Lepton Energy Moments in Semileptonic Charm Decays

Jernej F. Kamenik

Institut "Jožef Stefan"

BEACH 2010, Perugia, June 23, 2010

Motivation: CKM Unitarity Analysis

See talk by P. Paradisi

UTA within the SM

$$\epsilon_K, \Delta m_d, \left| \frac{\Delta m_s}{\Delta m_d} \right|, \left| \underbrace{V_{ub}}_{V_{cb}} \right|$$

 relying on theoretical calculations of hadronic matrix elements

Motivation: CKM Unitarity Analysis

See talk by P. Paradisi UTA within the SM

$$\epsilon_K, \Delta m_d, \left| \frac{\Delta m_s}{\Delta m_d} \right|, \left| \frac{V_{ub}}{V_{cb}} \right|$$

- relying on theoretical calculations of hadronic matrix elements
- Projected Super Flavour Factory sensitivity
 - Vub (exclusive): 3-5%
 - V_{ub} (inclusive): 2-6%

T. Browder et al. 0710.3799

Status of B -> Xu I V

See talk by N. Gagliardi

Lange, Neubert and Paz 6 [hep-ph/0504071]

Andersen and Gardi [hep-ph/0509360]

Gambino, Giordano, Ossola, Uraltsev [arXiv:0707.2493]

Aglietti, Di Lodovico, Ferrera, Ricciardi [arXiv:0711.0860]

Bauer, Ligeti and Luke [hep-ph/0107074] Inclusive determination of Vub using OPE and HQE

- \odot Expansion in α_s and $1/m_b$
- Present precision around 6-7%
 - however 15% tension with UTA
 - dominant source of theoretical uncertainty due to shape-function modeling (kinematical phase-space cuts)

Antonelli et al. 0907.5386 A fully inclusive analysis would carry a tiny 2-3% theoretical error

Status of B -> Xu I V

At 1/m_b³ leading spectator effects due to dimension 6 four quark operators (WA contributions)

Bigi & Uraltsev hep-ph/9310285

Dikeman & Uraltsev hep-ph/9703437

Bigi, Dikeman & Uraltsev hep-ph/9706520

Uraltsev hep-ph/9905520

Voloshin hep-ph/0106040

D. Becirevic hep-ph/0110124

- 16π² phase space enhanced compared to LO & NLO contributions
 Not present at dim=7*
 [Dassinger et al. hep-ph/0611168]
- Affect both the total rate and spectra (expected to populate the q² / lepton energy endpoint region)
- Cannot be extracted from inclusive B->X_c IV analysis
 - Nor completely from comparing B⁺ and B⁰ decay modes
- Difficult to study non-perturbatively

D. Becirevic et al.

O804.1750 Existing estimates spread between 3-10%

Inclusive Semileptonic Charm Decays

- o $D_q \rightarrow X I V$
- Recently determined experimentally

$$B(D^+ \to Xe\nu) = (16.13 \pm 0.20 \pm 0.33)\%$$

$$B(D^0 \to Xe\nu) = (6.46 \pm 0.17 \pm 0.13)\%$$

- Similar results for muons
- Very recently results also for D₅ decays

$$B(D_s \to Xe\nu) = (6.52\pm, 0.39 \pm 0.15)\%$$

Including spectra

N. E. Adam et al. [CLEO] hep-ex/0604044

M. Ablikim et al. [BES] arXiv:0804.1454

Asner et al. [CLEO] 0912.4232

Inclusive Semileptonic Charm Decays

Ratio of D_s and D⁰ rates shows significant [17(6)%] deviation from unity

$$\Gamma(D^+ \to X e^+ \nu) / \Gamma(D^0 \to X e^+ \nu) = 0.985(28) ,$$

 $\Gamma(D_s^+ \to X e^+ \nu) / \Gamma(D^0 \to X e^+ \nu) = 0.828(57) ,$

Asner et al. [CLEO] 0912.4232

- Signs of WA in D_s decays?
- How to disentangle from possible SU(3) violation?

SU(3) violation in Charm (Two examples)

The Hyperfine mass splitting $\Delta_{D_q}^{hf} = 3(m_{D_q^*}^2 - m_{D_q}^2)/4$

$$\Delta_{D^+}^{hf} = 0.409(1) \text{GeV}^2$$
, $\Delta_{D^0}^{hf} = 0.413(1) \text{GeV}^2$, $\Delta_{D_s}^{hf} = 0.440(2) \text{GeV}^2$.

- © SU(3) violation at 10%
- Decay constants

Bazavov et al. [Fermilab & MILC] 0912.5221

- Lattice estimates: $f_{D_s} = 260(10) \mathrm{MeV}$ $f_D = 217(10) \mathrm{MeV}$
- © SU(3) violation at 20%

Inclusive Semileptonic Charm Decays in OPE

- Treating charm quark mass as heavy, one can attempt an expansion in $\alpha_s(m_c)$, Λ/m_c
 - Need to estimate local operator matrix elements between hadronic states
 - \odot First appear at $1/m_c^2$ <- sources of SU(3) violation
 - Heavy quark symmetry relates these estimates between the charm and beauty sectors
- I. I. Bigi & N. G. Uraltsev, Phys. Lett. B 280 (1992)
- Quantitative translation (renormalization) not straightforward
- Gronau & Rosner **6** 0903.2287
- Alternative approach involves an educated sum over known exclusive modes

OPE for the rate & leptonic moments

Rate & leptonic energy moments in HQE & OPE

$$x=2E/m_{c}$$
, $r=(m_s/m_c)^2$

$$\Gamma^{(n)} \equiv \int_{0}^{(1-r)} \frac{d\Gamma}{dx} x^{n} dx = \frac{G_{F}^{2} m_{c}^{5}}{192\pi^{3}} |V_{cs}|^{2} \left[f_{0}^{(n)}(r) + \frac{\alpha_{s}}{\pi} f_{1}^{(n)}(r) + \frac{\alpha_{s}^{2}}{\pi^{2}} f_{2}^{(n)}(r) + \frac{\mu_{\pi}^{2}}{m_{c}^{2}} f_{\pi}^{(n)}(r) + \frac{\mu_{G}^{2}}{m_{c}^{2}} f_{G}^{(n)}(r) + \frac{\rho_{LS}^{3}}{m_{c}^{3}} f_{LS}^{(n)}(r) + \frac{\rho_{D}^{3}}{m_{c}^{3}} f_{D}^{(n)}(r) + \frac{32\pi^{2}}{m_{c}^{3}} B_{WA}^{(n)s} \right],$$

- A. Pak & A. Czarnecki 0803.0960,
- K. Melnikov 0803.0951
- V. Aquila et al. hep-ph/0503083
- Czarnecki & Jezabek hep-ph/9402326
- Gremm and Kapustin hep-ph/9603448

Dassinger et al. hep-ph/0611168

- α_s corrections known up to $\alpha_s{}^2$ for the total rate $(\alpha_s{}^2\beta_0$ for the higher moments)
- \odot 1/m_c corrections known up to 1/m_c⁴ (all present analyses use 1/m_c³)
- © Cabibbo suppressed modes contribute to the total rate at the level of 5%, but their effect is highly suppressed in the normalized moments

WA in OPE

WA contributions to the rate can be related to matrix elements of dim=6 four quark operators

$$\langle H_{Q\bar{q}}|O_{V-A}^{q'}|H_{Q\bar{q}}\rangle \equiv \langle H_{Q\bar{q}}|\bar{Q}\gamma_{\mu}(1-\gamma_{5})q'\,\bar{q}'\gamma^{\mu}(1-\gamma_{5})Q|H_{Q\bar{q}}\rangle$$
$$\langle H_{Q\bar{q}}|O_{S-P}^{q'}|H_{Q\bar{q}}\rangle \equiv \langle H_{Q\bar{q}}|\bar{Q}(1-\gamma_{5})q'\,\bar{q}'(1-\gamma_{5})Q|H_{Q\bar{q}}\rangle$$

- In the SU(3) limit one distinguishes between isosinglet/triplet contributions - only the later can be estimated from the rate differences of B+ and B0
- Conventionally one parametrizes deviations from VSA: bag parameters 0

$$\langle D|O_{V-A}|D\rangle = f_D^2 m_D^2 B_1 \,,$$

$$\langle D|O_{S-P}|D\rangle = f_D^2 m_D^2 B_2$$

- P. Gambino et al. hep-ph/0505091,
- 0707.2493

I. I. Bigi et al. 0911.3322

Renormalization scale dependent, mix with the Darwin contributions at LO

$$\delta\Gamma \sim \left[C_{WA} B_{WA}(\mu_{WA}) - \left(8 \ln \frac{m_c^2}{\mu_{WA}^2} - \frac{77}{6} \right) \frac{\rho_D^3}{m_c^3} + \mathcal{O}(\alpha_s) \right]$$

can be used to estimate WA contributions to the rate

Modeling WA in leptonic moments

- WA contributions to the weak
 current correlators vanish in the OPE
 need to model
- Bigi & Uraltsev hep-ph/9310285
- Expected to populate the spectrum endpoint
- A. K. Leibovich et al. 6 hep-ph/0205148]
- Develop a perturbative tail & nonperturbative smearing
- Possible phase-space suppression by hadronic thresholds
- Gronau & Rosner 0902.1363
- \circ Can be studied directly using exclusive channels (D_s -> ω | ν)

The WA interpretation of rate differences

Bigi et al. 0911.3322 Without resorting to quantitative OPE predictions, one can estimate WA from rate differences

$$\Gamma_{WA}(D^{0}) \propto \cos^{2}\theta_{c}B_{WA}^{s}(D^{0}) + \sin^{2}\theta_{c}B_{WA}^{d}(D^{0}),$$
 $\Gamma_{WA}(D^{+}) \propto \cos^{2}\theta_{c}B_{WA}^{s}(D^{+}) + \sin^{2}\theta_{c}B_{WA}^{d}(D^{+}),$
 $\Gamma_{WA}(D_{s}) \propto \cos^{2}\theta_{c}B_{WA}^{s}(D_{s}) + \sin^{2}\theta_{c}B_{WA}^{d}(D_{s}),$

- $\ensuremath{\text{@}}$ By equating the difference between D_s and D^0 rates with the isotriplet component of WA
 - assumes SU(3) violating effects are sub-leading
- Isosinglet component unconstrained

Confronting OPE convergence in charm

Ligeti et al. 1003.1351

J.F.K. 0909.2755

Gambino & J.F.K 1004.0114

- In order to constrain WA fully, need to explicitly compute semileptonic rates and/or distribution moments - compare with exp.
- Perturbative corrections known in the pole scheme

$$\Gamma = \Gamma_0 \left[1 - 0.72 \,\alpha_s - 0.29 \,\alpha_s^2 \beta_0 - 0.60 \,\mu_G^2 - 0.20 \,\mu_\pi^2 + 0.42 \,\rho_D^3 + 0.38 \,\rho_{LS} + 80 B_{WA}^{(0)} \right] ,$$

$$< E > = \langle E >_0 \left[1 - 0.03 \,\alpha_s - 0.03 \,\alpha_s^2 \beta_0 - 0.07 \,\mu_G^2 + 0.20 \,\mu_\pi^2 + 1.4 \,\rho_D^3 + 0.29 \,\rho_{LS} + 135 \bar{B}_{WA}^{(1)} \right] ,$$

$$< E^2 > = \langle E^2 >_0 \left[1 - 0.07 \,\alpha_s - 0.05 \,\alpha_s^2 \beta_0 - 0.14 \,\mu_G^2 + 0.52 \,\mu_\pi^2 + 3.5 \,\rho_D^3 + 0.66 \,\rho_{LS} + 204 \bar{B}_{WA}^{(2)} \right] ,$$

$$\sigma_E^2 = (\sigma_E^2)_0 \left[1 - 0.09 \,\alpha_s - 0.05 \,\alpha_s^2 \beta_0 - 0.14 \,\mu_G^2 + 1.7 \,\mu_\pi^2 + 9.4 \,\rho_D^3 + 1.4 \,\rho_{LS} + 641 \bar{B}_{WA}^{(\sigma)} \right] ,$$

c.f. Antonelli et al. 0907.5386

- \odot Renormalon (Λ/m_c) ambiguity of pole mass
 - all moments affected (n-th scales as m_cⁿ)
- Better to use a short distance threshold mass definition

Convergence of perturbative corrections

Ligeti et al. 1003.1351 Marginal in the pole scheme (α_s(m_c)≈0.35)

$$\frac{\Gamma}{\Gamma_0 \left\lceil m_c^{\rm pole} \right\rceil} = 1 - 0.269 \, \epsilon - 0.360 \, \epsilon_{\rm BLM}^2 + 0.069 \, \epsilon^2 + \dots, \quad \text{(E[=1] - pert. order counting parameter)}$$

Improves in short distance m_c schemes

$$\frac{\Gamma}{\Gamma_0[m_c^{1S}]} = 1 - 0.133 \epsilon - 0.006 \epsilon_{\text{BLM}}^2 - 0.017 \epsilon^2.$$

One can try to soften the strong dependence on the charm quark mass using information from inclusive B decays

$$\frac{\Gamma}{\Gamma_0 \left[m_b^{1S} - \Delta \right]} = 1 - 0.075\epsilon - 0.013 \epsilon_{\text{BLM}}^2 - 0.021 \epsilon^2, \qquad (\Delta = m_b - m_c)$$

Convergence of perturbative corrections

Gambino & J.F.K 1004.0114 In schemes with explicit IR cut-off, one needs to choose proper (low) IR scale (0.5-0.8 GeV)

HFAG winter '09 update

- Need to translate OPE parameters as well (from global B fits)
- Perturbative and OPE corrections translated to kinetic scheme

$$\Gamma_{kin} = 1.2(3)10^{-13} \text{GeV} \left\{ 1 + 0.23 \,\alpha_s + 0.18 \,\alpha_s^2 \beta_0 - 0.79 \,\mu_G^2 - 0.26 \mu_\pi^2 + 1.45 \,\rho_D^3 + 0.56 \rho_{LS}^3 + 120 B_{WA}^{(0)} \right\}$$

$$< E_\ell >_{kin} = 0.415(21) \text{GeV} \left\{ 1 + 0.03 \,\alpha_s + 0.02 \,\alpha_s^2 \beta_0 - 0.09 \,\mu_G^2 + 0.26 \mu_\pi^2 + 2.7 \rho_D^3 + 0.44 \rho_{LS}^3 + 203 \bar{B}_{WA}^{(1)} \right\} ,$$

$$< E_\ell^2 >_{kin} = 0.192(20) \text{GeV}^2 \left\{ 1 + 0.001 \,\alpha_s + 0.02 \,\alpha_s^2 \beta_0 - 0.18 \,\mu_G^2 + 0.68 \mu_\pi^2 + 6.6 \rho_D^3 + 0.99 \rho_{LS}^3 + 307 \bar{B}_{WA}^{(2)} \right\}$$

$$\sigma_{E,kin}^2 = 0.019(2) \text{GeV}^2 \left\{ 1 - 0.53 \,\alpha_s - 0.17 \,\alpha_s^2 \beta_0 - 0.18 \mu_G^2 + 2.2 \mu_\pi^2 + 17 \rho_D^3 + 2.1 \rho_{LS}^3 + 961 \bar{B}_{WA}^{(\sigma)} \right\} ,$$

- $\ensuremath{\raisebox{.4ex}{$\scriptstyle \bullet$}}$ Rate uncertainty dominated by m_c & μ_G
- \odot Higher leptonic moments by ρ_D

Extraction of WA contributions

Ligeti et al. 1003.1351

- © Comparing theoretical expressions with experimental rates (in 15 scheme)
 - using OPE parameters and masses as extracted from global B decay fits
 - neglecting possible SU(3) violations
- Indication of a non-zero isosinglet WA contribution

$$a_0 = 1.25 \pm 0.15$$
,

$$a_8 = -0.20 \pm 0.12$$
,

Translates into O(1-2%) effect in B->Xu I V rate

$$a_{0,8} = \frac{m_c^2 m_D f_D^2}{m_c^5} 16\pi^2 (B_2^{s,ns} - B_1^{s,ns}),$$

Extraction of WA contributions

Gambino & J.F.K 1004.0114

- Including information on the leptonic energy moments
 - Different dependence of moments on the OPE parameters allows to possibly disentangle SU(3) violating effects from WA contributions
 - Introduces dependence due to the modeling of the WA shape in the spectra
 - Correlated WA determination from the rate and the moments

Extraction of WA contributions

Gambino & J.F.K 1004.0114

- Including information on the leptonic energy moments
 - Different dependence of moments on the OPE parameters allows to possibly disentangle SU(3) violating effects from WA contributions
 - Introduces dependence due to the modeling of the WA shape in the spectra
 - Correlated WA determination from the rate and the moments
 - Allowing for O(20%) SU(3) violation in OPE parameters
 - \bullet Largest uncertainty due to ρ_D linear (scale dependent) combination of ρ_D and WA contributions determined precisely
 - For μ_{WA}≈1GeV no clear indication of non-zero WA contributions

$$B_{WA}^s = -0.0003(25) \text{GeV}^3$$

Translates into O(2%) uncertainty in B->X_u I \vee decay rate

Conclusions

- Inclusive semileptonic charm decays can be used as a laboratory to test the OPE techniques used in the extraction of |Vub| and |Vcb| from inclusive B decays
 - perturbative convergence seems to be surprisingly good
- Use several observables to over-constrain the OPE parameter uncertainties and test OPE convergence
- Indications that WA related uncertainties in inclusive $|V_{ub}|$ extraction smaller than previously expected [O(1%)]
- More tests possible in the future with additional experimental inputs (experimentally determined leptonic energy and hadronic invariant mass moments) from Cleo and BESIII

Backup Slides

Status of B -> Xu I V

 $M_X^{cut} = 2.4 \, \overline{\text{GeV}}$

- Experimental cuts on the leptonic energy and hadronic invariant mass to suppress dominant charm final state contributions
 - Introduce theoretical sensitivity to effects beyond the OPE
 - Modeled by s.c. shapefunctions
- A fully inclusive analysis would carry a tiny 2-3% theoretical error

Antonelli et al. 0907.5386

Playing the experimentalist

- One would want to compare completely inclusive leptonic energy moments in the rest-frame of the decaying hadron
- This is not what Cleo presently provide:
 - do not compute the leptonic energy moments
 - spectra given in the lab frame
 - o involve a lower E_e=0.2 GeV cut
 - \odot do subtract the $D_s \rightarrow \tau \ V$ leptonic background

Asner et al. [CLEO] 0912.4232

Playing the experimentalist

One would want to compare completely inclusive leptonic energy moments in the rest-frame of the decaying hadron

Gambino & J.F.K 1004.0114

- We try to compensate:
 - \odot extrapolate the spectra down to $E_e=0$ using inclusive model shapes
 - compute the leptonic energy moments from extrapolated spectra (in the lab frame)
 - boost the moments to the D frame by directional averaging

$$< E'_e > = \gamma < E_e > < E'_e^2 > = \gamma^2 (1 + \beta^2/3) < E_e^2 >$$

- D's produced in pairs at E_{CM}=3774MeV
- D_s's produced associated with D_s*'s and through their decays

OPE and heavy quark expansion

Bigi et al. [hep-ph/9207214]

Manohar and Wise, [hep-ph/9308246] Optical theorem

$$\Gamma(H_{Q\bar{q}}) = \frac{1}{2m_H} \langle H_{Q\bar{q}} | \mathcal{T} | H_{Q\bar{q}} \rangle$$

$$\mathcal{T} = \operatorname{Im} i \int d^4x \, T \{ \mathcal{H}_{eff}(x) \mathcal{H}_{eff}(0) \}$$

- (Global) quark-hadron duality, HQE & OPE
 - Equations of motion

$$\bar{c}c = \bar{c}\not pc + \frac{1}{2m_c^2} \left(\bar{c}(iD_\perp)^2 c + \bar{c}\frac{g_s}{2}\sigma.Gc \right) + \mathcal{O}(1/m_c^3)$$

HQE parameters

$$\mu_{\pi}^{2} = -\frac{1}{2m_{D}} \langle D|\bar{c}(iD_{\perp})^{2}c|D\rangle$$

$$\mu_{G}^{2} = \frac{1}{2m_{D}} \langle D|\bar{c}\frac{g_{s}}{2}\sigma.Bc|D\rangle$$

Only applicable for the total rate

OPE and heavy quark expansion

Bigi et al. [hep-ph/9207214]

Manohar and Wise, [hep-ph/9308246] Analogously define current correlator whose imaginary part gives the hadronic tensor contributing to inclusive semileptonic spectra

- Again use HQE & OPE
- Requires local quark-hadron duality to hold
 - © Can be softened by instead computing spectral moments
 - Any spectral cuts will reintroduce sensitivity to contributions beyond OPE

