Wave Functions on Space-Time

Sören Petrat

IST Austria

Erice, 24 March 2015

Joint work with Roderich Tumulka

Non-relativistic QM:
$$(\mathbf{x}_i \in \mathbb{R}^3)$$

 $\psi(t, \mathbf{x}_1, \dots, \mathbf{x}_N)$
 $i\partial_t \psi = H\psi$

Proposal: multi-time wave function $(x_i = (t_i, \boldsymbol{x}_i) \in \mathbb{R}^4)$

$$\phi(t_1, \mathbf{x}_1, \dots, t_N, \mathbf{x}_N) = \phi(x_1, \dots, x_N)$$
$$i\partial_{t_j}\phi = H_j\phi, \ j = 1, \dots, N$$

[Dirac (1932), Dirac, Fock, Podolsky (1932), Bloch (1934)] Intended:

- agreement with QM: $\phi(t, \mathbf{x}_1, \dots, t, \mathbf{x}_N) = \psi(t, \mathbf{x}_1, \dots, \mathbf{x}_N)$ $\Rightarrow \sum_j H_j = H$ (for equal times)
- $|\phi(x_1,\ldots,x_N)|^2$ prob. dist. for spacelike x_1,\ldots,x_N

Main result: new type of representation for quantum state in QFT

multi-time Schrödinger-picture particle-position representation

- \hookrightarrow alternative to Tomonaga-Schwinger approach
- \hookrightarrow connected to operator-valued fields

Advantages:

- manifestly Lorentz-invariant (also gen. cov. in curved space-time)
- simple, (locally) finite dimensional equations (PDEs)
- works with cutoff
- some insight into what "good" rel. interactions in QFT are
- useful for foundations of QM

Main novel feature of multi-time equations

$$i\partial_{t_j}\phi = H_j\phi$$

is the *consistency condition*:

$$\left[i\partial_{t_j} - H_j, i\partial_{t_k} - H_k\right] = 0 \tag{(*)}$$

 \hookrightarrow necessary and sufficient for existence of joint solution for all initial conditions

- heuristically clear (next slide)
- in some cases rigorously proven (SP, RT (2014))
- \hookrightarrow challenge: interacting H_1, \ldots, H_N that fulfill (*)

Back Story: Consistency Condition

$$\left[i\partial_{t_j} - H_j, i\partial_{t_k} - H_k\right] = 0 \tag{(*)}$$

Heuristic for time-independent H_j :

• consider $\phi(t_1, t_2) \in L^2(\mathbb{R}^6)$, initial condition $\phi(0, 0)$:

$$\phi(t_1, t_2) = e^{-iH_1t_1}\phi(0, t_2) = e^{-iH_1t_1}e^{-iH_2t_2}\phi(0, 0)$$

$$\phi(t_1, t_2) = e^{-iH_2t_2}\phi(t_1, 0) = e^{-iH_2t_2}e^{-iH_1t_1}\phi(0, 0)$$

• unique $\phi(t_1, t_2)$ for all possible $\phi(0, 0)$ if and only if $[H_1, H_2] = 0$

More general:

- evolution operator U_γ for every path γ in the space ℝ^N spanned by time axes (Dyson series, path-ordered exponential)
- path-independence \Leftrightarrow consistency condition

Back Story: Interaction Potentials

$$\left[i\partial_{t_j} - H_j, i\partial_{t_k} - H_k\right] = 0 \tag{(*)}$$

 $H_j = H_j^{\mathrm{free}} + V_j(x_1, \dots, x_N)$ with $V = \mathsf{mult.}$ op. violates (*)

 \hookrightarrow interaction potentials are not consistent!

More exactly:

Theorem (SP, RT (2014))

Let $H_j^{\text{free}} = -i\alpha_j \cdot \nabla_j + \beta_j m$, $V_j : \mathbb{R}^{4N} \to \mathbb{R}$ smooth. Then (*) is satisfied on \mathbb{R}^{4N} if and only if the multi-time eq.s are gauge-equivalent to non-interacting eq.s, i.e., there are functions $\theta(x_1, \ldots, x_N)$ and $\tilde{V}_j(x_j)$ such that $\tilde{\phi} = e^{i\theta}\phi$ satisfies

$$i\partial_{t_j}\tilde{\phi} = \left(H_j^{\text{free}} + \tilde{V}_j(x_j)\right)\tilde{\phi}.$$

Back Story: Interaction Potentials

$$\left[i\partial_{t_j} - H_j, i\partial_{t_k} - H_k\right] = 0 \tag{(*)}$$

Generalizations: Theorem still holds if

- $H_j^{\text{free}} = -i \mathbf{A}_j(x_j) \cdot \nabla_j + B_j(x_j)$, with $A_{j,1}, A_{j,2}, A_{j,3}, I$ lin. indep. and self-adjoint
- $V_j(x_1,...,x_N)$ matrix-valued (acting on *j*-th spin space)
- H_i^{free} is second-order differential op.
- (*) only holds for spacelike separated configurations
- N = 2, $V_j = \frac{1}{2} |\mathbf{x}_1 \mathbf{x}_2|^{-1}$, i.e., Coulomb interaction (and free Dirac or Schrödinger)

We take these results to rule out interaction potentials for multi-time eq.s.

 \hookrightarrow next: interaction by particle creation/annihilation works!

 \hookrightarrow one reasoning for why we need variable particle number (and Fock-space) for relativistic interaction!

QFT in Multi-time Schrödinger-picture Part.-pos. Repr.

The Emission-Absorption Model

 \hookrightarrow a concrete example of multi-time QFT model with particle creation/annihilation

 $\hookrightarrow M$ x-particles interact by emitting/absorbing y-particles

Simplifications:

- first: formal calculations, ignore UV divergence (cutoff later)
- consider Dirac particles, so no problems with part.-pos. repr.
- Dirac particles can have negative energies, so no localization problems

Definition of Emission-Absorption Model: One-Time

- one-particle Hilbert space $\mathscr{H}_1 = L^2(\mathbb{R}^3,\mathbb{C}^4)$
- full Hilbert space $\mathscr{H} = \mathscr{H}_x \otimes \mathscr{F}_y$, $\mathscr{H}_x = S_- \mathscr{H}_1^{\otimes M}$, $\mathscr{F}_y = \bigoplus_{N=0}^{\infty} S_+ \mathscr{H}_1^{\otimes N}$

(S₋: anti-sym. op., S₊: sym. op.)
• (M, N)-sector:
$$\psi_t(x^{3M}, y^{3N}) = \psi_t(x_1, \dots, x_M, y_1, \dots, y_N)$$

- let $a^{\dagger}(\mathbf{x})/a(\mathbf{x}) =$ fermionic creation/annihilation op.s
- let $b^{\dagger}(\mathbf{x})/b(\mathbf{x}) =$ bosonic creation/annihilation op.s

• let
$$H_{x/y}^{\text{free}} = -i\alpha \cdot \nabla + \beta m_{x/y}$$

• $g \in \mathbb{C}^4$ some fixed spinor

$$\begin{split} i\partial_t \psi_t(x^{3M}, y^{3N}) &= H\psi_t(x^{3M}, y^{3N}) \quad \forall \, N, \\ H &= \int d^3 x \left(a^{\dagger}(x) H_x^{\text{free}} a(x) + b^{\dagger}(x) H_y^{\text{free}} b(x) \right) \\ &+ \int d^3 x \left(a^{\dagger}(x) \left(g^{\dagger} b(x) + b^{\dagger}(x) g \right) a(x) \right) \end{split}$$

Definition of Emission-Absorption Model: One-Time

$$H = \int d^{3}x \left(a^{\dagger}(x) H_{x}^{\text{free}} a(x) + b^{\dagger}(x) H_{y}^{\text{free}} b(x) \right)$$
$$+ \int d^{3}x \left(a^{\dagger}(x) \left(g^{\dagger} b(x) + b^{\dagger}(x) g \right) a(x) \right)$$

In more detail:

$$(H\psi)(x^{3M}, y^{3N}) = \sum_{j=1}^{N} H_{x_j}^{\text{free}} \psi(x^{3M}, y^{3N}) + \sum_{k=1}^{N} H_{y_k}^{\text{free}} \psi(x^{3M}, y^{3N})$$
$$+ \sqrt{N+1} \sum_{j=1}^{M} g^{\dagger} \psi(x^{3M}, (y^{3N}, \mathbf{x}_j))$$
$$+ \frac{1}{\sqrt{N}} \sum_{j=1}^{M} \sum_{k=1}^{N} g^{\delta^3} (\mathbf{y}_k - \mathbf{x}_j) \psi(x^{3M}, y^{3N} \setminus \mathbf{y}_k)$$

Rem.: fixed g breaks Lorentz-invariance (artifact of simplifications)

Definition of Emission-Absorption Model: Multi-Time

(N, M)-sector of multi-time wave function:

$$\phi(x^{4M}, y^{4N}) = \phi(x_1, \ldots, x_M, y_1, \ldots, y_N)$$

Multi-time equations $i\partial_{x_i^0}\phi = H_{x_j}\phi$, $i\partial_{y_k^0}\phi = H_{y_k}\phi$, with

$$\begin{aligned} H_{x_j}\phi(x^{4M}, y^{4N}) = & H_{x_j}^{\text{free}}\phi(x^{4M}, y^{4N}) + \sqrt{N+1}g^{\dagger}\phi(x^{4M}, (y^{4N}, x_j)) \\ &+ \frac{1}{\sqrt{N}}\sum_{k=1}^{N}G(y_k - x_j)\phi(x^{4M}, y^{4N} \setminus y_k) \\ H_{y_k}\phi(x^{4M}, y^{4N}) = & H_{y_k}^{\text{free}}\phi(x^{4M}, y^{4N}) \end{aligned}$$

G Green function: $i\partial_{y^0}G = H_y^{\text{free}}G$, $G(0, \mathbf{y}) = g\delta^3(\mathbf{y})$

Assertion (SP, RT (2014))

On the set \mathscr{S} of all spacelike configurations, these multi-time eq.s are consistent, i.e., they have a unique solution ϕ for all initial conditions. (Ignoring UV divergence.)

Remarks:

- permutation symmetry for space-time points: $\phi(\dots, x_i, \dots, x_j, \dots, y^{4N}) = (-1)\phi(\dots, x_j, \dots, x_i, \dots, y^{4N})$ $\phi(x^{4M}, \dots, y_k, \dots, y_{\ell}, \dots,) = \phi(x^{4M}, \dots, y_{\ell}, \dots, y_k, \dots,)$
- UV cutoff: replace δ -fct. by smeared-out φ and modify $\mathscr{S} \hookrightarrow$ both modifications break Lorentz-invariance
 - \hookrightarrow but rigorous consistency proof possible

Instead of particle reaction $x \leftrightarrows x + y$, consider now pair creation $y \backsim x + \overline{x}$, or generally $a \backsim b + c$. \hookrightarrow natural multi-time eq.s.

Assertion (SP, RT (2014))

On the set \mathscr{S} of all spacelike configurations, the corresponding multi-time eq.s are consistent if and only if 0 or 2 of the particle species a, b, c are fermions. (Ignoring UV divergence.)

- e.g., decay of one fermion into two bosons not consistent
- also follows from spin-statistics theorem but here we only need to use statistics (sym. or antisym.)
- presumably there are multi-time equations for all fundamental processes of particle creation/annihilation

Tomonaga-Schwinger:

- let Σ be a spacelike hypersurface, \mathscr{H}_{Σ} the corresponding Hilbert space
- choose fixed $\tilde{\mathscr{H}}$, identify $\mathscr{H}_{\Sigma} \to \tilde{\mathscr{H}}$ along free evolution
- then $\tilde{\psi}_{\Sigma} \in \tilde{\mathscr{H}}$ represents interaction picture
- Tomonaga-Schwinger equation:

$$i(ilde{\psi}_{\Sigma'} - ilde{\psi}_{\Sigma}) = \left(\int_{\Sigma}^{\Sigma'} d^4x \ \mathcal{H}_I(x)\right) ilde{\psi}_{\Sigma}$$

for infinitesimally neighboring Σ, Σ' , with $\mathcal{H}_I(x) =$ int. Hamiltonian density in int. pict.

- \bullet functional differential eq. on $\infty\text{-dim.}$ space
- consistency cond. $[\mathcal{H}_I(x), \mathcal{H}_I(y)] = 0$ for spacelike sep. x, y

Relation to Tomonaga-Schwinger

From multi-time to TS: for $x_1, \ldots, x_N \in \Sigma$, define

$$\psi_{\Sigma}(x_1,\ldots,x_N)=\phi(x_1,\ldots,x_N)$$

Assertion (SP, RT (2014))

For the emission-absorption model, this ψ_{Σ} , translated into the interaction picture, satisfies the Tomonaga-Schwinger equation.

From TS to multi-time: given $(\psi_{\Sigma})_{\Sigma}$, only if for all $x_1, \ldots, x_N \in \Sigma, \Sigma'$,

$$\psi_{\Sigma}(x_1,\ldots,x_N)=\psi_{\Sigma'}(x_1,\ldots,x_N), \qquad (**)$$

then $(\psi_{\Sigma})_{\Sigma}$ defines multi-time wave function ϕ .

Assertion (SP, RT (2014))

Eq. (**) holds for the Tomonaga-Schwinger evolution.

Relation to Operator-valued Fields

Heisenberg picture: state vector Ψ fixed, dynamics in the operators

$$a^{(\dagger)}(t, \mathbf{x}) = e^{iHt}a^{(\dagger)}(\mathbf{x})e^{-iHt}$$

 \hookrightarrow for the emission-absorption model, we can define

$$\phi(x^{4M}, y^{4N}) = \left\langle \emptyset \middle| a(x_1) \cdots a(x_M) b(y_1) \cdots b(y_N) \middle| \Psi \right\rangle, \quad (***)$$

with $|\emptyset\rangle$ = vacuum state (similar expressions for other models, e.g., pair creation model)

Assertion (SP, RT (2014))

For the emission-absorption model, the wave function defined by (* * *) indeed satisfies the multi-time equations. (Similar for pair creation model.)

Bohmian Mechanics:

- in the law of motion, the velocity of any particle depends on the positions of all other particles
- in a relativistic version: need to evaluate wave function along spacelike hypersurface
- multi-time wave function good way to define ψ_{Σ}
- yields relativistic Bohmian Mechanics (with preferred foliation which can follow from Lorentz-invariant law)
- note: particle creation/annihilation possible by jump process

• ϕ technical tool, e.g., to show that foliation is not detectable GRW:

- relativistic collapse along Σ
- again: ϕ nicely defines unitary part of evolution of ψ_{Σ} and useful technical tool

Many-worlds:

• only based on wave function, so multi-time important for relativistic invariance

Problems we neglected that need to be solved:

- UV divergence; here: need well-defined relativistic Hamiltonians with creation/annihilation ⇒ Tumulka's idea of interior-boundary conditions (IBCs); see Lampart, Schmidt, Teufel, Tumulka
- negative energies; "standard" (textbook) QFT treatment leads to divergences and problems in curved space-time ⇒ e.g., Deckert et al
- position representation of photon wave function

solution to these problems + multi-time \Rightarrow fully relativistic well-defined QED

Alternatively:

- Dirac Sea picture for pair creation (problems: stability? fluctuations?) ⇒ Colin, Struyve; Dürr group; Finster, ...
- **direct interaction** instead of photons (quantum Wheeler-Feynman?)

Many thanks to this COST Action for support (STSMs).

Thank you for your attention!