Roma2, Roma1, LNGS, IHEP/Beijing

+ by-products and small scale expts.: INR-Nev and others (as NIIC+ITEP-Moscow+ JSC NeoChem) + some studies on $\beta\beta$ decays (DST-MAE, inter-univ. Agreem.):IIT Kharagpur/Ropar, India

- Many new ideas and detectors developed/under-development
- Many different low bckg set-ups and measurements done/in progress/foreseen
- since last DAMA presentation in open session on October 2013 •
 - ✓ Cumulatively ≈ 30 papers published on international reviews or on conference proceedings
 ✓ 30 talks at conferences and seminars all over the world
 ✓ Master degrees, PhD and Master of Science theses on the various activities
- ANVUR VQR 2004-2010 results in 2014: 24/27 full-rank products; total score 25.6/27
- All engagements with INFN always fully respected without delays •

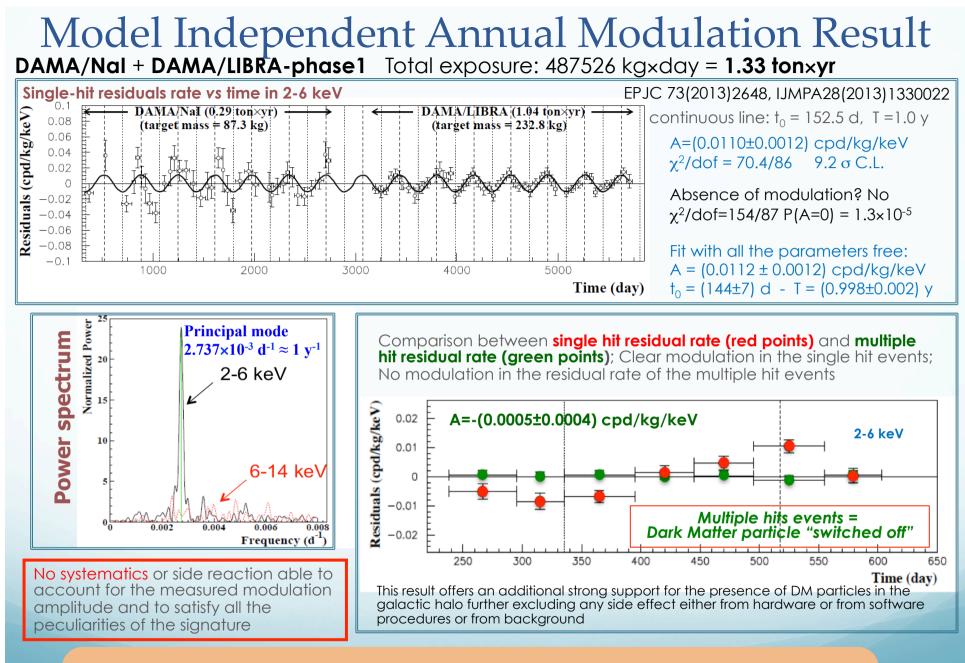
DAMA/CRYS DAMA/R&D DAMA/LXe>

DAMA/NaI

DAMA/LIBRA

low bckg DAMA/Ge for sampling meas.

April 29, 2015

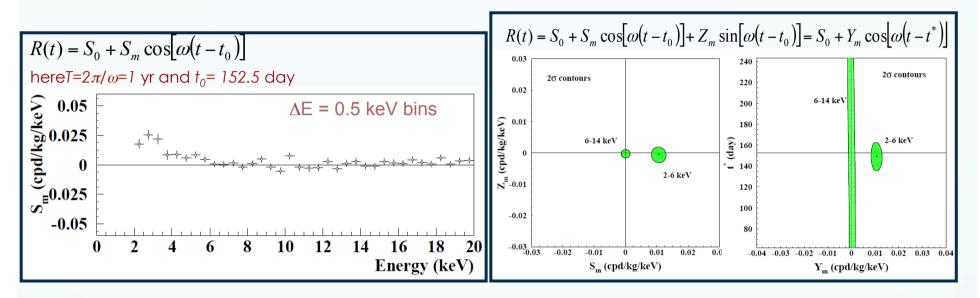


 Radiopurity, performances, procedures, etc.: NIMA592(2008)297, JINST 7 (2012) 03009
 Results on DM particles: Ann. Mod. Signature: EPJC56(2008)333, EPJC67(2010)39, EPJC73(2013)2648
 related results: PRD84(2011)055014, EPJC72(2012)2064, IJMPA28(2013)1330022, EPJC74(2014)2827, EPJC74(2014)3196
 Results on rare processes: PEP violation in Na, I: EPJC62(2009)327, CNC in I: EPJC72(2012)1920 IPP in ²⁴¹Am: EPJA49(2013)64

DAMA/LIBRA:

Main activities in the period Oct. 2013 - April 2015

- 1) The final model indipendent results for a total exposure of 1.04 ton×yr collected by DAMA/LIBRA-phase1 in 7 annual cycles (further 0.17 ton×yr) published;
- 2) Some new electronic modules developed;
- 3) Some review papers published;
- 4) The results obtained in the search of possible diurnal effects in the low energy single-hit data of DAMA/LIBRA-phase1 published;
- 5) A work further demonstrating that neutrons, muons and solar neutrinos do not play any significant role in the DAMA DM annual modulation effect;
- 6) DAMA/LIBRA-phase2 in data taking in the new configuration with lower energy threshold;
- 7) Investigations on corollary analyses, other DM features, second order effects, and many other rare processes with higher sensitivities progressed and some papers prepared

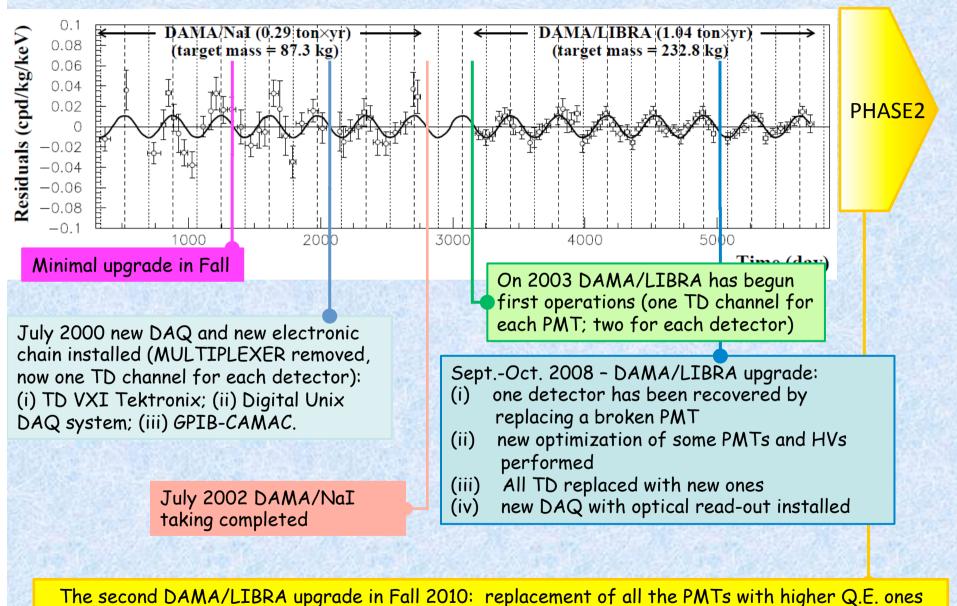


The data favor the presence of a modulated behaviour with all the proper features for DM particles in the galactic halo at about 9.2σ C.L.

Model Independent Annual Modulation Result

DAMA/Nal + DAMA/LIBRA-phase1 Total exposure: 487526 kg×day = 1.33 ton×yr

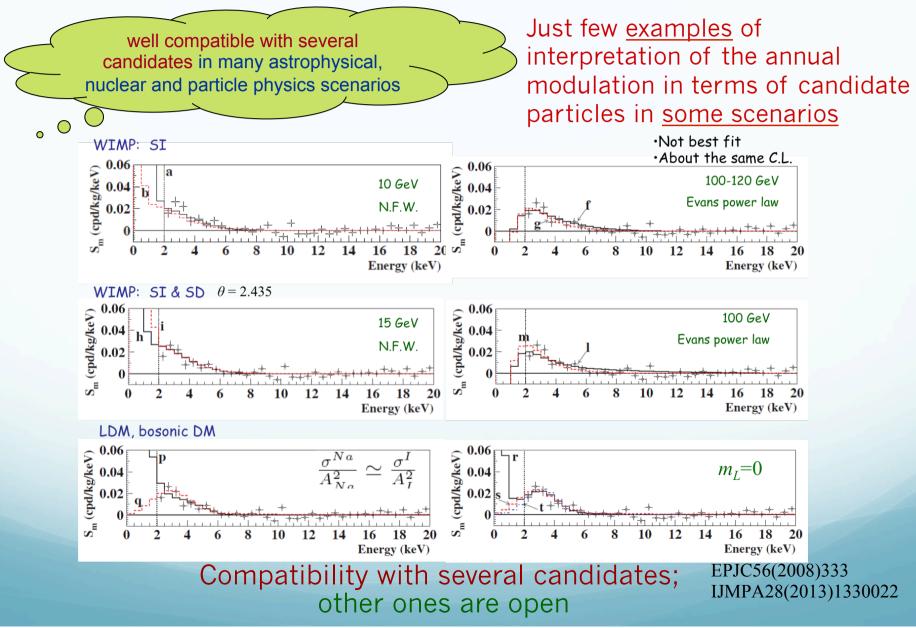
EPJC 73(2013)2648, IJMPA28(2013)1330022


- No modulation above 6 keV
- No modulation in the whole energy spectrum
- No modulation in the 2-6 keV multiple-hit events

Running conditions stable at a level better than 1%

No systematics or side processes able to quantitatively account for the measured modulation amplitude and to simultaneously satisfy the many peculiarities of the signature are available.

- Compatibility with many low and high mass DM candidates, interaction types and astrophysical scenarios, and in particular with recent positive model dependent hints from direct or indirect searches
- ✓ No other experiment exists whose result can be at least in principle directly compared in a model-independent way with those by DAMA/Nal & DAMA/LIBRA-phase1


DAMA/NaI & DAMA/LIBRA main upgrades and improvements

(+ new preamplifiers in fall 2012 & other developments in progress)

DAMA/LIBRA-phase2 in data taking

Model-independent evidence by DAMA/Nal and DAMA/LIBRA

Contributions to the total neutron flux at LNGS;
 Counting rate in DAMA/LIBRA for single-hit
 events, in the (2 - 6) keV energy region induced by:

$$\Rightarrow \Phi_k = \Phi_{0,k} \left(1 + \eta_k \cos\omega \left(t - t_k \right) \right)$$
$$\Rightarrow R_k = R_{0,k} \left(1 + \eta_k \cos\omega \left(t - t_k \right) \right)$$

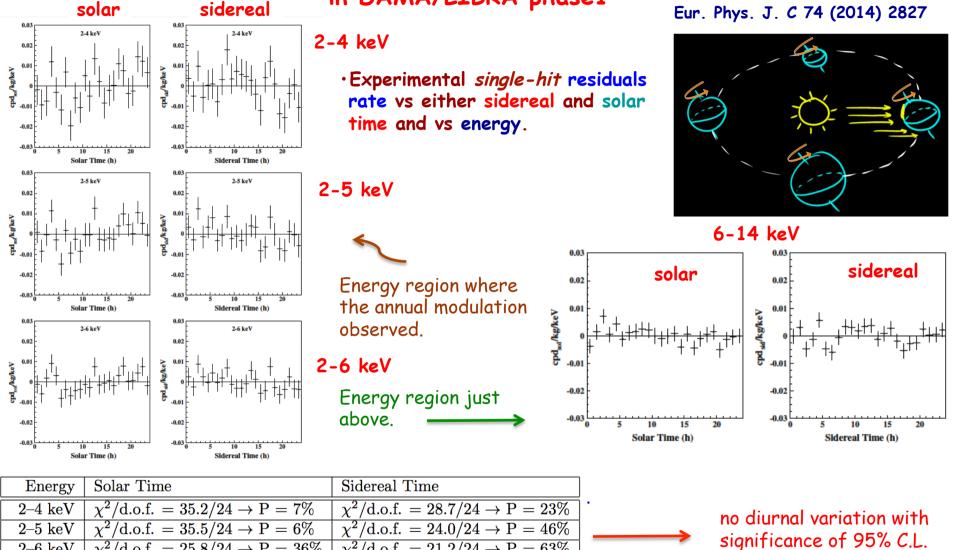
- \succ neutrons,
- \succ muons,

(See e.g. also EPJC 56 (2008) 333, EPJC 72 (2012) 2064, IJMPA 28 (2013) 1330022)

FP.TC74(2014)3196

solar neutrinos.

					/0 - / 0		ipintades	
	Source	$\Phi_{0,k}^{(n)}$ (neutrons cm ⁻² s ⁻¹)	η_k	t_k	$R_{0,k}$ (cpd/kg/keV)		$A_k = R_{0,k}\eta_k$ (cpd/kg/keV)	A_k/S_m^{exp}
SLOW	thermal n $(10^{-2} - 10^{-1} \text{ eV})$	1.08×10^{-6} [15]	$\simeq 0$ however $\ll 0.1$ [2, [2, 8]	-	< 8 × 10 ⁻⁶	[2, 7, 8]	≪ 8 × 10 ⁻⁷	≪ 7 × 10 ^{−5}
neutrons	epithermal n (eV-keV)	2×10^{-6} [15]	≃0 however ≪ 0.1 [2, [7, 8]	-	$< 3 imes 10^{-3}$	[2, 77, 18]	$\ll 3\times 10^{-4}$	≪ 0.03
	fission, $(\alpha, n) \rightarrow n$ (1-10 MeV)	$\simeq 0.9 \times 10^{-7}$ [17]	$\simeq 0$ however $\ll 0.1$ [2, [2, 8]	-	< 6 × 10 ⁻⁴	[2, 7, 8]	≪ 6 × 10 ⁻⁵	≪ 5 × 10 ⁻³
FAST	$\begin{array}{l} \mu \rightarrow {\rm n \ from \ rock} \\ (> 10 \ {\rm MeV}) \end{array}$	$\simeq 3 \times 10^{-9}$ (see text and ref. [12])	0.0129 [23]	end of June [23], [7], 8]	$\ll 7\times 10^{-4}$	(see text and [2, 12, 18])	$\ll 9 \times 10^{-6}$	$\ll 8 \times 10^{-4}$
activity is	$\mu \rightarrow {\rm n} ~{\rm from}~{\rm Pb}$ shield (> 10 MeV)	$\simeq 6 \times 10^{-9}$ (see footnote 3)	0.0129 223	end of June [23], [7], 8]	$\ll 1.4\times 10^{-3}$	(see text and footnote \underline{S})	$\ll 2\times 10^{-5}$	$\ll 1.6 \times 10^{-3}$
	$\nu \rightarrow n$ (few MeV)	$\simeq 3 \times 10^{-10}~({\rm see~text})$	0.03342 *	Jan. 4th *	$\ll 7\times 10^{-8}$	(see text)	$\ll 2\times 10^{-6}$	$\ll 2\times 10^{-4}$
	direct μ	$\Phi_0^{(\mu)} \simeq 20 \ \mu \ m^{-2} d^{-1}$ [20]	0.0129 23	end of June [23, 17, 18]	$\simeq 10^{-7}$	[2, 7, 8]	$\simeq 10^{-9}$	$\simeq 10^{-7}$
	direct v	$\Phi_0^{(\nu)} \simeq 6 imes 10^{10} \ \nu \ { m cm}^{-2} { m s}^{-1}$ [26]	0.03342 *	Jan. 4th •	$\simeq 10^{-8}$	31	$3 imes 10^{-7}$	3×10^{-5}


* The annual modulation of solar neutrino is due to the different Sun-Earth distance along the year; so the relative modulation amplitude is twice the eccentricity of the Earth orbit and the phase is given by the perihelion.

All the contributions are negligible w.r.t. the annual modulation amplitude observed by DAMA/LIBRA and they cannot contribute to the observed modulation amplitude.

+ In no case neutrons (of whatever origin) can mimic the DM annual modulation signature since some of the **peculiar requirements of the signature** would fail, such as the neutrons would induce e.g. variations in all the energy spectrum, variation in the multiple hit events,... which were not observed.

+ In no case muon or muons induced effects can mimic the signature (see e.g. EPJC 72 (2012) 2064)

Model independent result on possible diurnal effect in DAMA/LIBRA-phase1 sidereal

+ run test to verify the hypothesis that the positive and negative data points are randomly distributed: lower tail probabilities (in the four energy regions): 43, 18, 7, 26% for solar case and 54, 84, 78, 16% for sidereal case \rightarrow presence of any significant diurnal variation and of time structures can be excluded at the reached level of sensitivity

 χ^2 /d.o.f. = 21.2/24 \rightarrow P = 63%

 χ^2 /d.o.f. = 35.9/24 \rightarrow P = 6%

 $\chi^2/d.o.f. = 25.8/24 \rightarrow P = 36\%$

 χ^2 /d.o.f. = 25.5/24 \rightarrow P = 38%

2-6 keV

6-14 keV

A diurnal effect with the sidereal time is expected for DM because of Earth rotation

Velocity of the detector in the terrestrial laboratory:

Eur. Phys. J. C 74 (2014) 2827

$$\vec{v}_{lab}(t) = \vec{v}_{LSR} + \vec{v}_{\odot} + \vec{v}_{rev}(t) + \vec{v}_{rot}(t),$$

Since:

$$egin{aligned} |ec{v}_{s}| &= |ec{v}_{LSR} + ec{v}_{\odot}| pprox 232 \pm 50 \, \, \mathrm{km/s}, \ |ec{v}_{rev}(t)| &pprox 30 \, \, \mathrm{km/s}, \ |ec{v}_{rot}(t)| &pprox 0.34 \, \, \mathrm{km/s}. \end{aligned}$$

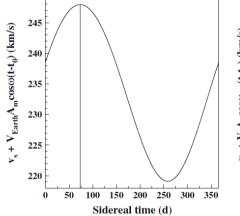
$$v_{lab}(t) \simeq v_s + \hat{v}_s \cdot \vec{v}_{rev}(t) + \hat{v}_s \cdot \vec{v}_{rot}(t)$$

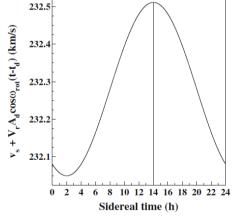
Annual modulation term:

$$\hat{v}_s \cdot \vec{v}_{rev}(t) = V_{Earth} B_m \cos(\omega(t-t_0))$$

- V_{Earth} is the orbital velocity of the Earth \approx 30 km/s • $B_m \approx$ 0.489
- • $t_0 \approx t_{equinox}$ + 73.25 days \approx June 2

Diurnal modulation term:


$$\hat{v}_s \cdot \vec{v}_{rot}(t) = V_r B_d \cos\left[\omega_{rot} \left(t - t_d\right)\right]$$


- V_r is the rotational velocity of the Earth at the given latitude (for LNGS \approx 0.3435 km/s)
- • $B_d \approx 0.671$

•
$$t_d \approx 14.02 \ h \ (at \ LNGS)$$

 \vec{v}_{LSR} velocity of the Local Standard of Rest (LSR) due to the rotation of the Galaxy

- \vec{v}_{\odot} Sun peculiar velocity with respect to LSR
- $\vec{v}_{rev}(t)$ velocity of the revolution of the Earth around the Sun
- $\vec{v}_{rot}(t)$ velocity of the rotation of the Earth around its axis at the latitude and longitude of the laboratory.

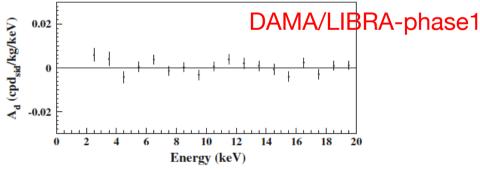
Velocity of the Earth in the galactic frame as a function of the sidereal time, with starting point March 21 (around spring equinox). The contribution of diurnal rotation has been dropped off. The maximum of the velocity (vertical line) is about 73 days after the spring equinox.

Sum of the Sun velocity in the galactic frame (v) and of the rotation velocity of a detector at LNGS ($\mathbf{v} \cdot \mathbf{v}$ (t)) as a function of the sidereal time. The maximum of the velocity is about at 14 h (vertical line).

The time dependence of the counting rate

Expected signal counting rate in a given k-th energy bin:

Eur. Phys. J. C 74 (2014) 2827


$$S_k \left[v_{lab}(t) \right] \simeq S_k \left[v_s \right] + \left[\frac{\partial S_k}{\partial v_{lab}} \right]_{v_s} \left[V_{Earth} B_m \cos \omega (t - t_0) + V_r B_d \cos \omega_{rot} \left(t - t_d \right) \right]$$

The ratio R_{dy} of the diurnal over annual \cdot Annual modulation amplitude: $S_m = \left\lfloor \frac{\partial S_k}{\partial v_{lab}} \right\rfloor_{v_s} V_{Earth} B_{ms}$ modulation amplitudes is a model \cdot Diurnal modulation amplitude $S_d = \left\lfloor \frac{\partial S_k}{\partial v_{lab}} \right\rfloor_{v_s} V_r B_d$

$$R_{dy} = rac{S_d}{S_m} = rac{V_r B_d}{V_{Earth} B_m} \simeq 0.016$$
 at LNGS latitude

• Observed annual modulation amplitude in DAMA/LIBRA-phase1 in the (2-6) keV energy interval: (0.0097 ± 0.0013) cpd/kg/keV \rightarrow thus, the expected value of the diurnal modulation amplitude is $(=1.5 \times 10^{-4} \text{ cpd/kg/keV})$

• When fitting the single-hit residuals with a cosine function with amplitude A_d as free parameter, period fixed at 24 h and phase at 14 h: all the diurnal modulation amplitudes are compatible with zero.

 A_d values compatible with zero, having random fluctuations around zero with $\chi^2/d.o.f$ = 19.5/18

Energy	$A_d^{exp}~{ m (cpd/kg/keV)}$	$\chi^2/{ m d.o.f.}$	Р
2-4 keV	$(2.0 \pm 2.1) \times 10^{-3}$	27.8/23	22%
2-5 keV	$-(1.4 \pm 1.6) \times 10^{-3}$	23.2/23	45%
2-6 keV	$(1.0 \pm 1.3) \times 10^{-3}$	20.6/23	61%
6-14 keV	$(5.0 \pm 7.5) \times 10^{-4}$	35.4/23	5%

$A_d < 1.2 \times 10^{-3} \text{ cpd/kg/keV (90%CL)}$

Present experimental sensitivity not yet suitable to explore the expected diurnal modulation amplitude derived from the DAMA/LIBRA-phase1 observed annual modulation effect

adequate sensitivity = larger exposure with DAMA/LIBRA-phase2 which - having a lower software energy threshold - also offers an additional alternative possibility to increase sensitivity to such an effect

Two other analyses on:

Investigation of Earth Shadow Effect with DAMA/LIBRA-phase1
 DAMA annual modulation effect and Asymmetric mirror matter

have been concluded and papers finalized.

They will be mentioned elsewhere

DAMA/LIBRA-phase2_3-annual-cycles

PRELIMINARY

	Period	Mass (kg)	Exposure (kg×day)	(α-β²)	
DAMA/LIBRA-ph2_1*	Jan. 2011– Sept. 2011	242.5	t.b.a.	-	*
DAMA/LIBRA-ph2_2	Nov. 2, 2011 – Sept. 11, 2012	242.5	62917	0.519	oj ta
DAMA/LIBRA-ph2_3	Oct. 8, 2012 – Sept. 2, 2013	242.5	60586	0.534	1 th
DAMA/LIBRA-ph2_4	Sept. 3, 2013 - Sept. 1, 2014	242.5	77307	0.488	P
DAMA/LIBRA-phase2_3-a.c.	Nov. 2, 2011 – Sept. 1, 2014	242.5	200810 (0.55 ton×yr)	0.512	no 20
DAMA/LIBRA-phase1	Sept. 9, 2003 – Sept. 8, 2010		379795 (1.04 ton×yr)	0.518	Se US
DAMA/NaI+DAMA/LIBRA-phas		1.88 ton×yr			

* Commissioning, optimizations and data taking mainly focused about 1 keV software energy threshold (JINST 7 (2012) P03009). This period has: i) no data before/near Dec. 2, 2010; ii) data sets with some set-up modifications. Not used for a.m. studies.

More than a ton \times yr experiment? done

- Calibrations 3 a.c.: $\approx 5.89 \times 10^7$ events from sources
- acceptance window eff. 3 a.c.: $\approx 4.1 \times 10^7$ events ($\approx 1.6 \times 10^6$ events/keV)
- ✓ Fall 2012: new preamplifiers installed + special trigger modules.
- ✓ Other new components in the electronic chain in development

... continuously running

Stability parameters of DAMA/LIBRA-phase2

Modulation amplitudes obtained by fitting the time behaviours of main running parameters, acquired with the production data, when including a DM-like modulation

Running conditions stable at a level better than 1% also in the new running periods

at IMAR

	DAMA/LIBRA- ph2_2	DAMA/LIBRA- ph2_3	DAMA/LIBRA- ph2_4
Temperature (°C)	(0.0012 ± 0.0051)	$-(0.0002 \pm 0.0049)$	(0.0017± 0.0044)
Flux N ₂ (l/h)	$-(0.15 \pm 0.18)$	$-(0.02 \pm 0.22)$	-(0.02± 0.22)
Pressure (mbar)	$(1.1 \pm 0.9) \times 10^{-3}$	$(0.02 \pm 0.11)) \times 10^{-2}$	$-(0.9 \pm 1.0) \times 10^{-3}$
Radon (Bq/m ³)	(0.015 ± 0.034)	$-(0.002 \pm 0.050)$	-(0.009± 0.028)
Hardware rate above single ph.e. (Hz)	$-(0.12 \pm 0.16) \times 10^{-2}$	$(0.00 \pm 0.12) \times 10^{-2}$	$(0.09 \pm 0.12) \times 10^{-2}$

All the measured amplitudes well compatible with zero + none can account for the observed effect (to mimic such signature, spurious effects and side reactions must not only be able to account for the whole observed modulation amplitude, but also simultaneously satisfy all the 6 requirements)

DM annual modulation signature

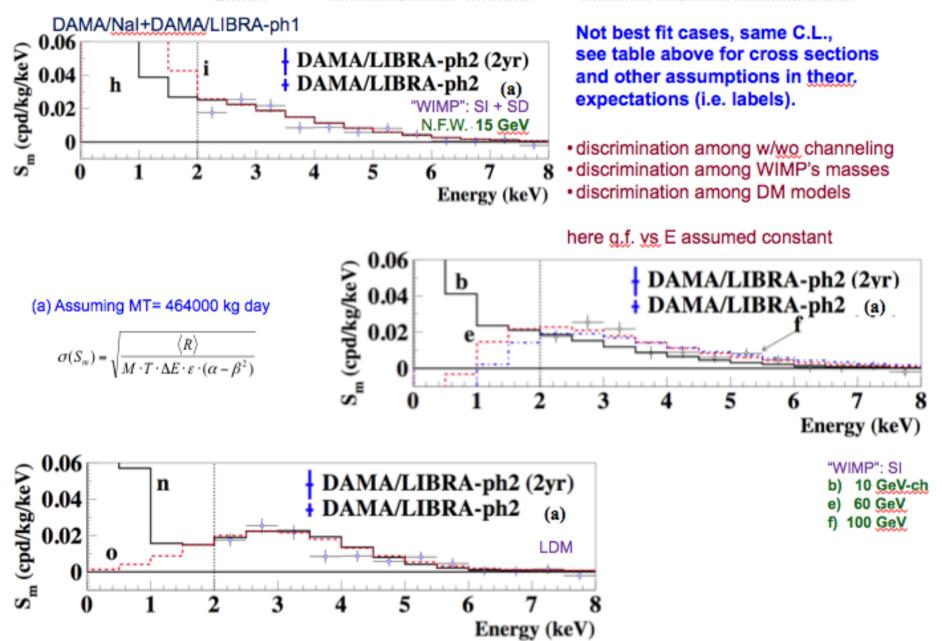
The sensitivity of the DM annual modulation signature depends - apart from the counting rate - on the product

 $\varepsilon \times \Delta E \times M \times T \times (\alpha - \beta^2)$

increased in DAMA/LIBRA-phase2

<u>&</u>:

increased with DAMA/LIBRA-phase2


increased in DAMA/LIBRA-phase2

 \rightarrow Upgrade at fall 2010 & running time also equivalent to have enlarged the exposed mass

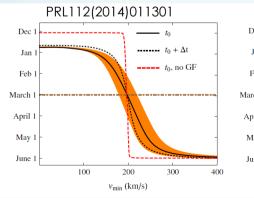
&: DM annual modulation signature acts itself as a strong bckg reduction strategy as already pointed out in the original paper by Freese et al.

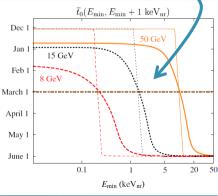
No systematic or side process able to simultaneously satisfy all the many peculiarities of the signature and to account for the whole measured modulation amplitude is available

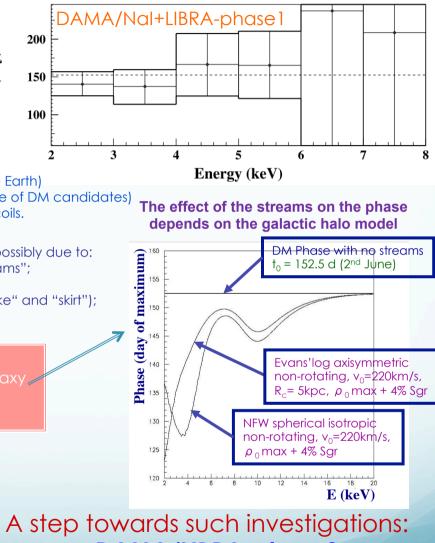
Just few examples about the discrimination power of DAMA/LIBRA-phase2_2-annual cycles under some given set of astrophysical, nuclear and particle physics assumptions

The second orders effects to be investigated by DAMA/LIBRA-phase2

t^{*} (day)


The importance of studying second order effects and the annual modulation phase

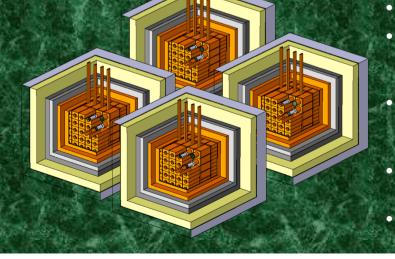

High exposure and lower energy threshold can allow further investigation on:


- the nature of the DM candidates
 - ✓ to disentangle among the different astrophysical, nuclear and particle physics models (nature of the candidate, couplings, inelastic interaction, form factors, spin-factors ...)
 - \checkmark scaling laws and cross sections
 - ✓ multi-component DM particles halo?
- possible diurnal effects on the sidereal time
 - ✓ expected in case of high cross section DM candidates (shadow of the Earth)
 - ✓ due to the Earth rotation velocity contribution (it holds for a wide range of DM candidates)
 - \checkmark due to the channeling in case of DM candidates inducing nuclear recoils.
- astrophysical models
 - ✓ velocity and position distribution of DM particles in the galactic halo, possibly due to:
 - satellite galaxies (as Sagittarius and Canis Major Dwarves) tidal "streams";
 - caustics in the halo;
 - gravitational focusing effect of the Sun enhancing the DM flow ("spike" and "skirt");
 - possible structures as clumpiness with small scale size
 - Effects of gravitational focusing of the Sun

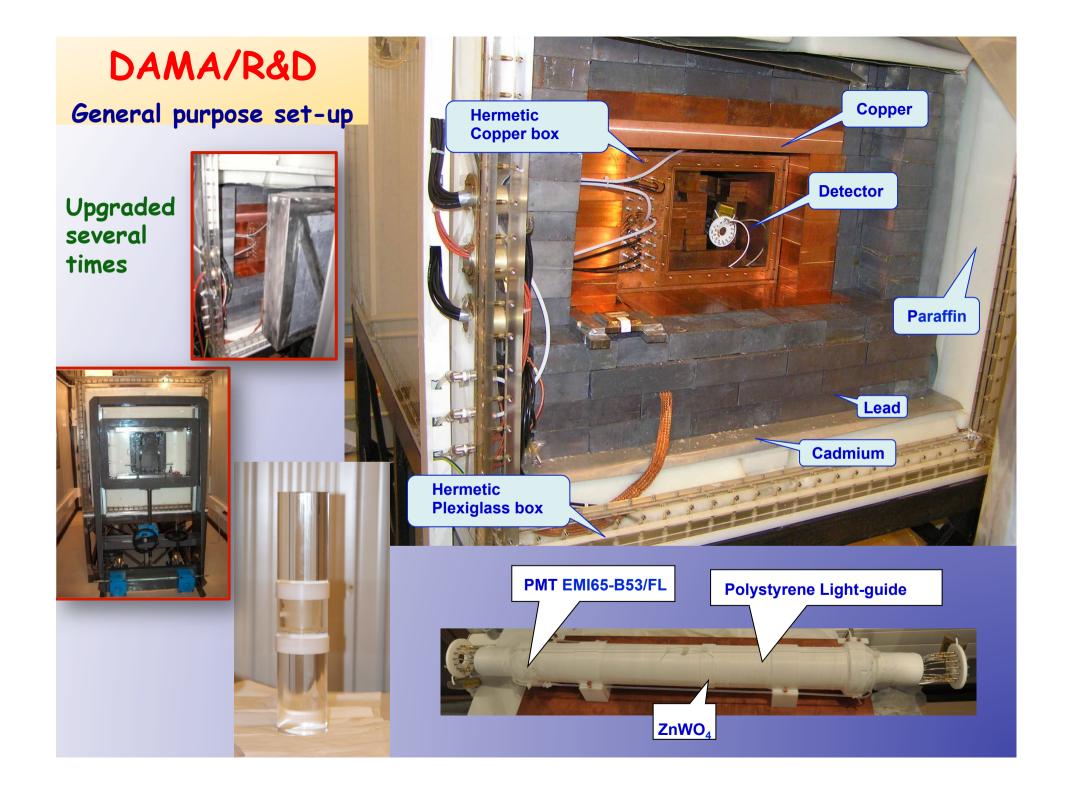
The annual modulation phase depends on

- Presence of streams (as SagDEG and Canis Major) in the Galaxy.
- Presence of caustics
- Effects of gravitational focusing of the Sun

→DAMA/LIBRA-phase2 with lower energy threshold and larger exposure


Starting studies towards an interesting phase-3...

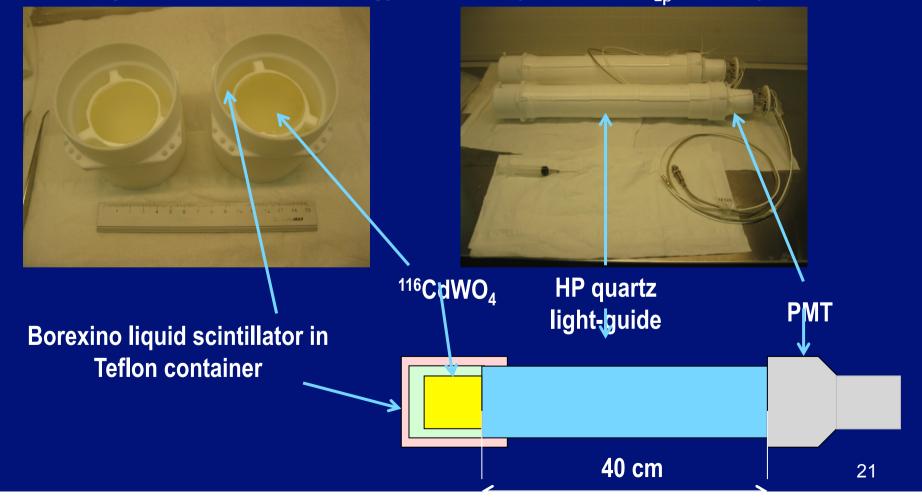
The strong interest in the low energy range suggest the possibility of a new development of high Q.E. PMTs with increased radiopurity to directly couple them to the DAMA/LIBRA crystals, removing the special quartz light guides which act also as otical window obtaining an ultimate number of ph.e./keV.


. and multi-purpose full sensitive mass DAMA/1ton

- 1) Proposed since 1996 (DAMA/NaI and DAMA/LIBRA intermediate steps)
- 2) Technology largely at hand and still room for further improvements in the low-background characteristics of the setup (NaI(TI) crystals, PMTs, shields, etc.)
- 3) 1 ton detector: the cheapest, the highest duty cycle, the clear signature, fast realization in few years, full sensitive mass, ...

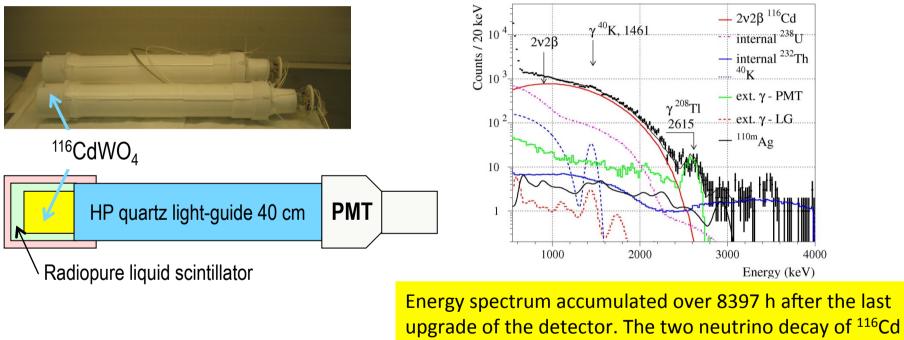
Design: DAMA/1 ton can be realized by adding 3 replicas of DAMA/LIBRA:

- the detectors of similar size than those already used
- the features of low-radioactivity of the set-up and of all the used materials would be assured by many years of experience in the field
- electronic chain and controls would profit by the previous experience and by the use of compact devices already developped, tested and used.
- new digitizers will offer high expandibility and high performances
- the daq can be a replica of that of DAMA/LIBRA
 Some R&Ds carried out


DAMA/R&D - in this period:

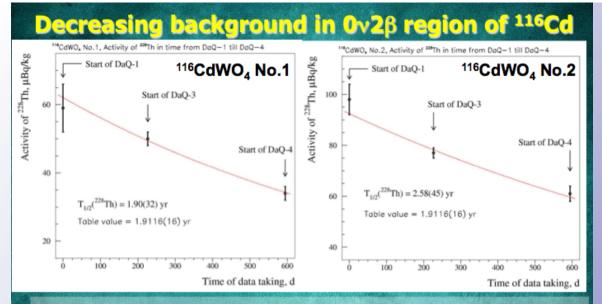
- 1) The experiment with $CdWO_4$ crystal scintillators enriched at 82% in ¹¹⁶Cd in progress.
- 2) A paper on the production strategies and on features reached by enriched $CdWO_4$ in Cd isotopes and on some future perspective has been presented at conference and published. Future strategies to develop radiopurer scintillators are in progress.
- 3) Further study of the highly forbidden ^{113m}Cd beta decay prepared.
- 4)Results obtained with a BaF₂ scintillator to search for the $\beta\beta$ decay of Ba isotopes and on precision measurement of the T_{1/2} of some radionuclide of the U and Th families published.
- 5) The work towards the future installation of ¹¹⁶CdWO₄ detectors in the low-background GeMulti set-up started.
- 6)Investigation of radioactive elements segregation in crystals to develop ultra-radio-pure scintillators for rare events searches in progress.
- 7) The paper on the search for super-heavy eka-tungsten with ZnWO₄ and BGO crystal scintillators in press.
- 8) At the end of the ¹¹⁶CdWO₄ measurements, new measurements are foreseen. Among them: developments on new SrI₂(Eu) crystals, on new enriched CdWO₄ depleted in ¹¹³Cd, on highly radio-pure ZnWO₄...

AURORA experiment in DAMA/R&D with ¹¹⁶CdWO₄


Last upgrade:

The number of PMTs (the most contaminated part of the set-up) was reduced twice practically without lost of the energy resolution (~5% at the $Q_{2\beta}$ of ¹¹⁶Cd)

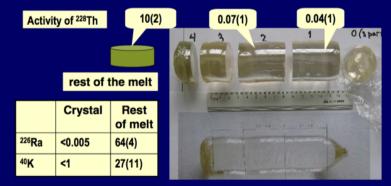
AURORA: Investigation of double β decay of ^{116}Cd


Experiment is going with two radiopure high quality ¹¹⁶CdWO₄ (1.176 kg) enriched in ¹¹⁶Cd to 82%. After a few improvement of the set-up the FWHM (at $Q_{2\beta}$ of ¹¹⁶Cd) = 5.2%, background in the ROI ≈ 0.1 cnt/(keV yr kg) (we have 17656 h of data with the background level).

with the half-life $\approx 2.6 \times 10^{19}$ y dominates in the background

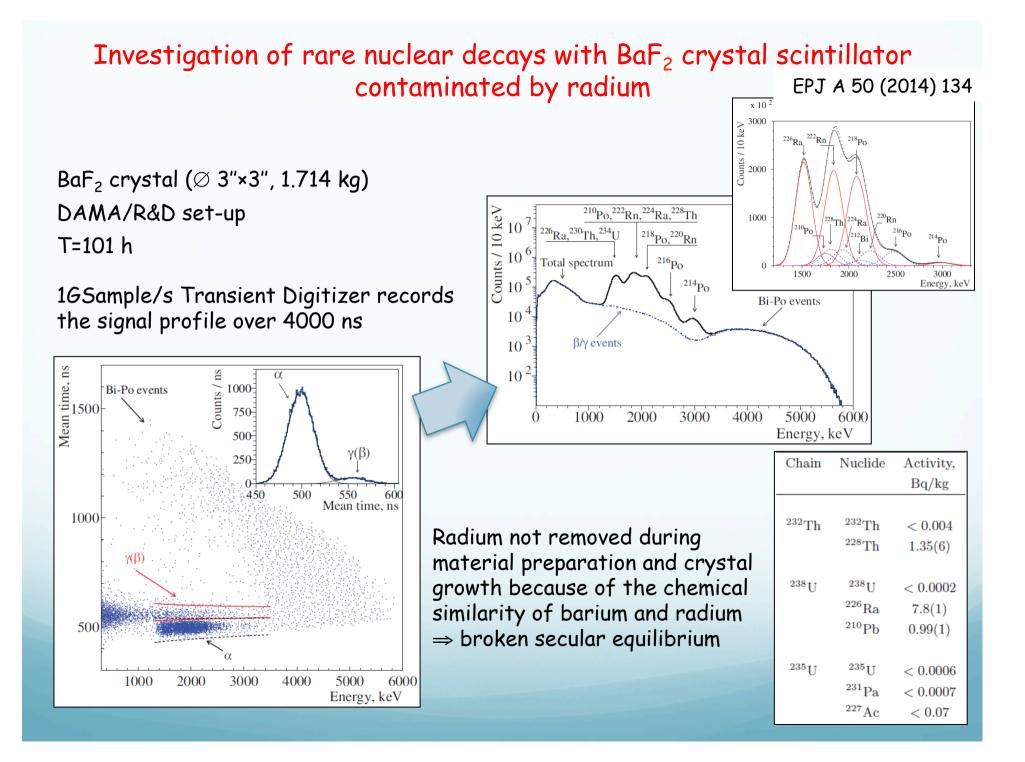
Our goals are to measure the $T_{1/2}^{2\nu 2\beta}$ with high (10-20%) accuracy and set new limits on different channels. Modes with majorons, transitions to the excited levels will be improved too. The experiment is in progress.

Preliminary results on EPJ Web of Conf 65 (2014) 01005

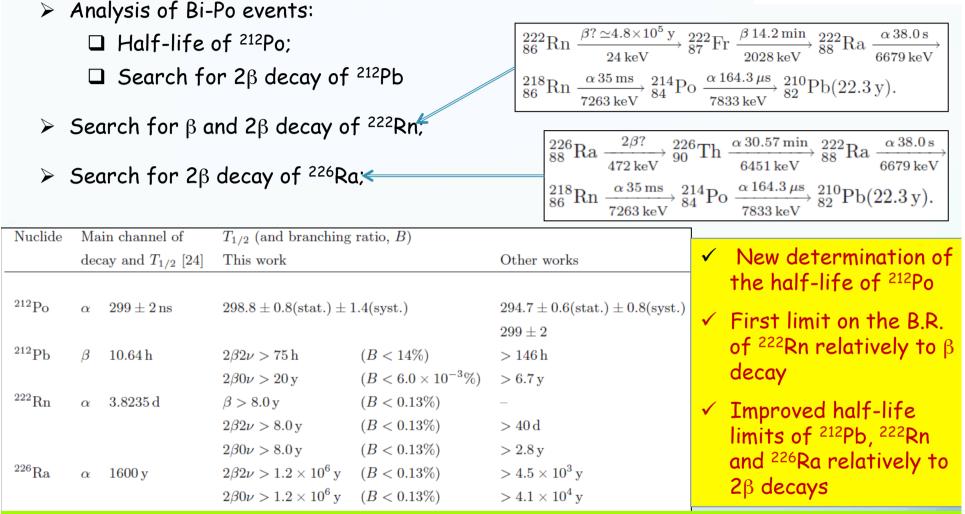

- Internal background decreases in time (e.g. in ~2 for ²²⁸Th and in ~3 for ^{110m}Ag)
- Planned recrystallization of ¹¹⁶CdWO₄ (to remove Th/U thanks to low segregation)
- Additional improvements
- PbWO₄ crystal scintillators to replace some part of plastic light-guides?
- Further steps...
- Adding of quartz light guide or made from PbWO₄ scintillator
- Recrystallization of ¹¹⁶CdWO₄ to remove Th/U thanks to observed low segregation

How to decrease BG in the $0\nu2\beta$ region of $^{116}\text{Cd}?$

- ✓ Internal BG decreases in time
 ²²⁸Th in ≈2 and ^{110m}Ag in ≈3
- Removing of one LowBg PMT + replacing by ULB PMT


PMT	Activity, mBq/PMT		
Hamamatsu	²²⁸ Ra	²²⁶ Ra	
R6233MOD	18(3)	65(9)	
R11065SEL	2.3	3.3	

Possibility to improve radiopurity by recrystallization

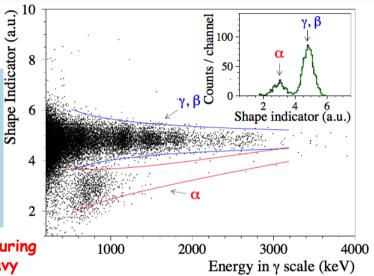

We expect to reduce K, Th, U and Ra contamination by recrystallization

Poda et al., Radiat. Meas., DOI 10.1016/j.radmeas.2013.02.017

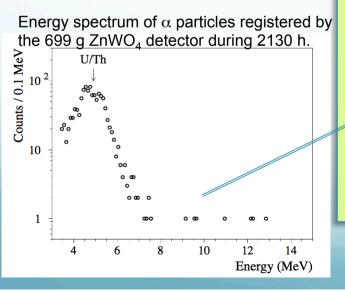
Investigation of rare nuclear decays with BaF₂ crystal scintillator contaminated by radium

EPJ A 50 (2014) 134

Future improvements with a detector with smaller dead time and better energy resolution


✓ An R&D of methods to purify Ba from Ra traces is in progress for the search for $\beta\beta$ decay of ¹³⁰Ba and ¹³² Ba which is of particular interest because of positive indications from 2 geochem. expts on $\beta\beta$ decay of ¹³⁰ Ba

Search for long-lived superheavy eka-tungsten with radiopure ZnWO₄ crystal scintillator


Eka means "first" in Sanskrit. Used by Mendeleev as a prefix for yet-to-bediscovered elementst he predicted would "fit" into specific blank spaces in the next lowest position of the same groups in his periodic table. E.G. : he knew that the unknown element for the blank space following Ca would be closely related to B, so he gave it the name of "eka-boron" until that unknown element, scandium, was definitely identified and named.

- ✓ Possible existence of superheavy elements (SHE) with atomic masses A>250 and atomic numbers Z>104 was already discussed in 1950's.
- $\checkmark\,$ In 1960's, prediction of neutron-rich "island of stability" around the double magic Z = 114 or 126, N = 184.
- \checkmark Recent calculations related to different models predict N = 184 as the magic number of neutrons and Z = 114, 120 or 126 as the proton magic number for spherical nuclei.

arXiv:15.04.07438 In press on Physica Scripta

Data collected with a radio-pure $ZnWO_4$ crystal scintillator (699 g) during 2130 h were used to set a limit on possible concentration of superheavy eka-W (seaborgium Sg, Z = 106) in the crystal.

Considering that one of the daughters in a chain of decays of the initial Sg nucleus decays with emission of high energy α particle (Q_{α} > 8 MeV)

analyzing the high energy part of the measured α spectrum

N (Sg)/N (W) < 5.5 × 10^{-14} atoms/atom at 90% C.L. (for Sg half-life of 10^9 yr).

Studying eka-Bi in a large BGO scintillation bolometer in an experiment performed by another group [L. Cardani et al., JINST 7 (2012) P10022]: N(eka-Bi)/N(Bi) < 1.1 × 10⁻¹³ atoms/atom with 90% C.L.

Both the limits are comparable with those obtained in recent experiments which instead look for spontaneous fission of superheavy elements or use the accelerator mass spectrometry.

DAMA/CRYS

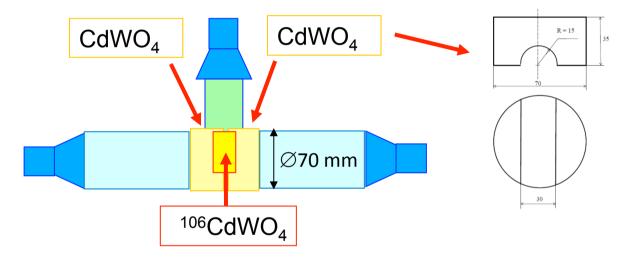
In the period of interest:

- 1) At beginning of 2015 the measurement of a $ZnWO_4$ crystal produced by recrystallization of the already tested $ZnWO_4$ crystal (aiming to estimate possible reduction in the trace contaminants) concluded.
- 2) The mechanical opening/closure system improved.
- 3) The cryogenic part (to allow measurements of the responses of variours scintillators as function of temperature) will be soon installed.
- 4) A new data taking with CdWO₄ crystal scintillator in progress, aiming the investigation of the decay schema of ^{113m}Cd.
- 5) Investigation of radioactive elements segregation in crystals to develop ultraradio-pure scintillators for rare events experiments is continuing.
- 6) A new experiment to further increase the sensitivity to 2β processes in ^{106}Cd in progress. The enriched $^{106}CdWO_4$ detector will work in coincidence with two $CdWO_4$.

Investigation of ^{113m}Cd decay scheme

Experiments to study beta decay of ^{113m}Cd with the help of the ¹⁰⁶CdWO₄ crystal scintillator (activity of ^{113m}Cd is \approx 20 Bq) half-life and beta spectrum shape) started in DAMA/Crys

¹⁰⁶CdWO₄ crystal scintillator inside plastic light-guide filled by silicon oil viewed by two PMT through quartz guides in the DAMA/CRYS shield

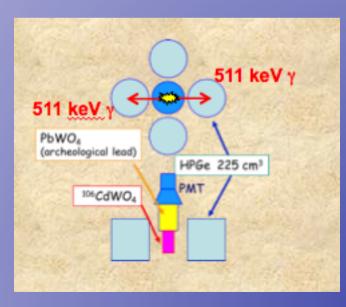

The goals of the experiment are measurements:

- the ^{113m}Cd half-life
- the beta spectra shape of ^{113m}Cd By product: the background in the set-up will be estimated (for the future ¹⁰⁶Cd experiment)

Experiments to study the branching ratio for the isomeric transition and coefficient of conversion are in preparation

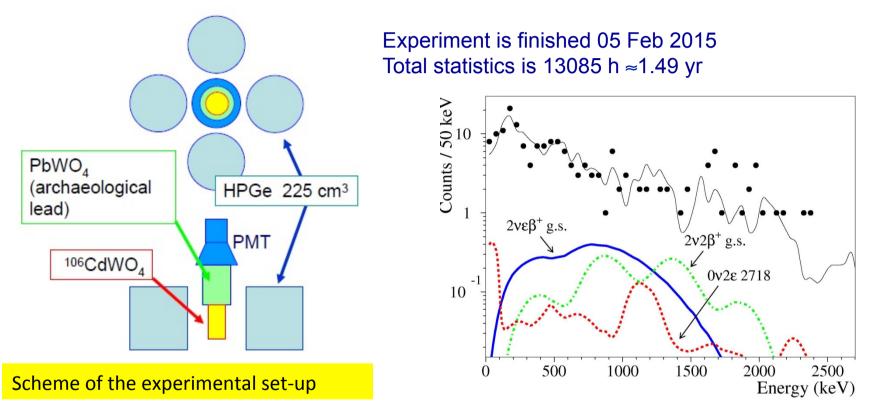
A new measurement with ${}^{106}CdWO_4$ is in preparation

The Monte Carlo simulation has showed that the sensitivity is expected to be improved a few times due to the much higher detection efficiency of $CdWO_4$ and close geometry and a lower radioactive contamination of the detector and shield (DAMA/Crys)

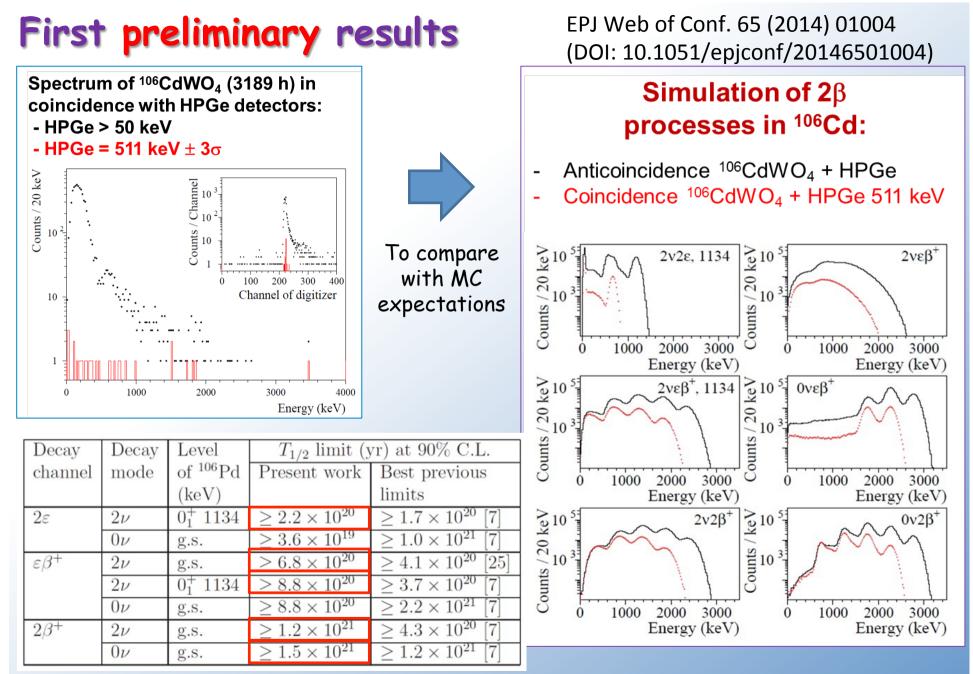


In particular, the sensitivity for the two neutrino electron capture with positron emission is on the level of $T_{1/2}^{2\nu\epsilon\beta^+} \approx 1.5 \times 10^{21}$ yr over 1 yr of experiment (theoretical predictions: $10^{20}-10^{22}$ yr)

DAMA/Ge and LNGS STELLA facility



DAMA/Ge and Ge facility at LNGS - in the period of interest


- i) The data taking of the experiment to search for 2β processes in ¹⁰⁶Cd by using cadmium tungstate crystal scintillator enriched in ¹⁰⁶Cd in coincidence with the four HPGe crystals of the GeMulti detector at the STELLA facility has been concluded on February 2015. The data analysis and the paper are in progress.
- The deeply purified neodymium oxide samples with a total mass of about 2.381 kg have been installed in the low background GeMulti detector (four HPGe crystals in a cryostat) on February 2015 in order to search for 2β decay of ¹⁵⁰Nd to excited levels of ¹⁵⁰Sm. The data taking is started.
- iii) The search for 2β decay of ^{184,192}Os (¹⁸⁴Os is of especial interest thanks to possibility of resonant neutrinoless double electron capture) and alpha decay of ¹⁸⁴Os to excited levels of daughter nuclei is waiting for the final setting of the new HPGe detector in STELLA facility, especially designed for low energy gamma-ray spectrometry.
- iv) Search for $\beta\beta$ decay of ¹³⁶Ce and ¹³⁸Ce with a deeply purified sample of Ce oxide (732 g) measured for 1900 h with HPGe detector published.
- v) Further purification of the cerium sample (used in previous measurements) from thorium contamination to increase the experimental sensitivity is in preparation towards higher sensitivities.
- vi) The R&D of low background GSO(Ce) crystal scintillators to investigate $\beta\beta$ processes in ¹⁵²Gd and ¹⁶⁰Gd is continuing.
- vii) The R&D of methods to purify samarium, ytterbium, dysprosium and erbium is in progress. The materials are of special interest taking into account recent theoretical estimates of neutrino-less resonant double electron capture processes in ¹⁴⁴Sm, ¹⁶²Er, ¹⁶⁴Er and ¹⁶⁸Yb. Deep purification of the samples (by using the liquid-liquid purification method) will allow the improvement of the experimental sensitivity. Then experiments to search for "double positron" decay processes in ¹⁴⁴Sm, ¹⁵⁶Dy, ¹⁶²Er, ¹⁶⁴Er, ¹⁶⁸Yb and for 2β⁻ decay to excited levels of daughter nuclei for ¹⁵⁴Sm, ¹⁷⁰Er and ¹⁷⁶Yb will be performed.
- viii) Preparations of other future measurements are in progress.

Search for double β processes in ¹⁰⁶Cd

The energy spectrum of the ¹⁰⁶CdWO₄ detector accumulated over 13085 h in coincidence with 511 keV annihilation γ quanta in the HPGe detectors (circles). The model of background is shown by solid line. The Monte Carlo simulated distributions of the $2\nu\epsilon\beta^+$ and $2\nu2\beta^+$ decays, and the $0\nu2\epsilon$ transition of ¹⁰⁶Cd to the 2718 keV excited level of ¹⁰⁶Pd excluded at 90% C.L. are shown.

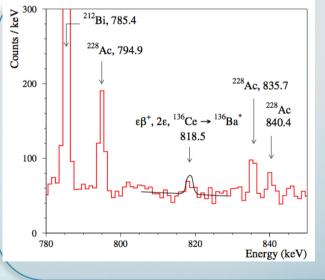
Data analysis and paper preparation are in progress

[7] P. Belli et al., PRC 85 (2012) 044610
[25] P. Belli et al., APP 10 (1999) 115

Improvements and running

Search for double beta decay of ¹³⁶Ce and ¹³⁸Ce

 $\begin{array}{c} \text{Counts/(h \times \text{keV})} \\ 0 \\ 1 \\ \end{array}$ CeO₂ 1900 h ²¹²Pb, 238.6 ₂₀₈Tl, 583.2 ²⁰⁸Tl, 2614.5 ²¹²Bi, 727.3 ²⁰⁸T1, 860.6 ²⁰⁸Tl, 2103.5 (SEP) ²⁰⁸TI 1592.5 ²²⁸Ac, 969.0 (DEP) 0 K, 1460.8 | $^{212}_{-}$ Bi, 1620.5 10 10 -2 10⁻³_ Background 10**4**6 h 1000 2000 500 1500 2500 Energy (keV)


Radioactive contamination of cerium oxide before and after purification using liquid-liquid extraction method.

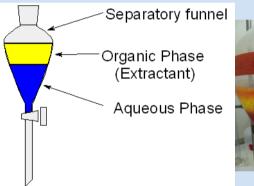
Chain	Nuclide	Activity (mBq/kg)				
		CeO ₂ powder		CeCl ₃ crystal		CeF ₃ crystal
		before	after	by HPGe	Scint. mode	[23]
		purification	purification	[24]	[25]	
	⁴⁰ K	77(28)	≤ 9	≤ 1700	-	≤ 330
	^{137}Cs	≤ 3	≤ 2	≤ 58	-	-
	¹³⁸ La	_	≤ 0.7	680 ± 50	862 ± 31	≤ 60
	139 Ce	_	(6 ± 1)	_	_	_
	152 Eu	_	≤ 0.5	≤ 130	_	_
	^{154}Eu	_	≤ 0.9	≤ 60	-	_
	¹⁷⁶ Lu	_	≤ 0.5	≤ 50	_	≤ 20
232 Th	²²⁸ Ra	850 ± 50	53 ± 3	≤ 210	_	890 ± 270
	²²⁸ Th	620 ± 30	573 ± 17	≤ 203	≤ 0.16	1010 ± 10
^{235}U	235 U	38 ± 10	< 1.8		_	≤ 40
	²³¹ Pa	_	< 24	_	_	< 50
	²²⁷ Ac	_	≤ 3	≤ 740	284 ± 2	≤ 20
²³⁸ U	²³⁸ U	≤ 870	≤ 40	_	_	≤ 70
	226 Ra	11 ± 3	≤ 1.5	700 ± 70	≤ 11	≤ 60

- Deeply purified CeO_2 sample (732 g)
- •Measured in HPGe (STELLA facility at LNGS)

•T=1900 h

Transition	Energy release, keV	Isotopic abundance, % [20]	Allowed decay channels
$^{136}\text{Ce} \rightarrow ^{136}\text{Ba}$	$\begin{array}{c} 2378.53(27) \ [17] \\ 2378.49(35) \ [18] \end{array}$	0.185(2)	$2\varepsilon, \varepsilon\beta^+, 2\beta^+$
$^{138}\mathrm{Ce} \rightarrow {}^{138}\mathrm{Ba}$	693(10) [19]	0.251(2)	2ε
$\underline{\ }^{142}\mathrm{Ce}\rightarrow {}^{142}\mathrm{Nd}$	1417.2(21) [19]	11.114(51)	$2\beta^-$

Example of the search for $\beta\beta$ decay signals: the peak at 818.5 keV is expected as a result of de-excitation of excited levels of ¹³⁶Ba due to 2 ε or ε β ⁺ decay of ¹³⁶Ce. An excluded peak with area 53 counts is shown by solid line.

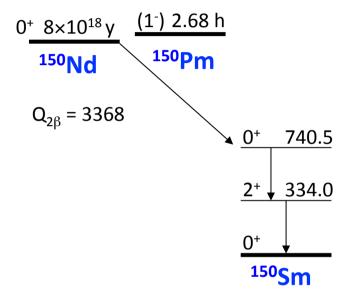

New improved half-life limits on ββ processes in ¹³⁶Ce and ¹³⁸Ce at level of T_{1/2} ~ 10¹⁷ - 10¹⁸ yr; many of them are even two orders of magnitude larger than the best previous results.
Present sensitivity still far from theoretical predictions: T_{1/2} ~ 10¹⁸ - 10²¹ yr even for the most probable 2v2ε in ¹³⁶Ce; for 2vεβ⁺ in ¹³⁶Ce T_{1/2} ~ 10²⁴ yr; for 0v processes T_{1/2} ~ 10²⁶ -10²⁹ yr (for (m_v) = 1 eV).

NPA930(2014)195

Purification of Ce, Nd and Gd for low bckg experiments Details in RPSCINT2013

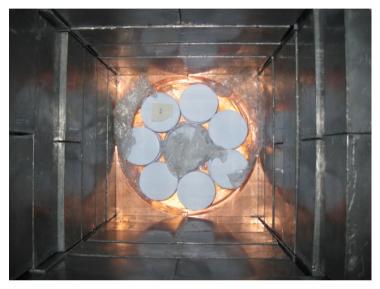
- There are 17 potentially 2β active isotopes among the lanthanide elements (^{136,138,142}Ce, ^{146,148,150}Nd, ^{144,154}Sm, ^{152,160}Gd, ^{156,158}Dy, ^{162,164,170}Er, ^{168,176}Yb)
- ✓ The most interesting are ¹⁵⁰Nd and ¹⁶⁰Gd (promising for 0v2 β), ¹³⁶Ce (one of the highest Q_{2 β} for 2 β ⁺), ¹⁵⁶Dy and ¹⁶⁴Er (resonant 0v2 ϵ)

However, even high purity grade commercial lanthanide compounds contain ²³⁸U, ²²⁶Ra and ^{232,228}Th typically on the level of ~ (0.1 - 1) Bq/kg


Radioactive contamination tested by using HPGe gamma spectrometry at the STELLA facility of the LNGS

Liquid-liquid extraction technique was used to purify CeO_3 , Nd_2O_3 and Gd_2O_3 from Th and U

Radioactive contamination of Ce, Gd and Nd oxides before and after the purification (mBq/kg)						
Chain	CeO ₃	Gd ₂ O ₃	Nd ₂ O ₃			
²²⁶ Ra	11 → <9	<7 → <8	<2.8 → <1.8			
²²⁸ Ra	850 → 70	106 → <12	<2.1 → <2.6			
²²⁸ Th	620 → 620	79 → <4	<1.3 → <1			


- An experiment to search for 2 β of ^{150}Nd to excited levels of ^{150}Sm is in preparation
- An R&D of radiopure GSO crystal scintillators to search for 2 β decay of ^{152}Gd and ^{160}Gd is in progress
- Etc.

Study of double β decay of ^{150}Nd to the excited states of ^{150}Sm

Existing experiments:

 $T_{1/2} = [1.33^{+0.36}_{-0.23}(\text{stat})^{+0.27}_{-0.13}(\text{syst})] \times 10^{20} \text{ yr [1]}$ $T_{1/2} = [1.07^{+0.45}_{-0.25}(\text{stat}) \pm 0.07 \text{ (syst)}] \times 10^{20} \text{ yr [2]}$

- A deeply purified Nd₂O₃ source (2.381 kg) was installed in GeMulti (4 HPGe ~220 cm³ each) on 10 Feb 2015
- the experiment is in progress

We are going to analyze both sum and coincidence data

[1] PRC 79 (2009) 045501] [2] [arXiv:1411.3755v1]

2β and α decay of Os to excited levels

Thin ultra-radiopure osmium sample 118.1 g

The Os sample as it should be installed on the BEGe detector

The detection efficiency should be advanced a few times due to the lover thickness of osmium (0.7-0.9 mm, instead of \emptyset 5-7 mm roads) and application of the new broad energy HPGe detector

The experiment will be started as far as the detector is shielded and commissioned. We aim to detect α decay of ¹⁸⁴Os to the 1st excited level of ¹⁸⁴W. The theoretical estimations are in the interval 1.2 ×10¹⁵ - 2.6×10¹⁵ yr, while the experimental sensitivity is expected to be on the level of 1-5 ×10¹⁵ yr.

The sensitivity to the double beta processes in ¹⁸⁴Os and ¹⁸⁶Os will be improved too. It is worth to mention that ¹⁸⁴Os is one of the most interesting nuclei taking into account possible resonant neutrinoless double electron capture in ¹⁸⁴Os to the excited 1322.2 keV.

Development of detectors with anisotropic response

Eur. Phys. J. C 73 (2013) 2276

June

December

WIMP Wind

v_o~220km/s

60

Cvanus

Anisotropic detectors are of great interest for many applicative fields, e.g.:

they can offer a unique way to study directionality for Dark Matter candidates that induce nuclear recoils

Taking into account:

- the correlation between the direction of the nuclear recoils and the Earth motion in the galactic rest frame;

- the peculiar features of anisotropic detectors;

The detector response is expected to vary as a function of the sidereal time

Development of ZnWO₄ scintillators

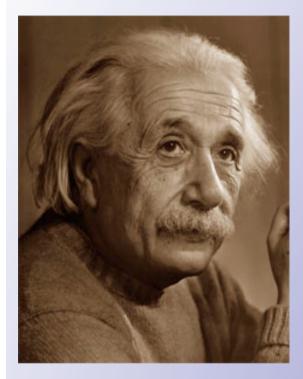
 ✓ Both light output and pulse shape have anisotropic behavior and can provide two independent ways to study directionality

Very high reachable radiopurity;

✓ Threshold at keV feasible;

Development of Carbon Nano Tubes (CNT) detectors

The detection principle is based on variation of the transport properties due to the particle irradiation


The intrinsic 1-D nature of CNTs makes them very promising for the study of directionality

Spin-off and patents

galactic plane

- > 3D detectors multiwire chamber-like with nanotechnology
- Possible other applications:
 - Particle Physics;
 - Health Physics;

∎etc..

"... The one who follows the crowd will usually get no further than the crowd. The one who walks alone, is likely to find himself in places no one has ever been."

Thanks for attention