\Pi_{\mu \nu \lambda \sigma}=\Pi_{\mu \nu \lambda \sigma}^{\pi^{0} \text {-pole }}+\Pi_{\mu \nu \lambda \sigma}^{\text {FsQED }}+\bar{\Pi}_{\mu \nu \lambda \sigma}+\cdots
$$

Our dispersive representation of the $\bar{\Pi}^{\mu \nu \lambda \sigma}$ tensor

$$
\bar{\Pi}^{\mu \nu \lambda \sigma}=\sum_{i=1}^{15}\left(A_{i, s}^{\mu \nu \lambda \sigma} \Pi_{i}(s)+A_{i, t}^{\mu \nu \lambda \sigma} \Pi_{i}(t)+A_{i, u}^{\mu \nu \lambda \sigma} \Pi_{i}(u)\right)
$$

- the $\Pi_{i}(s)$ are single-variable functions having only a right-hand cut
- for the discontinuity we keep only the lowest partial wave
- the dispersive integral that gives the $\Pi_{i}(s)$ in terms of its discontinuity has the required soft-photon zeros
- soft-photon zeros constrain the subtraction polynomial to vanish (unless one wanted to subtract more, which is unnecessary)

Dispersion relations for the $\Pi_{i}(s)$

Requiring that the BTT functions be free of singularities determines the kernels, including non-diagonal terms. S-waves:

$$
\begin{gathered}
\Pi_{1}^{s}=\frac{s-q_{3}^{2}}{\pi} \int_{4 m_{\pi}^{2}}^{\infty} \frac{\mathrm{d} s^{\prime}}{s^{\prime}-q_{3}^{2}}\left[K_{1} \operatorname{Im} \bar{h}_{++,++}^{0}\left(s^{\prime}\right)+\frac{2 \xi_{1} \xi_{2}}{\lambda_{12}^{\prime}} \operatorname{Im} \bar{h}_{00,++}^{0}\left(s^{\prime}\right)\right] \\
y \Pi_{2}^{s}=\frac{s-q_{3}^{2}}{\pi} \int_{4 m_{\pi}^{2}}^{\infty} \frac{\mathrm{d} s^{\prime}}{s^{\prime}-q_{3}^{2}}\left[K_{1} \operatorname{Im} \bar{h}_{00,++}^{0}\left(s^{\prime}\right)+\frac{2 q_{1}^{2} q_{2}^{2}}{\xi_{1} \xi_{2} \lambda_{12}^{\prime}} \operatorname{Im} \bar{h}_{++,++}^{0}\left(s^{\prime}\right)\right] \\
K_{1}:=\frac{1}{s^{\prime}-s}-\frac{s^{\prime}-q_{1}^{2}-q_{2}^{2}}{\lambda_{12}^{\prime}}
\end{gathered}
$$

Remark: $\operatorname{Im} h_{++,++}^{0}(s)$ and $\operatorname{Im} h_{00,++}^{0}(s)$ given by S-wave helicity amplitudes of $\gamma^{*} \gamma^{*} \rightarrow \pi \pi$

Once the projection on the BTT basis is done \Rightarrow use the master formula to calculate the contribution to a_{μ}

Dispersion relations for the $\Pi_{i}(s)$

Requiring that the BTT functions be free of singularities determines the kernels, including non-diagonal terms. S-waves:

$$
\begin{gathered}
\Pi_{1}^{s}=\frac{s-q_{3}^{2}}{\pi} \int_{4 m_{\pi}^{2}}^{\infty} \frac{\mathrm{d} s^{\prime}}{s^{\prime}-q_{3}^{2}}\left[K_{1} \operatorname{Im} \bar{h}_{++,++}^{0}\left(s^{\prime}\right)+\frac{2 \xi_{1} \xi_{2}}{\lambda_{12}^{\prime}} \operatorname{Im} \bar{h}_{00,++}^{0}\left(s^{\prime}\right)\right] \\
y \Pi_{2}^{s}=\frac{s-q_{3}^{2}}{\pi} \int_{4 m_{\pi}^{2}}^{\infty} \frac{\mathrm{d} s^{\prime}}{s^{\prime}-q_{3}^{2}}\left[K_{1} \operatorname{Im} \bar{h}_{00,++}^{0}\left(s^{\prime}\right)+\frac{2 q_{1}^{2} q_{2}^{2}}{\xi_{1} \xi_{2} \lambda_{12}^{\prime}} \operatorname{Im} \bar{h}_{++,++}^{0}\left(s^{\prime}\right)\right] \\
K_{1}:=\frac{1}{s^{\prime}-s}-\frac{s^{\prime}-q_{1}^{2}-q_{2}^{2}}{\lambda_{12}^{\prime}}
\end{gathered}
$$

Remark: $\operatorname{Im} h_{++,++}^{0}(s)$ and $\operatorname{Im} h_{00,++}^{0}(s)$ given by S-wave helicity amplitudes of $\gamma^{*} \gamma^{*} \rightarrow \pi \pi$

Extension to D waves is in progress (diagonal kernels already given explicitly in JHEP (14))

Dispersion relations for $\gamma^{*} \gamma^{*} \rightarrow \pi \pi$

Roy-Steiner eqs. = Dispersion relations + partial-wave expansion + crossing symmetry + unitarity + gauge invariance

- On-shell $\gamma \gamma \rightarrow \pi \pi$: prominent D-wave reson. $f_{2}(1270)$ Moussallam (10) Hoferichter, Phillips, Schat (11)
- $\gamma^{*} \gamma \rightarrow \pi \pi$ Moussallam (13)
- $\gamma^{*} \gamma^{*} \rightarrow \pi \pi$, new feature: anomalous thresholds

- Constraints
- Low energy: pion polar., ChPT
- Primakoff: $\gamma \pi \rightarrow \gamma \pi$ at COMPASS, JLAB
- Scattering: $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \boldsymbol{e}^{+} e^{-} \pi \pi$, $e^{+} e^{-} \rightarrow \pi \pi \gamma$
- Decays: $\omega, \phi \rightarrow \pi \pi \gamma$

Physics of $\gamma^{*} \gamma^{*} \rightarrow \pi \pi$

- $\pi \pi$ rescattering \Leftrightarrow resonances, e.g. $f_{2}(1270)$
- S-wave provides model-independent implementation of the σ
- Analytic continuation with dispersion theory: resonance properties
- Precise determination of σ-pole from $\pi \pi$ scattering Caprini, GC, Leutwyler 2006

$$
M_{\sigma}=441_{-8}^{+16} \mathrm{MeV} \quad \Gamma_{\sigma}=544_{-25}^{+18} \mathrm{MeV}
$$

- Coupling $\sigma \rightarrow \gamma \gamma$ from $\gamma \gamma \rightarrow \pi \pi$ Hoferichter, Phillips, Schat 2011

$f_{0}(500)$ PARTIAL WIDTHS

$\Gamma(\gamma \gamma)$		
VALUE (keV)	DOCUMENT ID	TECN COMMENT
- We do not use the following data for averages, fits, limits, etc. - -		
1.7 ± 0.4	54 HOFERICHTER11	RVUE Compilation
3.08 ± 0.82	5^{55} MENNESSIER 11	RVUE Compilation
$2.08 \pm 0.2{ }_{-0.04}^{+0.07}$	56 MOUSSALLAM11	RVUE Compilation
2.08	${ }^{57}$ MAO 09	RVUE Compilation
1.2 ± 0.4	${ }^{58}$ BERNABEU 08	RVUE

$f_{0}(500)$ T-MATRIX POLE $\sqrt{5}$
Note that $\Gamma \approx 2 \operatorname{lm}(\sqrt{5 \text { pole }})$
VALUE (MeV) DOCUMENT ID TECN COMMENT
(400-550)-i(200-350) OUR ESTIMATE

- We do not use the following data for averages, fits, limits, etc. . . .
$(445 \pm 25)-i\left(2788_{-18}^{+22}\right) \quad 1,2$ GARCIA-MAR. 11 RVUE Compilatio
$\left(457_{-13}^{+14}\right)-i\left(279_{-7}^{+11}\right) \quad 1,3$ GARCIA-MAR.. 11 RVUE Compilation $\left(442_{-8}^{+5}\right)-i\left(274{ }_{-5}^{+6}\right) \quad 4$ MOUSSALLAM11 RVUE Compilation
452 $\pm 13)-i(259 \pm 16) \quad{ }^{5}$ MENNESSIER 10 RVUE Compilation

Outline

Introduction: $(g-2)_{\mu}$ and hadronic light-by-light (HLbL)
Status of $(g-2)_{\mu}$
Approaches to the calculation of HLbL
The HLbL tensor: gauge invariance and crossing symmetry
A dispersion relation for HLbL
Master Formula
Dispersive calculation
Pion transition form factor
Pion box contribution
Pion rescattering contribution
Outlook and Conclusions

Outlook

Path to a numerical evaluation of HLbL contributions to a_{μ} :

- take into account experimental constraints on the pion transition form factor to evaluate the pion pole contribution
- using as input a dispersive description of the pion em form factor \Rightarrow evaluate the FsQED contribution
- take into account all experimental constraints on $\gamma^{(*)} \gamma \rightarrow \pi \pi$
- estimate the dependence on the q^{2} of the second photon (theoretically, there are no data yet on $\gamma^{*} \gamma^{*} \rightarrow \pi \pi$)
- \Rightarrow solve the dispersion relation for the helicity amplitudes of $\gamma^{*} \gamma^{*} \rightarrow \pi \pi$
- input the outcome into the master formula

Hadronic light-by-light: a roadmap

GC, Hoferichter, Kubis, Procura, Stoffer arXiv:1408.2517 (PLB '14)

Artwork by M. Hoferichter

A reliable evaluation of the HLbL requires many different contributions by and a collaboration among theorists and experimentalists

Conclusions

- I have discussed a dispersive approach to the calculation of the HLbL tensor
- a crucial first step is the derivation of the BTT basis for the HLbL tensor, which I have presented here
- we have derived a master formula which expresses the contributions to a_{μ} in terms of BTT functions
- we plan to take into account only single- and double-pion intermediate states [and all other 1-particle intermediate states ($\eta, \eta^{\prime}, \ldots$)]
- this is a first step towards a model-independent, data-driven calculation of the HLbL contribution to a_{μ}

Anomalous cut and Wick rotation

Anomalous cut and Wick rotation

[^0]: ${ }^{a}$ Wick rotation can be performed safely here, even in the presence of anomalous cuts.

