

1st of July 2015 — Chiral Dynamics (Pisa, Italy)

Inclusion of isospin breaking effects in lattice simulations

Antonin J. Portelli (University of Southampton)

- * [MILC, 2014] [Lattice 2014, arXiv:1409.7139]
 - update of quark masses and Dashen's theorem corrections using electro-quenched simulations
 - new insights on finite-volume effects

- * [MILC, 2014] [Lattice 2014, arXiv:1409.7139]
 - update of quark masses and Dashen's theorem corrections using electro-quenched simulations
 - new insights on finite-volume effects
- * [QCDSF, 2015] (pure QCD) [PRD 91(7), p. 074512]
 - study of the $\Sigma^0 \Lambda^0$ system

- * [MILC, 2014] [Lattice 2014, arXiv:1409.7139]
 - update of quark masses and Dashen's theorem corrections using electro-quenched simulations
 - new insights on finite-volume effects
- * [QCDSF, 2015] (pure QCD) [PRD 91(7), p. 074512]
 - study of the $\Sigma^0 \Lambda^0$ system
- * [BMWc, 2014] (EQ) [to appear]
 - update of quark masses and Dashen's theorem using electroquenched simulations

- * [MILC, 2014] [Lattice 2014, arXiv:1409.7139]
 - update of quark masses and Dashen's theorem corrections using electro-quenched simulations
 - new insights on finite-volume effects
- * [QCDSF, 2015] (pure QCD) [PRD 91(7), p. 074512]
 - study of the $\Sigma^0 \Lambda^0$ system
- * [BMWc, 2014] (EQ) [to appear]
 - update of quark masses and Dashen's theorem using electroquenched simulations
- * [Davoudi & Savage, 2014] [PRD 90(5), p. 054503]
 - finite-volume corrections to hadron masses in NREFTs

- * [BMWc, 2015a] [Science 347, pp. 1452–1455]
 - new set of $N_f = 1+1+1+1$ full QCD+QED simulations
 - extensive analytical/numerical study of finite-volume effects
 - high precision computation of the hadron spectrum splittings (continuum, infinite volume and physical point extrapolation)

- * [BMWc, 2015a] [Science 347, pp. 1452–1455]
 - new set of $N_f = 1+1+1+1$ full QCD+QED simulations
 - extensive analytical/numerical study of finite-volume effects
 - high precision computation of the hadron spectrum splittings (continuum, infinite volume and physical point extrapolation)
- * [BMWc, 2015b] [arXiv:1502.06921]
 - further discussion of NREFT in finite volume

- * [BMWc, 2015a] [Science 347, pp. 1452–1455]
 - new set of $N_f = 1+1+1+1$ full QCD+QED simulations
 - extensive analytical/numerical study of finite-volume effects
 - high precision computation of the hadron spectrum splittings (continuum, infinite volume and physical point extrapolation)
- * [BMWc, 2015b] [arXiv:1502.06921]
 - further discussion of NREFT in finite volume
- * possible summary of all that: [AP, 2015, arXiv:1505.07057]

- * [N. Carrasco *et. al*, 2015] [arXiv:1502.00257]
 - theoretical study of the QED corrections to hadronic processes
 - *cf.* plenary talk tomorrow by V. Lubicz

- * [N. Carrasco *et. al*, 2015] [arXiv:1502.00257]
 - theoretical study of the QED corrections to hadronic processes
 - *cf.* plenary talk tomorrow by V. Lubicz
- * Stay tuned: Lattice 2015 (Kobe, Japan) is in two weeks

- * Motivations
- Lattice QCD+QED
- Update on electro-quenched results
- * Isospin splittings in the hadron spectrum
- * Summary & outlook

Motivations

Isospin symmetry breaking

* Isospin symmetric world: up and down quarks are particles with identical physical properties.

Isospin symmetry breaking

- * Isospin symmetric world: up and down quarks are particles with identical physical properties.
- * Isospin symmetry is explicitly broken by:
 - the up and down quark mass difference $|m_u-m_d|/\Lambda_{
 m QCD}\simeq 0.01$
 - the up and down electric charge difference $\label{eq:alpha} \alpha \simeq 0.0073$

	up	down	
Mass (MeV)	$2.3(^{+0.7}_{-0.5})$	$4.8(^{+0.5}_{-0.3})$	source: [PDG, 2013]
Charge (e)	2/3	-1/3	

* Well known experimentally:

 $M_n - M_p = 1.2933322(4) \text{ MeV}$

source: [PDG, 2013]

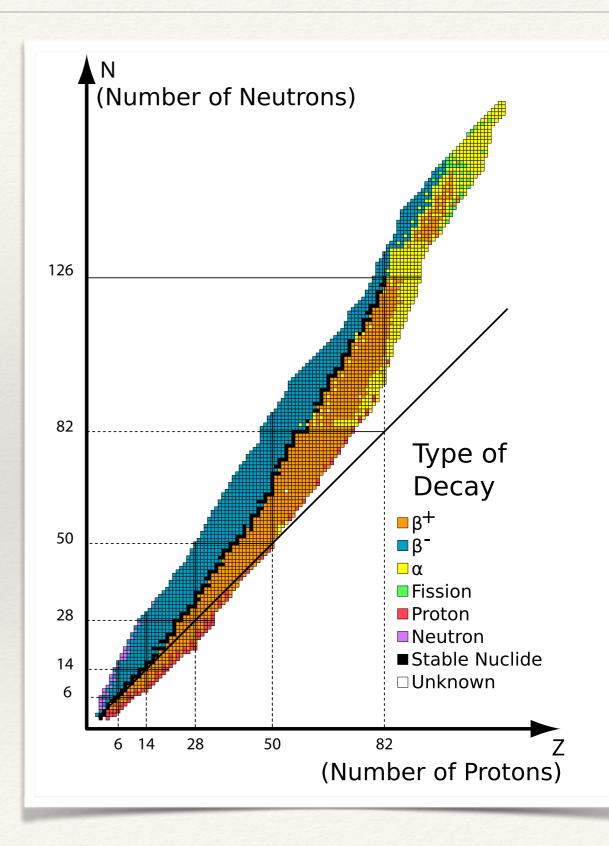
* Well known experimentally:

 $M_n - M_p = 1.2933322(4) \text{ MeV}$

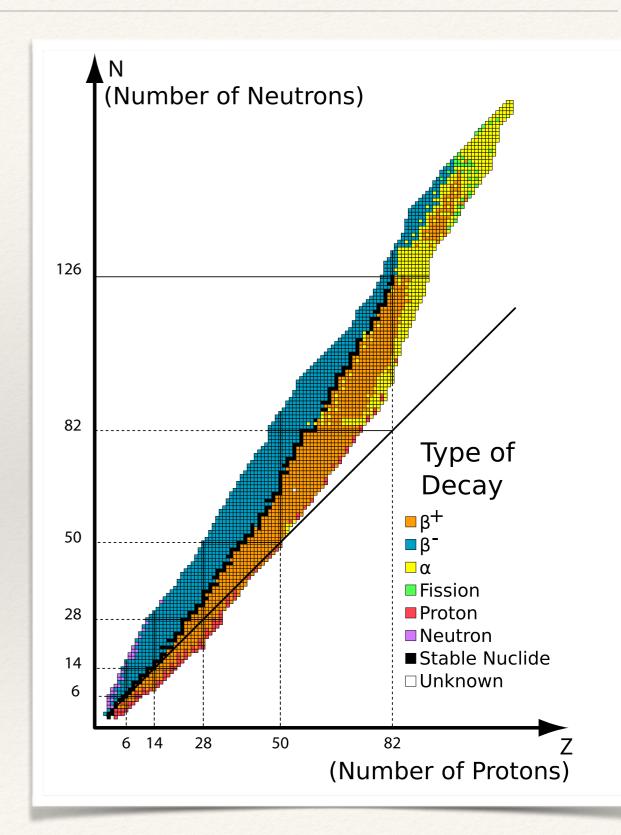
source: [PDG, 2013]

* needed for proton stability

- Well known experimentally:
 M_n M_p = 1.2933322(4) MeV
 source: [PDG, 2013]
 needed for proton stability
- determines through
 β-decay the stable nuclide
 chart



- ★ Well known experimentally:
 M_n M_p = 1.2933322(4) MeV
 source: [PDG, 2013]
 ★ peeded for proton stability
- needed for proton stability
- determines through
 β-decay the stable nuclide
 chart
- initial condition for
 Big-Bang nucleosynthesis



Dashen's theorem

* In the SU(3) chiral limit [Dashen, 1969]: $\Delta_{\rm QED} M_K^2 = \Delta_{\rm QED} M_\pi^2 + {\rm O}(\alpha m_s)$

Dashen's theorem

* In the SU(3) chiral limit [Dashen, 1969]: $\Delta_{\rm QED} M_K^2 = \Delta_{\rm QED} M_\pi^2 + O(\alpha m_s)$

* How large are the corrections? FLAG parametrisation:

$$\varepsilon = \frac{\Delta_{\rm QED} M_K^2 - \Delta_{\rm QED} M_\pi^2}{\Delta M_\pi^2}$$

Dashen's theorem

* In the SU(3) chiral limit [Dashen, 1969]: $\Delta_{\rm QED} M_K^2 = \Delta_{\rm QED} M_\pi^2 + {\rm O}(\alpha m_s)$

* How large are the corrections? FLAG parametrisation:

$$\varepsilon = \frac{\Delta_{\rm QED} M_K^2 - \Delta_{\rm QED} M_\pi^2}{\Delta M_\pi^2}$$

* ε is important to determine light quark mass ratios

Lattice QCD+QED

* Lattice QCD simulation: Monte-Carlo estimation of discretised QCD functional integrals

- Lattice QCD simulation: Monte-Carlo estimation of discretised QCD functional integrals
- * Discretised Yang-Mills action: [K. Wilson, 1974]

- Lattice QCD simulation: Monte-Carlo estimation of discretised QCD functional integrals
- * Discretised Yang-Mills action: [K. Wilson, 1974]
- Discretised Dirac action: chiral symmetry must be broken (Nielsen-Ninomiya theorem), many possible solutions

- Lattice QCD simulation: Monte-Carlo estimation of discretised QCD functional integrals
- * Discretised Yang-Mills action: [K. Wilson, 1974]
- * Discretised Dirac action: chiral symmetry must be broken (Nielsen-Ninomiya theorem), many possible solutions
- Fermionic integrals can be performed analytically (Wick's contractions)

- Lattice QCD simulation: Monte-Carlo estimation of discretised QCD functional integrals
- * Discretised Yang-Mills action: [K. Wilson, 1974]
- * Discretised Dirac action: chiral symmetry must be broken (Nielsen-Ninomiya theorem), many possible solutions
- Fermionic integrals can be performed analytically (Wick's contractions)
- * Gauge integrals are computed stochastically

- Lattice QCD simulation: Monte-Carlo estimation of discretised QCD functional integrals
- * Discretised Yang-Mills action: [K. Wilson, 1974]
- * Discretised Dirac action: chiral symmetry must be broken (Nielsen-Ninomiya theorem), many possible solutions
- Fermionic integrals can be performed analytically (Wick's contractions)
- * Gauge integrals are computed stochastically
- * Extremely expensive, but *ab-initio*

* Naively discretised Maxwell action:

$$S[A_{\mu}] = \frac{1}{4} \sum_{\mu,\nu} (\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu})^2$$

* Naively discretised Maxwell action:

$$S[A_{\mu}] = \frac{1}{4} \sum_{\mu,\nu} (\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu})^2$$

* Pure gauge theory is **free**, it can be solved **exactly**

* Naively discretised Maxwell action:

$$S[A_{\mu}] = \frac{1}{4} \sum_{\mu,\nu} (\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu})^2$$

- * Pure gauge theory is **free**, it can be solved **exactly**
- * Gauge invariance is preserved

* Naively discretised Maxwell action:

$$S[A_{\mu}] = \frac{1}{4} \sum_{\mu,\nu} (\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu})^2$$

- * Pure gauge theory is **free**, it can be solved **exactly**
- * Gauge invariance is preserved
- * No mass gap: large finite volume effects expected

Zero-mode subtraction

Finite volume: momentum quantisation

$$\alpha \int \frac{\mathrm{d}^4 k}{(2\pi)^4} \frac{1}{k^2} \cdots \qquad \longmapsto \qquad \frac{\alpha}{V} \sum_k \frac{1}{k^2} \cdots$$

Zero-mode subtraction

Finite volume: momentum quantisation

$$\alpha \int \frac{\mathrm{d}^4 k}{(2\pi)^4} \frac{1}{k^2} \cdots \qquad \longmapsto \qquad \frac{\alpha}{V} \sum_k \frac{1}{k^2} \cdots$$

Possibly IR divergent, but not for physical quantities

Zero-mode subtraction

Finite volume: momentum quantisation

 $\alpha \int \frac{\mathrm{d}^4 k}{(2\pi)^4} \frac{1}{k^2} \cdots \qquad \longmapsto \qquad \frac{\alpha}{V} \sum_k \frac{1}{k^2} \cdots$

Possibly IR divergent, but not for physical quantities Contains a straight 1/0!

* This problem can be solved by **removing zero modes**

- * This problem can be solved by **removing zero modes**
- * Many possible schemes: modification of $A_{\mu}(k)$ on a set of measure 0

- * This problem can be solved by **removing zero modes**
- * Many possible schemes: modification of $A_{\mu}(k)$ on a set of measure 0
- * Different schemes: different finite volume behaviours

- * This problem can be solved by **removing zero modes**
- * Many possible schemes: modification of $A_{\mu}(k)$ on a set of measure 0
- Different schemes: different finite volume behaviours
- Some more interesting that others

QED_{TL} zero-mode subtraction

* QED_{TL}: $A_{\mu}(0) = 0$ Mostly used in all simulations so far

QED_{TL} zero-mode subtraction

- * QED_{TL}: $A_{\mu}(0) = 0$ Mostly used in all simulations so far
- * With QED_{TL}, the $T \to \infty$, L = cst. limit can diverge:

$$\frac{\alpha}{V} \sum_{k \neq 0} \frac{1}{k^2} \cdots \qquad \longmapsto \qquad \frac{\alpha}{L^3} \int \frac{\mathrm{d}k_0}{2\pi} \sum_{\mathbf{k}} \frac{1}{k^2} \cdots$$

QED_{TL} zero-mode subtraction

- * QED_{TL}: $A_{\mu}(0) = 0$ Mostly used in all simulations so far
- * With QED_{TL}, the $T \to \infty$, L = cst. limit can diverge:

$$\frac{\alpha}{V} \sum_{k \neq 0} \frac{1}{k^2} \cdots \qquad \longmapsto \qquad \frac{\alpha}{L^3} \int \frac{\mathrm{d}k_0}{2\pi} \sum_{\mathbf{k}} \frac{1}{k^2} \cdots$$

* QED_{TL} does not have reflection positivity

QED_{TL} finite-volume effects

* Example — 1-loop QED_{TL} [BMWc, 2014]:

$$m(T,L) \underset{T,L\to+\infty}{\sim} m \left\{ 1 - q^2 \alpha \left[\frac{\kappa}{2mL} \left(1 + \frac{2}{mL} \left[1 - \frac{\pi}{2\kappa} \frac{T}{L} \right] \right) - \frac{3\pi}{(mL)^3} \left[1 - \frac{\coth(mT)}{2} \right] - \frac{3\pi}{2(mL)^4} \frac{L}{T} \right] \right\}$$

up to exponential corrections, with $\kappa = 2.83729...$

QED_{TL} finite-volume effects

* Example — 1-loop QED_{TL} [BMWc, 2014]:

$$m(T,L) \underset{T,L\to+\infty}{\sim} m \left\{ 1 - q^2 \alpha \left[\frac{\kappa}{2mL} \left(1 + \frac{2}{mL} \left[1 - \frac{\pi}{2\kappa} \frac{T}{L} \right] \right) - \frac{3\pi}{(mL)^3} \left[1 - \frac{\coth(mT)}{2} \right] - \frac{3\pi}{2(mL)^4} \frac{L}{T} \right] \right\}$$

up to exponential corrections, with $\kappa = 2.83729...$

* **Divergent finite volume effects** with $T \to \infty$, L = cst.

QED_{TL} finite-volume effects

* Example — 1-loop QED_{TL} [BMWc, 2014]:

$$m(T,L) \underset{T,L\to+\infty}{\sim} m \left\{ 1 - q^2 \alpha \left[\frac{\kappa}{2mL} \left(1 + \frac{2}{mL} \left[1 - \frac{\pi}{2\kappa} \frac{T}{L} \right] \right) - \frac{3\pi}{(mL)^3} \left[1 - \frac{\coth(mT)}{2} \right] - \frac{3\pi}{2(mL)^4} \frac{L}{T} \right] \right\}$$

up to exponential corrections, with $\kappa = 2.83729...$

- * **Divergent finite volume effects** with $T \to \infty$, L = cst.
- * Same behaviour independently discovered by MILC

QED_L zero-mode subtraction

* QED_L: $A_{\mu}(k_0, \mathbf{0}) = 0$ inspired from [Hayakawa & Uno, 2008]

QED_L zero-mode subtraction

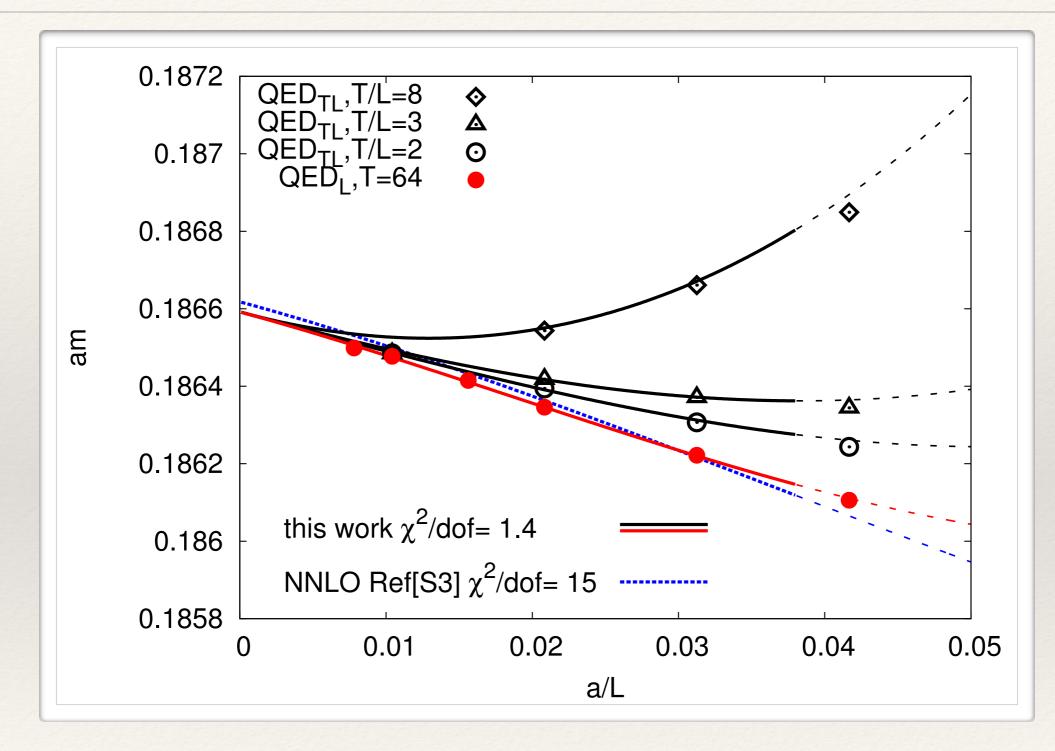
- * QED_L: $A_{\mu}(k_0, \mathbf{0}) = 0$ inspired from [Hayakawa & Uno, 2008]
- * QED_L maintains reflection positivity [BMWc, 2015a]:

QED_L zero-mode subtraction

- * QED_L: $A_{\mu}(k_0, \mathbf{0}) = 0$ inspired from [Hayakawa & Uno, 2008]
- * QED_L maintains reflection positivity [BMWc, 2015a]:
- * QED_L finite volume effects:

$$m(T,L) \underset{T,L\to+\infty}{\sim} m\left\{1-q^2\alpha\left[\frac{\kappa}{2mL}\left(1+\frac{2}{mL}\right)-\frac{3\pi}{(mL)^3}\right]\right\}$$

inverse powers of L, independent of T



Pure QED simulations (quenched) from [BMWc, 2015a] — [S3]=[Davoudi & Savage, 2014]

 Anti-particles and particles do not decouple completely because of the missing photon modes

- Anti-particles and particles do not decouple completely because of the missing photon modes
- * The residual contribution generates a $O(1/L^3)$ finite volume correction to the self-energy

- Anti-particles and particles do not decouple completely because of the missing photon modes
- * The residual contribution generates a $O(1/L^3)$ finite volume correction to the self-energy
- This contribution is absent from [D & S, 2014], explaining the observed discrepancy

- Anti-particles and particles do not decouple completely because of the missing photon modes
- * The residual contribution generates a $O(1/L^3)$ finite volume correction to the self-energy
- This contribution is absent from [D & S, 2014], explaining the observed discrepancy
- * More details in [BMWc, 2015b]

* What about **composite particles** (QCD + QED)?

- * What about **composite particles** (QCD + QED)?
- * [Hayakawa & Uno, 2008]: SU(3) PQChPT

- * What about **composite particles** (QCD + QED)?
- * [Hayakawa & Uno, 2008]: SU(3) PQChPT
- * [RBC-UKQCD, 2010]: SU(2) PQChPT + heavy kaons

- * What about **composite particles** (QCD + QED)?
- * [Hayakawa & Uno, 2008]: SU(3) PQChPT
- * [RBC-UKQCD, 2010]: SU(2) PQChPT + heavy kaons
- [Davoudi & Savage, 2014]: NREFTs mesons, baryons, nuclei and HVP

$$m(L) \underset{L \to +\infty}{\sim} m \left\{ 1 - q^2 \alpha \left[\frac{\kappa}{2mL} \left(1 + \frac{2}{mL} \right) + O\left(\frac{1}{L^3} \right) \right] \right\}$$

- * What about **composite particles** (QCD + QED)?
- * [Hayakawa & Uno, 2008]: SU(3) PQChPT
- * [RBC-UKQCD, 2010]: SU(2) PQChPT + heavy kaons
- [Davoudi & Savage, 2014]: NREFTs mesons, baryons, nuclei and HVP

$$m(L) \underset{L \to +\infty}{\sim} m \left\{ 1 - q^2 \alpha \left[\frac{\kappa}{2mL} \left(1 + \frac{2}{mL} \right) + O\left(\frac{1}{L^3} \right) \right] \right\}$$

* [BMWc, 2015a]: Ward identities: NLO is universal

 Electro-quenched approximation: charged valence quarks, but neutral sea quarks

- Electro-quenched approximation: charged valence quarks, but neutral sea quarks
- Non-unitary theory (partially quenched)

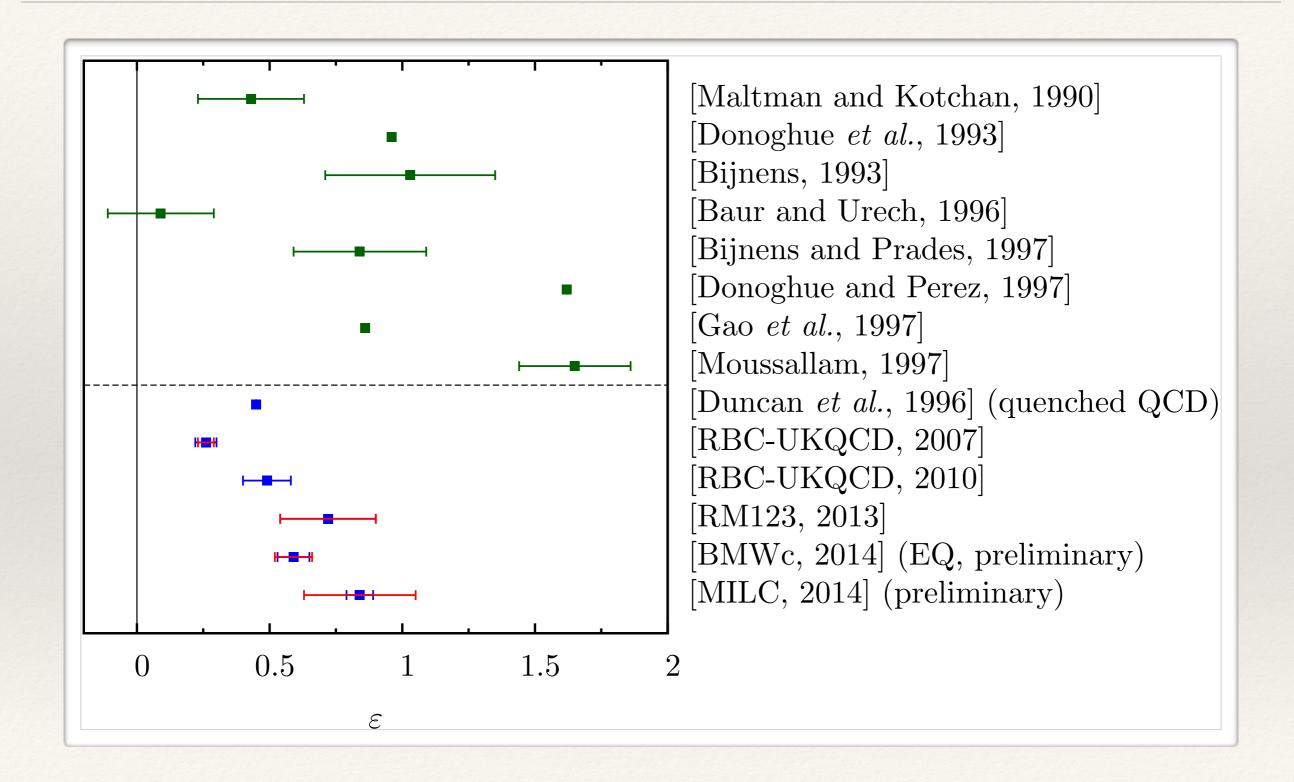
- Electro-quenched approximation: charged valence quarks, but neutral sea quarks
- Non-unitary theory (partially quenched)
- Greatly reduce the computational cost

- Electro-quenched approximation: charged valence quarks, but neutral sea quarks
- Non-unitary theory (partially quenched)
- Greatly reduce the computational cost
- * Missing contributions are large- N_c and SU(3) flavour suppressed: O(10%) of EM effects

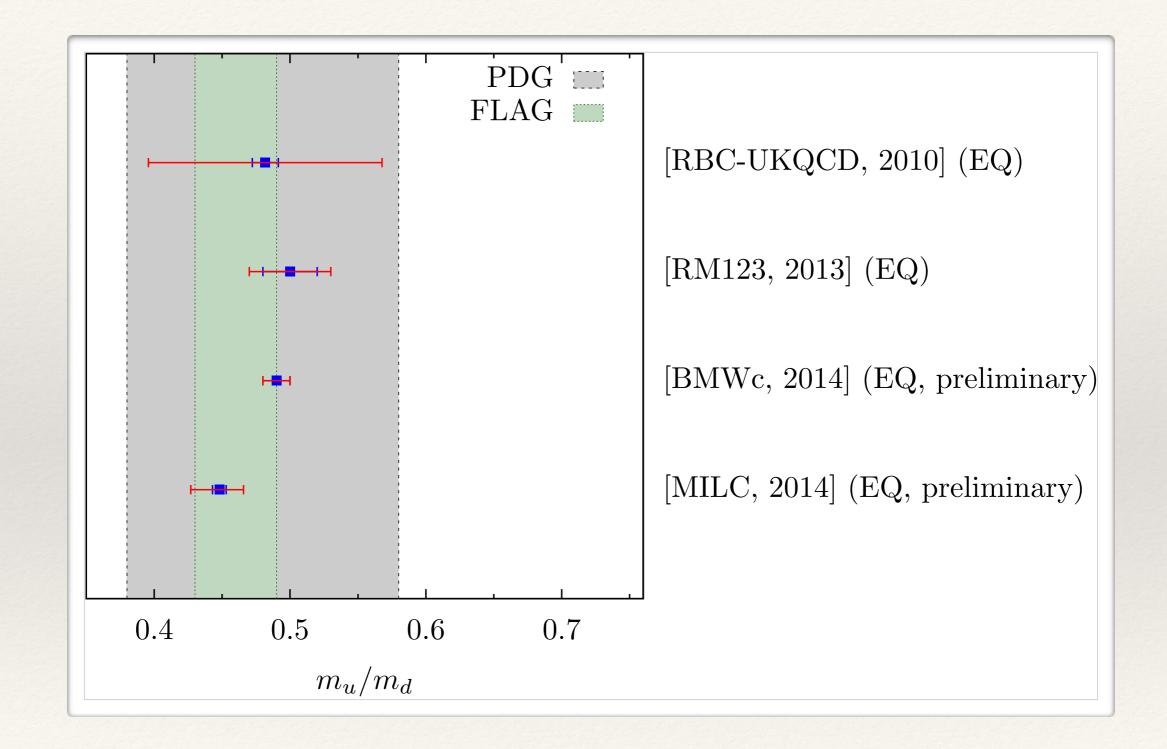
- Electro-quenched approximation: charged valence quarks, but neutral sea quarks
- Non-unitary theory (partially quenched)
- Greatly reduce the computational cost
- * Missing contributions are large- N_c and SU(3) flavour suppressed: O(10%) of EM effects
- In agreement with PQChPT estimates
 [J. Bijnens & N. Danielsson, PRD 75(1), p. 014505, 2007]

Update on electro-quenched results

EQ results for ε



EQ results for light quark masses



Isospin splittings in the hadron spectrum

many smeared sources per configurations (O(100))

- many smeared sources per configurations (O(100))
- electric charge renormalisation using Wilson flow

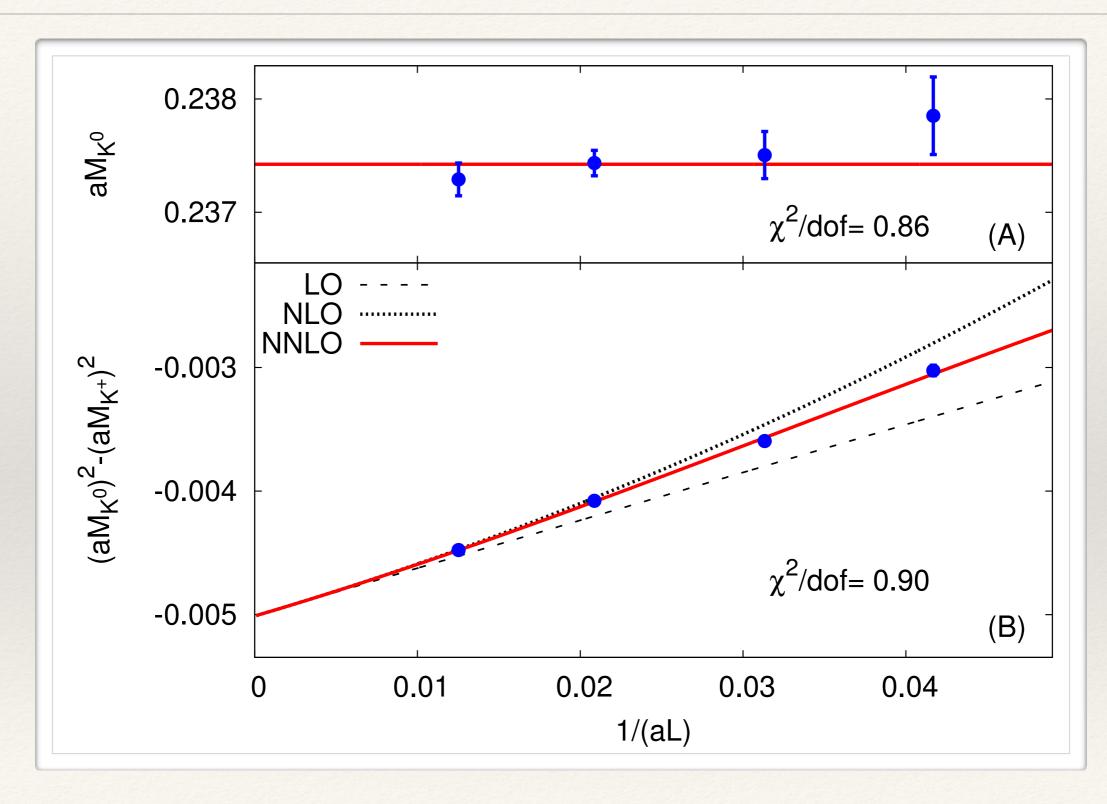
- many smeared sources per configurations (O(100))
- electric charge renormalisation using Wilson flow
- small extrapolation to the physical point (similar to [BMWc, 2013])

- many smeared sources per configurations (O(100))
- electric charge renormalisation using Wilson flow
- small extrapolation to the physical point (similar to [BMWc, 2013])
- Systematic error based on BMW's histogram method.
 Weights are based on the goodness of the fits, flat and
 Akaike's information criterion (overfitting is penalised)

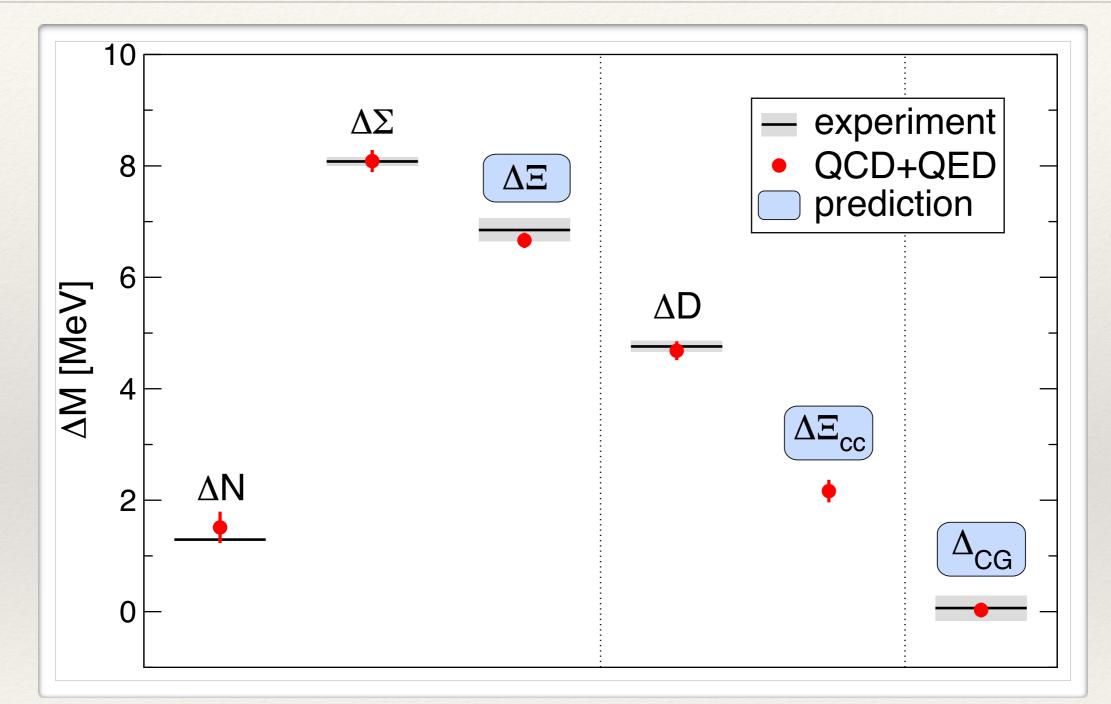
[BMWc, 2015a]: mass splitting calculation

- many smeared sources per configurations (O(100))
- electric charge renormalisation using Wilson flow
- small extrapolation to the physical point (similar to [BMWc, 2013])
- Systematic error based on BMW's histogram method.
 Weights are based on the goodness of the fits, flat and
 Akaike's information criterion (overfitting is penalised)
- O(500) analyses per mass splitting

[BMWc, 2015a]: finite-volume study

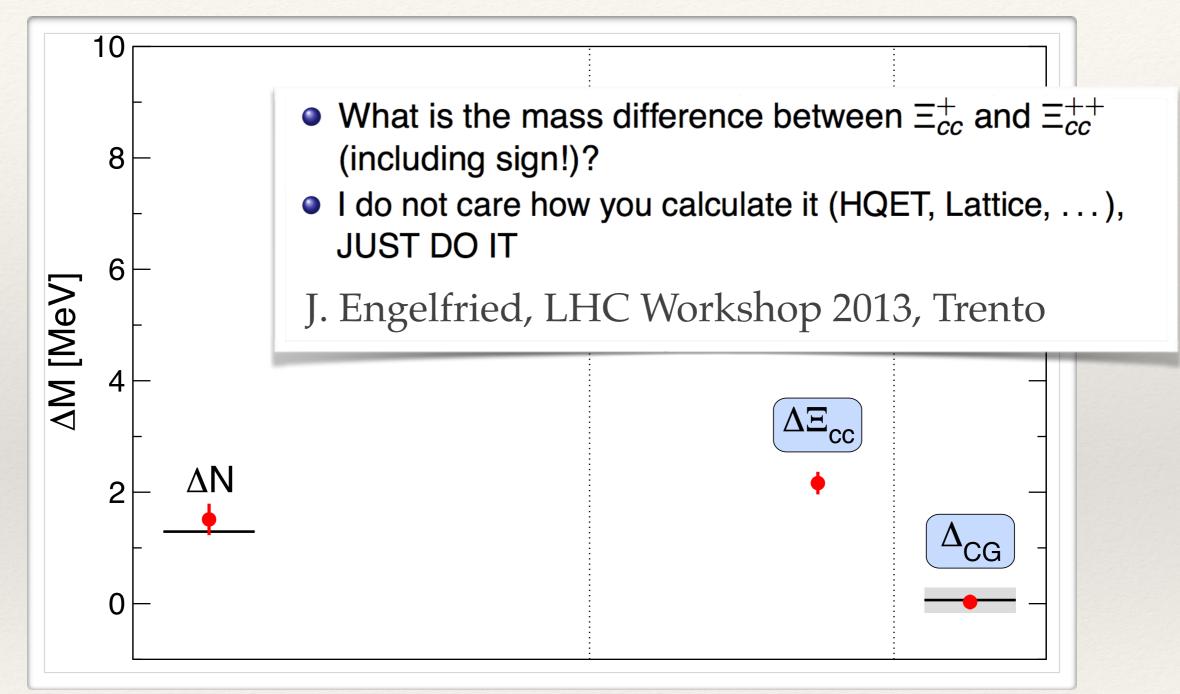


[BMWc, 2015a]: result summary

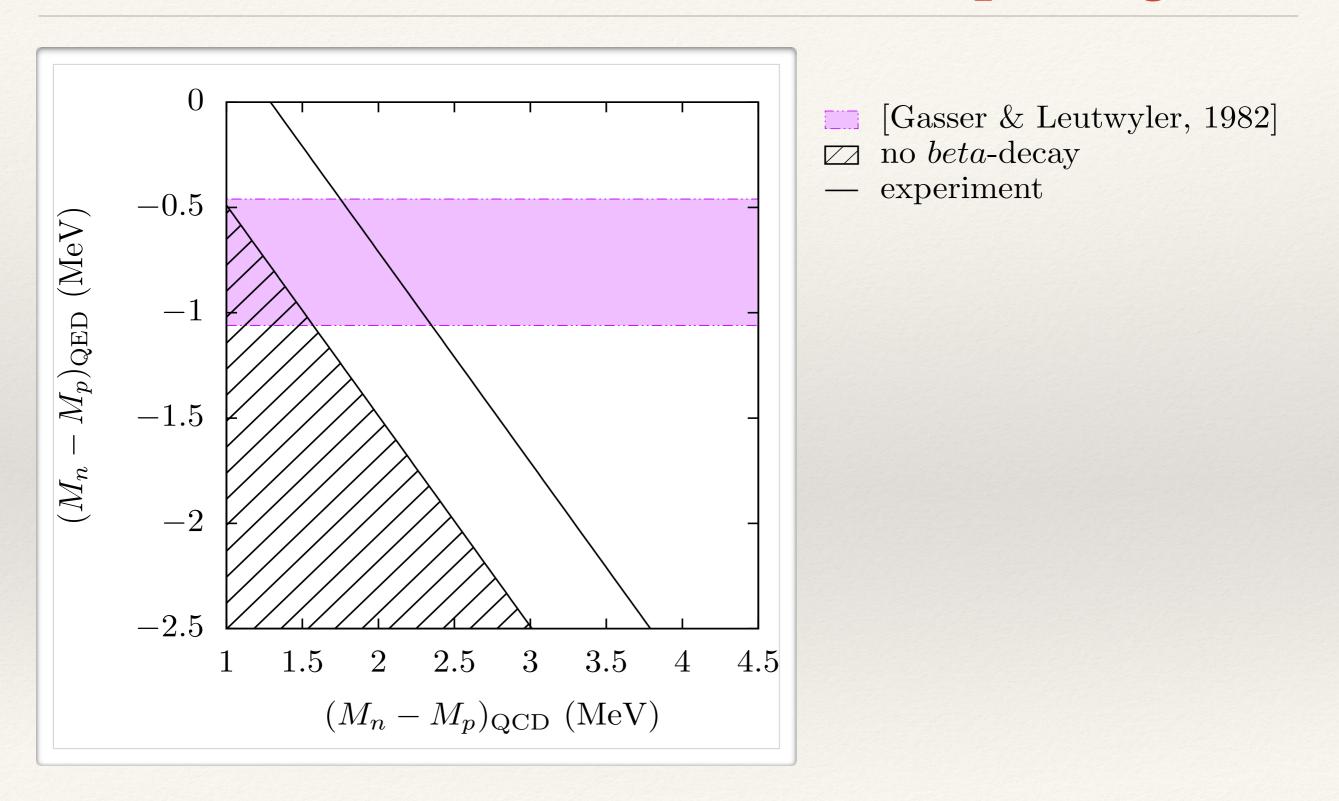


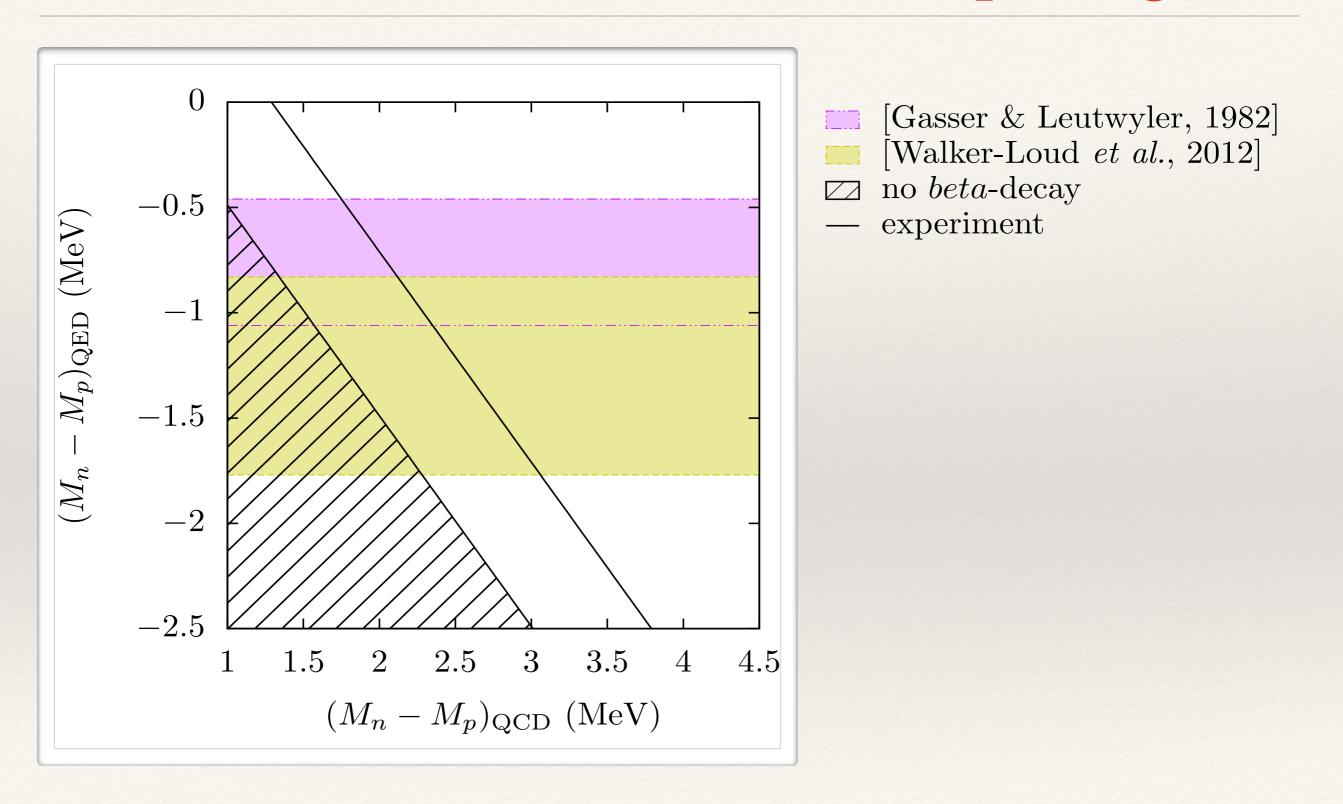
 $\Delta_{\rm CG} = \Delta M_N - \Delta M_\Sigma + \Delta M_\Xi$ (Coleman-Glashow relation)

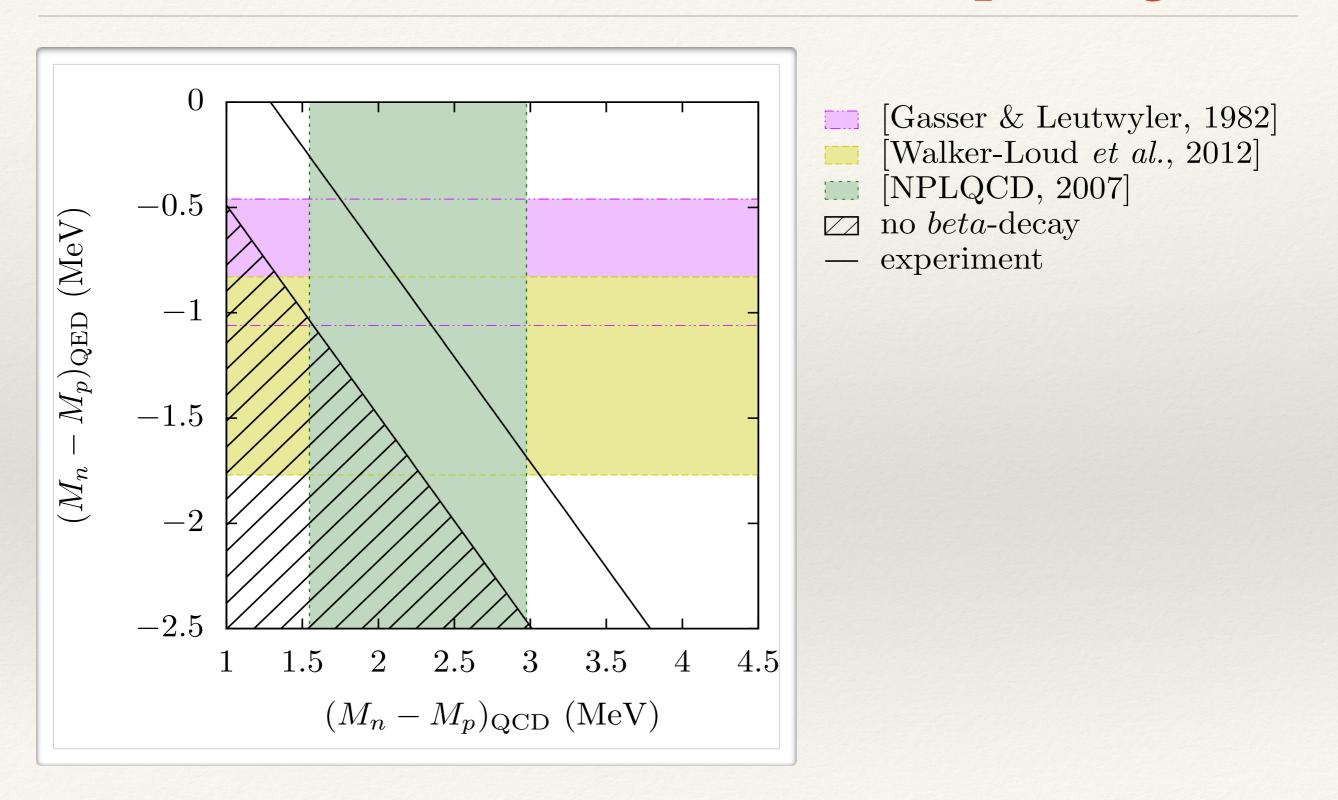
[BMWc, 2015a]: result summary

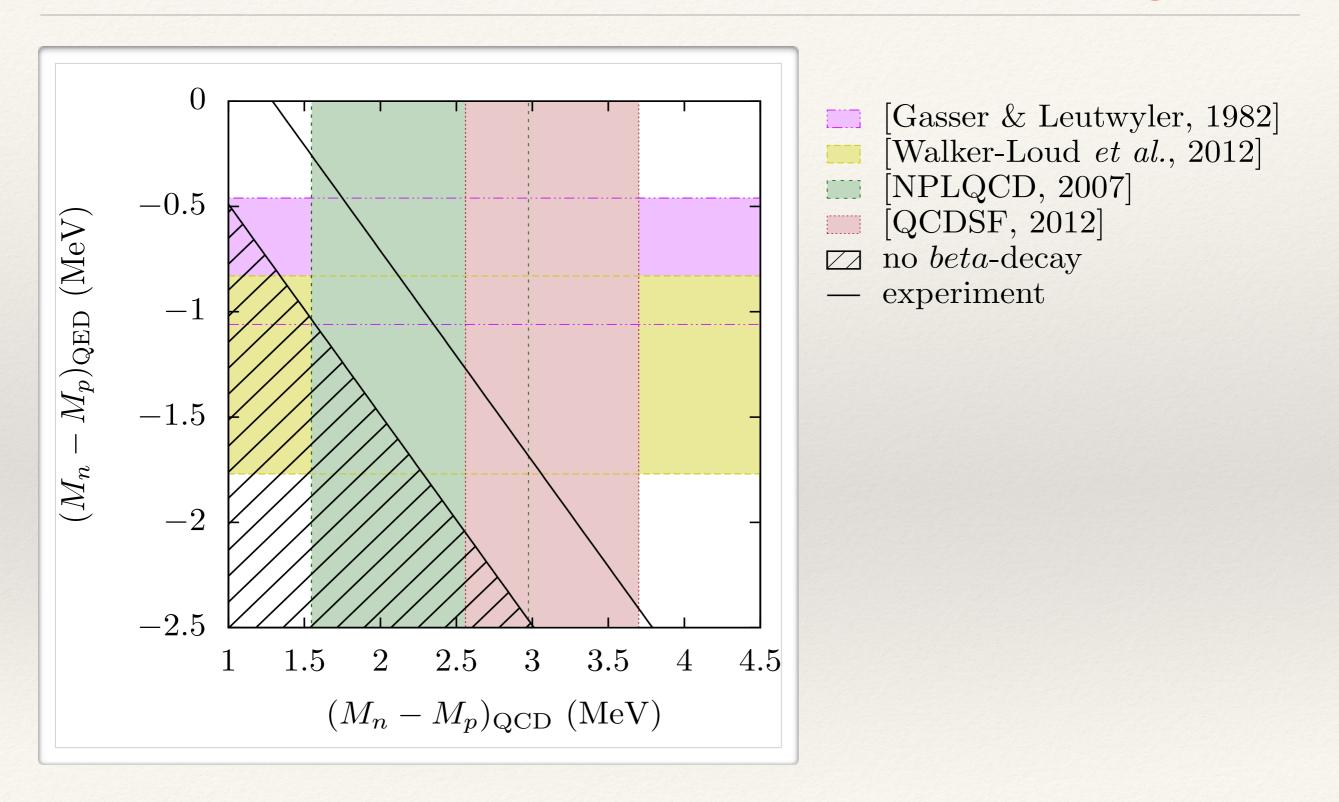


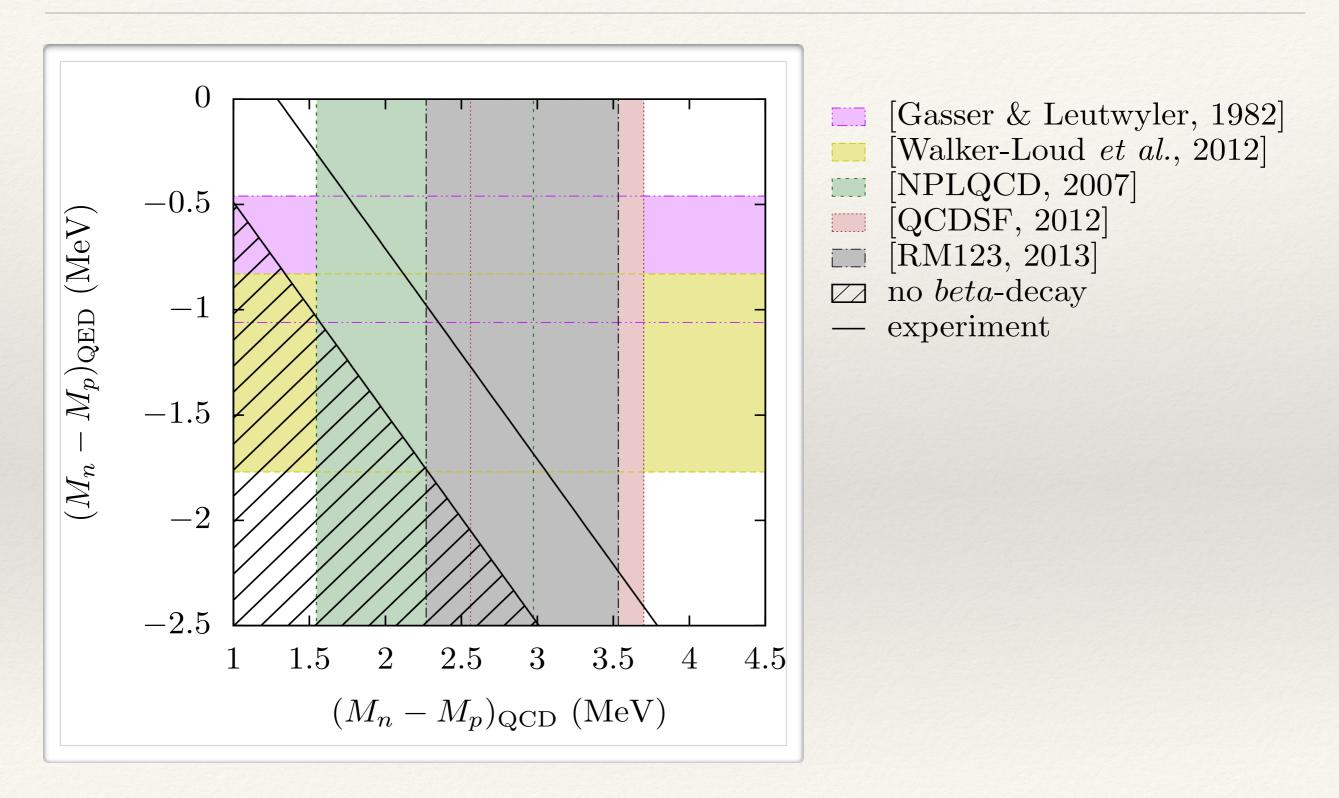
 $\Delta_{\rm CG} = \Delta M_N - \Delta M_\Sigma + \Delta M_\Xi$ (Coleman-Glashow relation)

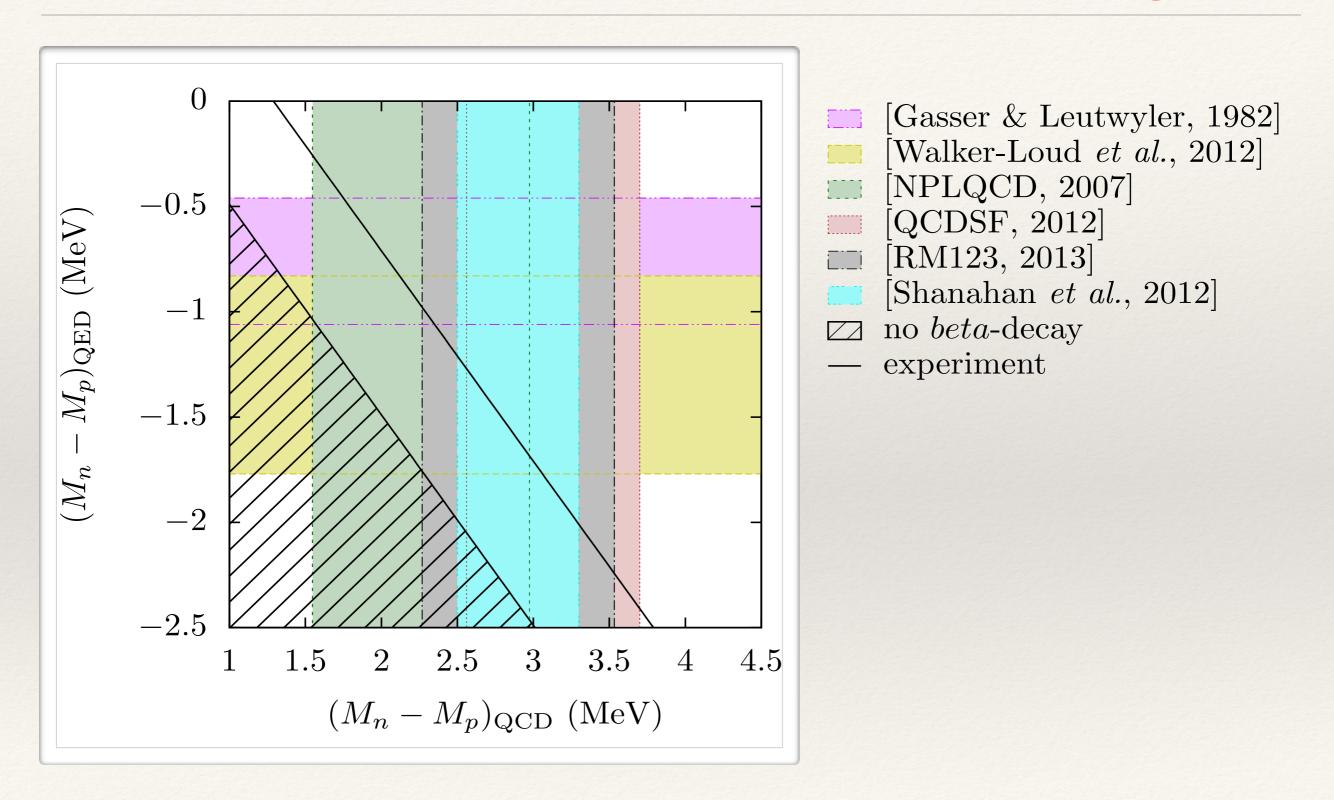


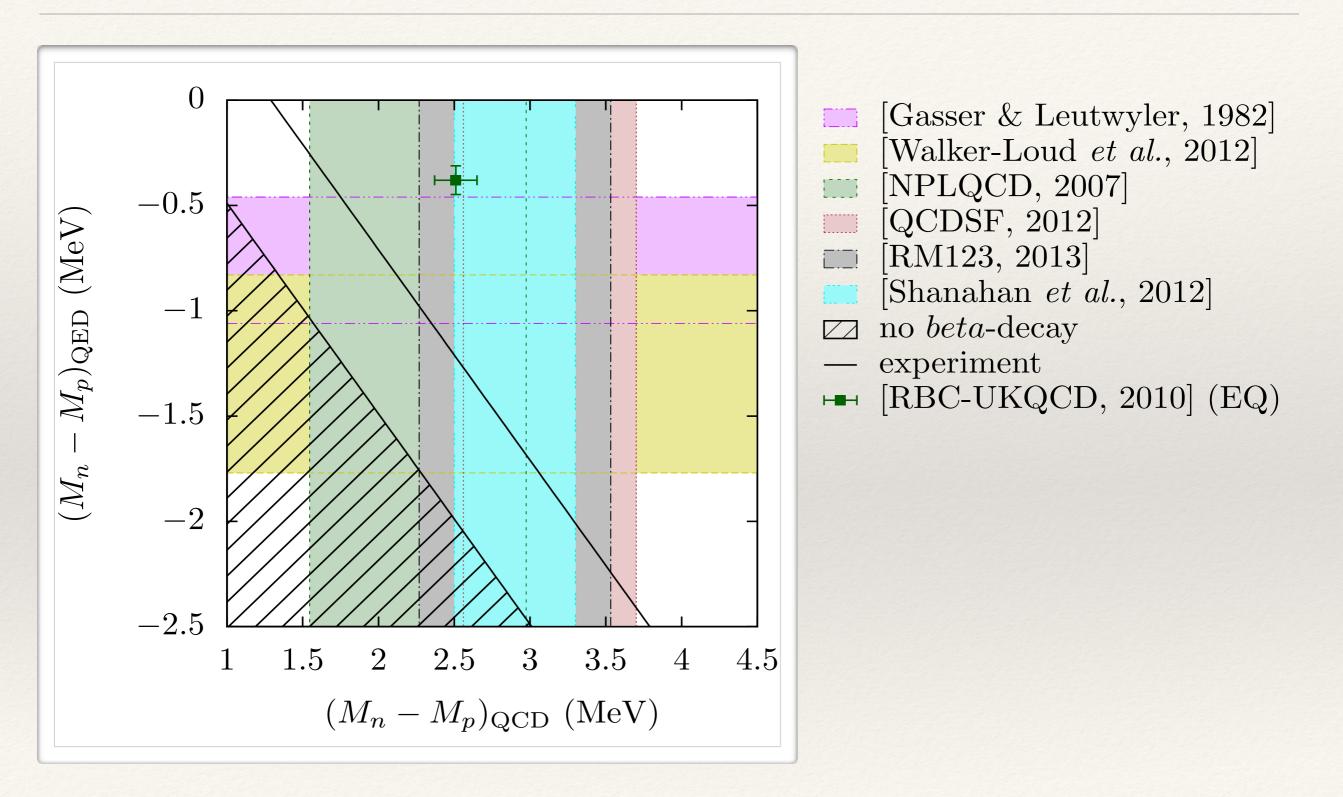


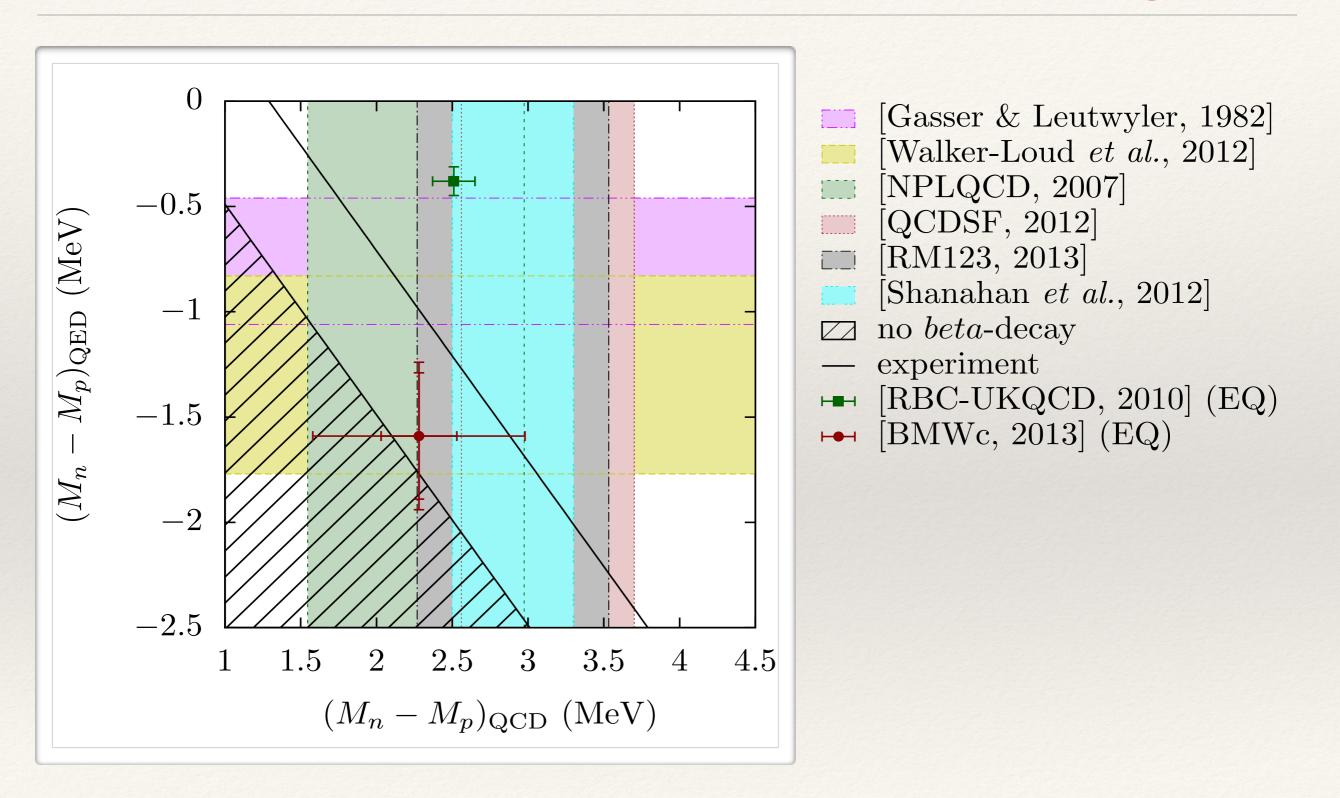


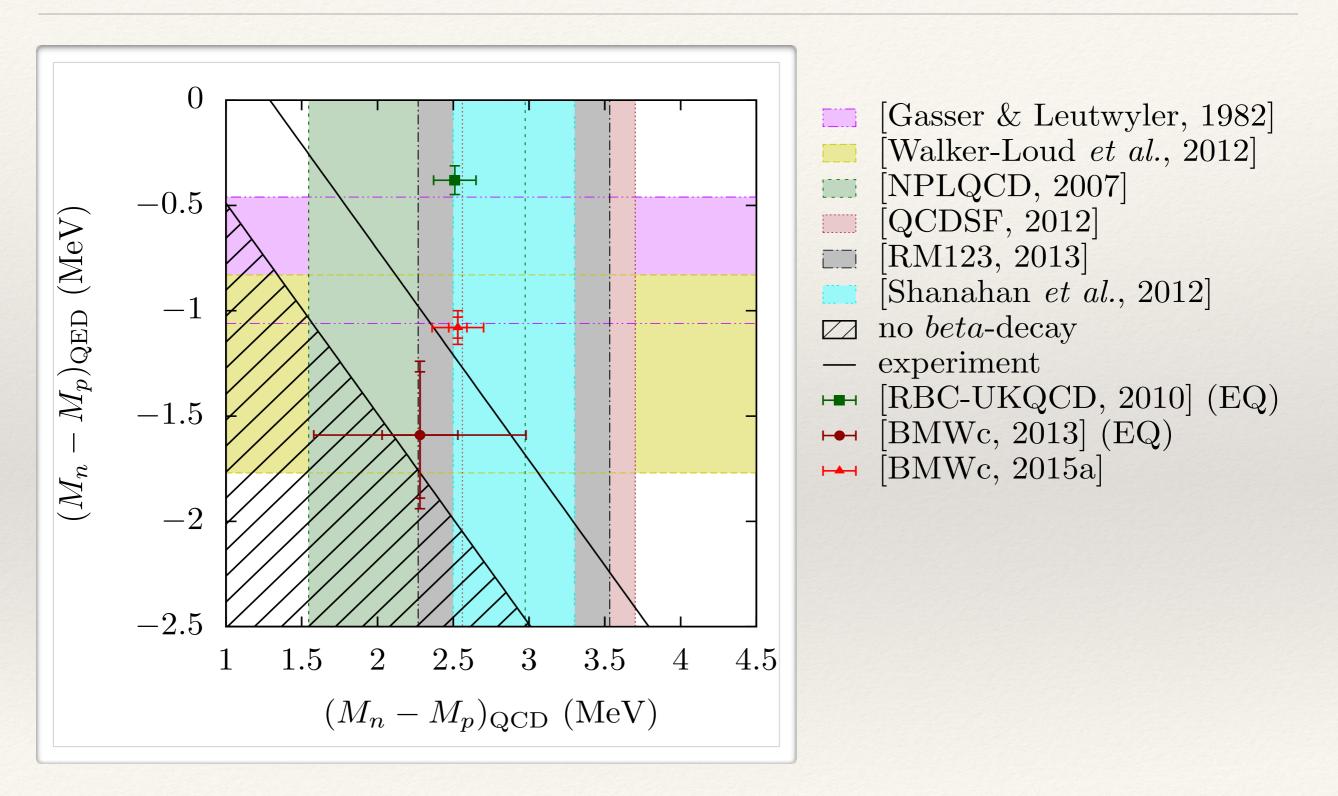


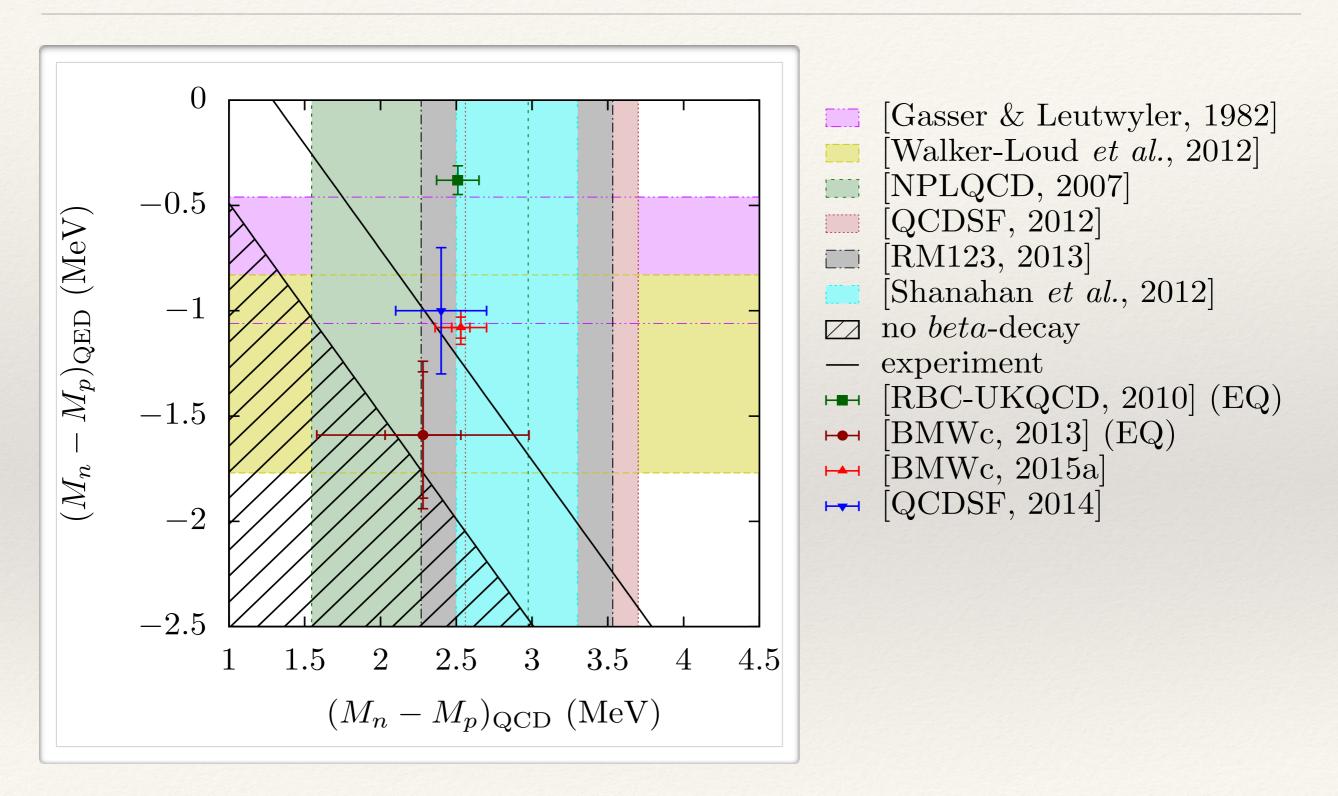












Summary & outlook

We now have a good understanding of QCD+QED on a finite lattice

- We now have a good understanding of QCD+QED on a finite lattice
- * Finite-size effects on masses are now well controlled

- We now have a good understanding of QCD+QED on a finite lattice
- * Finite-size effects on masses are now well controlled
- * [BMWc, 2015a]: full simulations of the low-energy SM with a potential precision of $O[(N_c m_b^2)^{-1}, \alpha^2] \sim 10^{-4}$

- We now have a good understanding of QCD+QED on a finite lattice
- * Finite-size effects on masses are now well controlled
- * [BMWc, 2015a]: full simulations of the low-energy SM with a potential precision of $O[(N_c m_b^2)^{-1}, \alpha^2] \sim 10^{-4}$
- The isospin splittings in the hadron spectrum are determined with a high accuracy and full control of uncertainties

- We now have a good understanding of QCD+QED on a finite lattice
- * Finite-size effects on masses are now well controlled
- * [BMWc, 2015a]: full simulations of the low-energy SM with a potential precision of $O[(N_c m_b^2)^{-1}, \alpha^2] \sim 10^{-4}$
- The isospin splittings in the hadron spectrum are determined with a high accuracy and full control of uncertainties
- * The nucleon mass splitting is determined as a $> 5\sigma$ effect

 Unquenched computations of the light quark masses and Dashen's theorem corrections

- Unquenched computations of the light quark masses and Dashen's theorem corrections
- QCD+QED decay constants are gauge variant and IR divergent. How to deal with that?
 First lattice attempt: [plenary talk by V. Lubicz]

- Unquenched computations of the light quark masses and Dashen's theorem corrections
- QCD+QED decay constants are gauge variant and IR divergent. How to deal with that?
 First lattice attempt: [plenary talk by V. Lubicz]
- * Compute corrections to matrix elements $(K_{\ell 3}, K \rightarrow \pi \pi,...)$

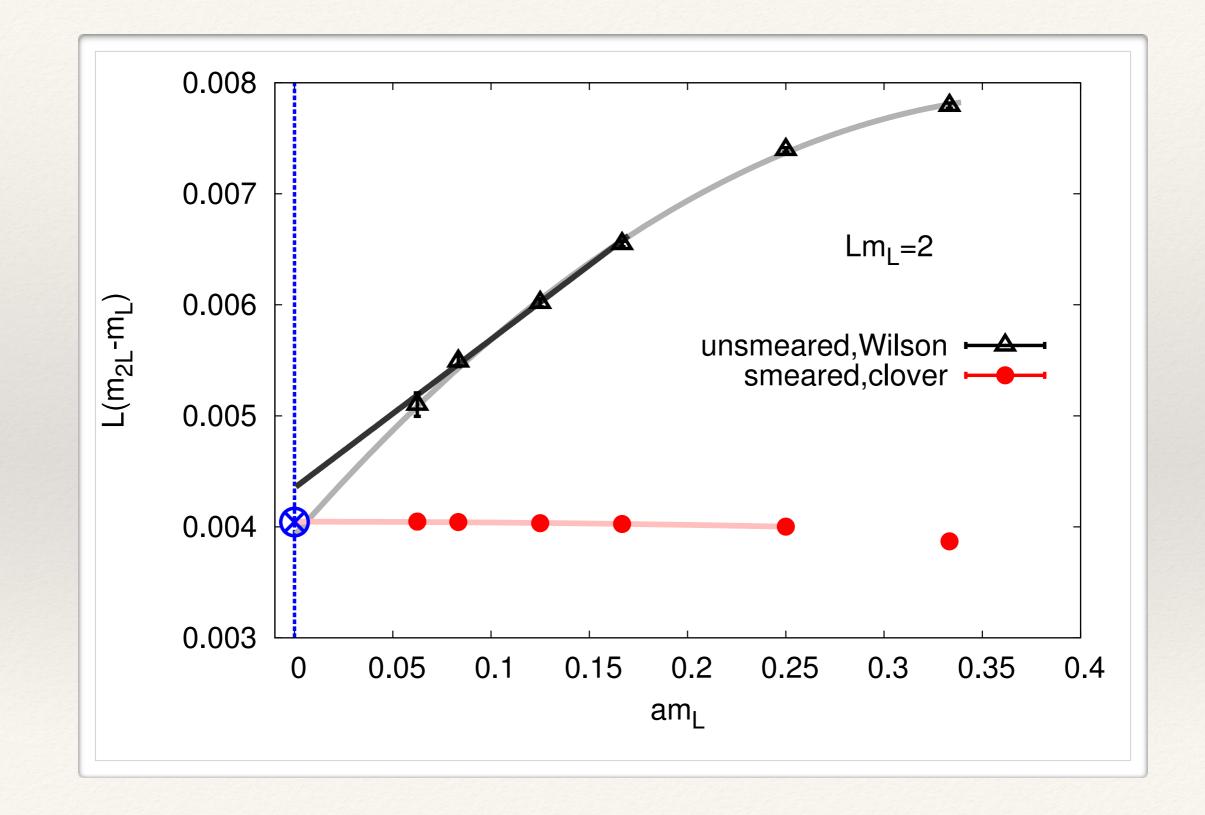
- Unquenched computations of the light quark masses and Dashen's theorem corrections
- QCD+QED decay constants are gauge variant and IR divergent. How to deal with that?
 First lattice attempt: [plenary talk by V. Lubicz]
- * Compute corrections to matrix elements $(K_{\ell 3}, K \rightarrow \pi \pi,...)$
- QCD+QED to compute hadronic corrections to anomalous magnetic moments.

Thank you!

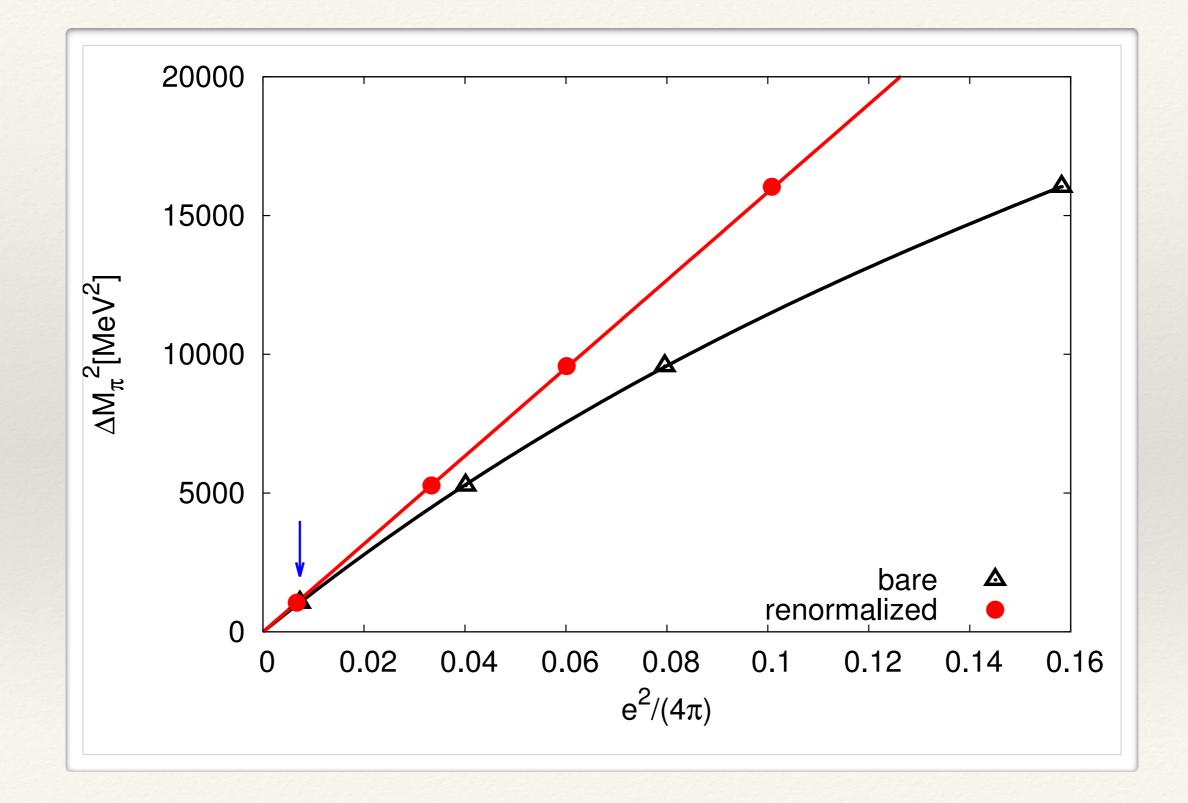
Full QCD + QED projects

	RBC-UKQCD	PACS-CS	QCDSF-UKQCD	BMWc
arXiv	1006.1311	1205.2961	1311.4554 and Lat. 2014	1406.4088
fermions	DWF	clover	clover	clover
N_{f}	2+1	1+1+1	1+1+1	1+1+1+1
method	reweighting	reweighting	RHMC	RHMC
$\min(M_{\pi})$ (MeV)	420	135	250	195
<i>a</i> (fm)	0.11	0.09	0.08	0.06 — 0.10
# <i>a</i>	1	1	1	4
L (fm)	1.8	2.9	1.9 — 2.6	2.1 — 8.3
#L	1	1	2	11

[BMWc, 2015a]: QED simulations



[BMWc, 2015a]: charge renormalisation



[BMWc, 2015a]: charm discretisation effects

