BPS Quivers and $\mathcal{N} = 2$ superconformal theories

Simone Giacomelli

Introduction

Quivers and 4d/2d corre spondence

A class of SCFT's with ADE flavor symmetry

Conclusion

BPS Quivers and $\mathcal{N} = 2$ superconformal theories

Simone Giacomelli

Université Libre de Bruxelles and Solvay Institutes

Cortona, May 28 2014

Based on: S. Cecotti, M. Del Zotto and S.G. JHEP 1306 087 arXiv:1303.3149[hep-th]

$\mathcal{N}=2$ theories and the BPS bound

BPS Quivers and $\mathcal{N} = 2$ superconformal theories

> Simone Giacomelli

Introduction

Quivers and 4d/2d correspondence

A class of SCFT's wit ADE flavor symmetry

Conclusion

The infrared effective action of an $\mathcal{N} = 2$ theory is a $U(1)^r$ gauge theory. It can be written in terms of a single function \mathcal{F} (prepotential), encoded in an algebraic curve. N. Seiberg, E. Witten '94.

The states of the theory have electric and magnetic charges and flavor quantum numbers

$$(e_i, m_i, s_j) \equiv \gamma \in \Gamma^{2r+f}; \quad i = 1, \dots, r \ j = 1, \dots, f = \operatorname{rank}(G_F)$$

 $\langle \gamma_1, \gamma_2
angle = \sum_i (e_i^1 m_i^2 - m_i^1 e_i^2) \in \mathbb{Z}$ Dirac quantization condition

All the states satisfy the **BPS bound**:

 $M_{\gamma} \geq |Z(\gamma)|; \quad Z(\gamma_1 + \gamma_2) = Z(\gamma_1) + Z(\gamma_2).$

States saturating the bound are called BPS and preserve 4 supercharges.

$\mathcal{N}=2$ theories and the BPS bound

BPS Quivers and $\mathcal{N} = 2$ superconformal theories

> Simone Giacomelli

Introduction

Quivers and 4d/2d correspondence

A class of SCFT's wit ADE flavor symmetry

Conclusion

The infrared effective action of an $\mathcal{N} = 2$ theory is a $U(1)^r$ gauge theory. It can be written in terms of a single function \mathcal{F} (prepotential), encoded in an algebraic curve. N. Seiberg, E. Witten '94.

The states of the theory have electric and magnetic charges and flavor quantum numbers

$$(e_i, m_i, s_j) \equiv \gamma \in \Gamma^{2r+f}; \quad i = 1, \dots, r \ j = 1, \dots, f = \operatorname{rank}(G_F)$$

 $\langle \gamma_1, \gamma_2
angle = \sum_i (e_i^1 m_i^2 - m_i^1 e_i^2) \in \mathbb{Z}$ Dirac quantization condition

All the states satisfy the **BPS bound**:

 $M_{\gamma} \geq |Z(\gamma)|; \quad Z(\gamma_1 + \gamma_2) = Z(\gamma_1) + Z(\gamma_2).$

States saturating the bound are called BPS and preserve 4 supercharges.

$\mathcal{N}=2$ theories and the BPS bound

BPS Quivers and $\mathcal{N} = 2$ superconformal theories

> Simone Giacomelli

Introduction

Quivers and 4d/2d correspondence

A class of SCFT's wit ADE flavor symmetry

Conclusion

The infrared effective action of an $\mathcal{N} = 2$ theory is a $U(1)^r$ gauge theory. It can be written in terms of a single function \mathcal{F} (prepotential), encoded in an algebraic curve. N. Seiberg, E. Witten '94.

The states of the theory have electric and magnetic charges and flavor quantum numbers

$$(e_i, m_i, s_j) \equiv \gamma \in \Gamma^{2r+f}; \quad i = 1, \dots, r \ j = 1, \dots, f = \operatorname{rank}(G_F)$$

 $\langle \gamma_1, \gamma_2 \rangle = \sum_i (e_i^1 m_i^2 - m_i^1 e_i^2) \in \mathbb{Z}$ Dirac quantization condition

All the states satisfy the **BPS bound**:

 $M_{\gamma} \geq |Z(\gamma)|; \quad Z(\gamma_1 + \gamma_2) = Z(\gamma_1) + Z(\gamma_2).$

States saturating the bound are called BPS and preserve 4 supercharges.

BPS quivers

BPS Quivers and $\mathcal{N} = 2$ superconformal theories

> Simone Giacomelli

Introduction

Quivers and 4d/2d corre spondence

A class of SCFT's wit ADE flavor symmetry

Conclusion

Quiver property: The BPS spectrum has finitely many generators

$$\gamma = \pm \sum_{i=1}^{N} n_i \gamma_i \quad \forall \gamma \in \mathcal{H}_{BPS}; \quad n_i \in \mathbb{N}.$$

The BPS quiver of the theory is an oriented graph:

- One node for each generator γ_i .
- $\langle \gamma_i, \gamma_i \rangle$ arrows from node *i* to node *j*.

イロン イ部ン イヨン イヨン 三日

BPS Quivers and $\mathcal{N} = 2$ superconformal theories

Simone Giacomelli

Introduction

Quivers and 4d/2d correspondence

A class of SCFT's wit ADE flavor symmetry

Conclusion

On the worline of a BPS particle we have a 0 + 1 dimensional theory with 4 supercharges!

For the state $\gamma = \sum_{i=1}^{N} n_i \gamma_i$ we consider the theory Denef '02: $G = \prod_{i=1}^{N} U(n_i)$ with $\langle \gamma_j, \gamma_i \rangle$ bifundamentals B_{ij}^a .

i.e. the reduction of the theory on a bound state of D-branes.

$$\mathcal{M}_{\gamma} = \left\{\mathsf{F}\text{-term equations}\right\} \Big/ \prod_{i} Gl(n_{i}, \mathbb{C}) \cdot$$

FI parameters for $U(n_i)$: $heta_i = |Z(\gamma_i)| (\arg Z(\gamma_i) - \arg Z(\gamma))$.

(日) (四) (王) (王) (王)

BPS Quivers and $\mathcal{N} = 2$ superconformal theories

> Simone Giacomelli

Introduction

Quivers and 4d/2d correspondence

A class of SCFT's wit ADE flavor symmetry

Conclusion

On the worline of a BPS particle we have a 0 + 1 dimensional theory with 4 supercharges!

For the state $\gamma = \sum_{i=1}^{N} n_i \gamma_i$ we consider the theory Denef '02.

$$G = \prod_{i=1}^{N} U(n_i)$$
 with $\langle \gamma_j, \gamma_i \rangle$ bifundamentals B^a_{ij} .

i.e. the reduction of the theory on a bound state of D-branes.

$$\mathcal{M}_{\gamma} = \{\mathsf{F}\text{-term equations}\} / \prod_{i} Gl(n_{i}, \mathbb{C})$$

FI parameters for $U(n_i)$: $\theta_i = |Z(\gamma_i)| (\arg Z(\gamma_i) - \arg Z(\gamma))$.

BPS Quivers and $\mathcal{N} = 2$ superconformal theories

> Simone Giacomelli

Introduction

Quivers and 4d/2d correspondence

A class of SCFT's wit ADE flavor symmetry

Conclusion

On the worline of a BPS particle we have a 0 + 1 dimensional theory with 4 supercharges!

For the state $\gamma = \sum_{i=1}^{N} n_i \gamma_i$ we consider the theory Denef '02.

$$G = \prod_{i=1}^{N} U(n_i)$$
 with $\langle \gamma_j, \gamma_i \rangle$ bifundamentals B_{ij}^a .

i.e. the reduction of the theory on a bound state of D-branes.

$$\mathcal{M}_{\gamma} = \left\{\mathsf{F}\text{-term equations}\right\} \Big/ \prod_{i} Gl(n_{i}, \mathbb{C}) \cdot$$

FI parameters for $U(n_i)$: $\theta_i = |Z(\gamma_i)| (\arg Z(\gamma_i) - \arg Z(\gamma))$.

BPS Quivers and $\mathcal{N} = 2$ superconformal theories

> Simone Giacomelli

Introduction

Quivers and 4d/2d correspondence

A class of SCFT's wit ADE flavor symmetry

Conclusion

On the worline of a BPS particle we have a 0 + 1 dimensional theory with 4 supercharges!

For the state $\gamma = \sum_{i=1}^{N} n_i \gamma_i$ we consider the theory Denef '02.

$$G = \prod_{i=1}^{N} U(n_i)$$
 with $\langle \gamma_j, \gamma_i \rangle$ bifundamentals B^a_{ij} .

i.e. the reduction of the theory on a bound state of D-branes.

$$\mathcal{M}_{\gamma} = \left\{\mathsf{F}\text{-term equations}\right\} \Big/ \prod_{i} GI(n_{i}, \mathbb{C}) \cdot$$

FI parameters for $U(n_i)$: $\theta_i = |Z(\gamma_i)| (\arg Z(\gamma_i) - \arg Z(\gamma))$.

イロト イポト イラト イラト 一日

BPS states and quiver representations

BPS Quivers and $\mathcal{N} = 2$ superconformal theories

Simone Giacomelli

Introduction

Quivers and 4d/2d correspondence

A class of SCFT's wit ADE flavor symmetry

Conclusion

In a vacuum bifundamentals are constant and reduce to linear maps $B_{ii}^a : \mathbb{C}^{n_i} \to \mathbb{C}^{n_j}$. We recover a **quiver representation**!

Subrepresentation S (= $\sum_{i} k_i \gamma_i$): collection of subspaces \mathbb{C}^{k_i} and maps b_{ii}^a s.t. all diagrams commute

The representation γ is **stable** if

 $\arg Z(S) < \arg Z(\gamma)$ for all subrepresentations.

Equivalent to D-term constraints coming from FI terms.

BPS states and quiver representations

BPS Quivers and $\mathcal{N} = 2$ superconformal theories

> Simone Giacomelli

Introduction

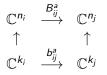
Quivers and 4d/2d correspondence

A class of SCFT's wit ADE flavor symmetry

Conclusion

In a vacuum bifundamentals are constant and reduce to linear maps $B_{ij}^a : \mathbb{C}^{n_i} \to \mathbb{C}^{n_j}$. We recover a **quiver representation**!

Subrepresentation S (= $\sum_{i} k_i \gamma_i$): collection of subspaces \mathbb{C}^{k_i} and maps b_{ii}^a s.t. all diagrams commute



The representation γ is **stable** if

 $\arg Z(S) < \arg Z(\gamma)$ for all subrepresentations.

Equivalent to D-term constraints coming from FI terms.

BPS states and quiver representations

BPS Quivers and $\mathcal{N} = 2$ superconformal theories

> Simone Giacomelli

Introduction

Quivers and 4d/2d correspondence

A class of SCFT's with ADE flavor symmetry

Conclusion

In a vacuum bifundamentals are constant and reduce to linear maps $B_{ij}^a : \mathbb{C}^{n_i} \to \mathbb{C}^{n_j}$. We recover a **quiver representation**!

Subrepresentation S (= $\sum_{i} k_i \gamma_i$): collection of subspaces \mathbb{C}^{k_i} and maps b_{ii}^a s.t. all diagrams commute

$$\begin{array}{ccc} \mathbb{C}^{n_i} & \xrightarrow{B^a_{ij}} & \mathbb{C}^{n_j} \\ \uparrow & & \uparrow \\ \mathbb{C}^{k_i} & \xrightarrow{b^a_{ij}} & \mathbb{C}^{k_j} \end{array}$$

The representation γ is ${\bf stable}$ if

 $\arg Z(S) < \arg Z(\gamma)$ for all subrepresentations.

Equivalent to D-term constraints coming from FI terms.

BPS Quivers and $\mathcal{N} = 2$ superconformal theories

Simone Giacomelli

Introduction

Quivers and 4d/2d correspondence

A class of SCFT's wit ADE flavor symmetry

Conclusion

Let us consider Type IIB string theory on $\mathbb{R}^4 \times CY_3$, where CY_3 is an hypersurface singularity in \mathbb{C}^4 ($f(x_1, x_2, x_3, x_4) = 0$).

The LG theory with superpotential *f* encodes the quiver:

- Vanishing 3-cycles \iff Vacua of the 2d theory.
- Intersection number of vanishing cycles ↔ Number of solitons between the vacua.

4d/2d correspondence (Cecotti, Neitzke, Vafa '10)

For every $\mathcal{N} = 2$ theory with the quiver property, there is a $\mathcal{N} = (2, 2)$ 2d theory (with $\hat{c} < 2$) such that $B = S^t - S$ $(B_{ij} = \langle \gamma_j, \gamma_i \rangle$ and $S = tt^*$ Stokes matrix).

If $f(X_i, Y_a) = f_1(X_i) + f_2(Y_a)$ the 2d theory is the sum of two LG models with superpotential f_1 and f_2 . The Stokes matrix is $S = S_1 \otimes S_2$.

BPS Quivers and $\mathcal{N} = 2$ superconformal theories

> Simone Giacomelli

Introduction

Quivers and 4d/2d correspondence

A class of SCFT's with ADE flavor symmetry

Conclusion

Let us consider Type IIB string theory on $\mathbb{R}^4 \times CY_3$, where CY_3 is an hypersurface singularity in \mathbb{C}^4 ($f(x_1, x_2, x_3, x_4) = 0$).

The LG theory with superpotential *f* encodes the quiver:

- Vanishing 3-cycles \iff Vacua of the 2d theory.
- Intersection number of vanishing cycles ↔ Number of solitons between the vacua.

4d/2d correspondence (Cecotti, Neitzke, Vafa '10)

For every $\mathcal{N} = 2$ theory with the quiver property, there is a $\mathcal{N} = (2, 2)$ 2d theory (with $\hat{c} < 2$) such that $B = S^t - S$ $(B_{ij} = \langle \gamma_j, \gamma_i \rangle$ and $S = tt^*$ Stokes matrix).

If $f(X_i, Y_a) = f_1(X_i) + f_2(Y_a)$ the 2d theory is the sum of two LG models with superpotential f_1 and f_2 . The Stokes matrix is $S = S_1 \otimes S_2$.

BPS Quivers and $\mathcal{N} = 2$ superconformal theories

> Simone Giacomelli

Introduction

Quivers and 4d/2d correspondence

A class of SCFT's with ADE flavor symmetry

Conclusion

Let us consider Type IIB string theory on $\mathbb{R}^4 \times CY_3$, where CY_3 is an hypersurface singularity in \mathbb{C}^4 ($f(x_1, x_2, x_3, x_4) = 0$).

The LG theory with superpotential *f* encodes the quiver:

- Vanishing 3-cycles \iff Vacua of the 2d theory.
- Intersection number of vanishing cycles ↔ Number of solitons between the vacua.

4d/2d correspondence (Cecotti, Neitzke, Vafa '10)

For every $\mathcal{N} = 2$ theory with the quiver property, there is a $\mathcal{N} = (2, 2)$ 2d theory (with $\hat{c} < 2$) such that $B = S^t - S$ $(B_{ij} = \langle \gamma_j, \gamma_i \rangle$ and $S = tt^*$ Stokes matrix).

If $f(X_i, Y_a) = f_1(X_i) + f_2(Y_a)$ the 2d theory is the sum of two LG models with superpotential f_1 and f_2 . The Stokes matrix is $S = S_1 \otimes S_2$.

BPS Quivers and $\mathcal{N} = 2$ superconformal theories

> Simone Giacomelli

Introduction

Quivers and 4d/2d correspondence

A class of SCFT's with ADE flavor symmetry

Conclusion

Let us consider Type IIB string theory on $\mathbb{R}^4 \times CY_3$, where CY_3 is an hypersurface singularity in \mathbb{C}^4 ($f(x_1, x_2, x_3, x_4) = 0$).

The LG theory with superpotential *f* encodes the quiver:

- Vanishing 3-cycles \iff Vacua of the 2d theory.
- Intersection number of vanishing cycles ↔ Number of solitons between the vacua.

4d/2d correspondence (Cecotti, Neitzke, Vafa '10)

For every $\mathcal{N} = 2$ theory with the quiver property, there is a $\mathcal{N} = (2,2)$ 2d theory (with $\hat{c} < 2$) such that $B = S^t - S$ $(B_{ij} = \langle \gamma_j, \gamma_i \rangle$ and $S = tt^*$ Stokes matrix).

If $f(X_i, Y_a) = f_1(X_i) + f_2(Y_a)$ the 2d theory is the sum of two LG models with superpotential f_1 and f_2 . The Stokes matrix is $S = S_1 \otimes S_2$.

Two simple examples

BPS Quivers and $\mathcal{N} = 2$ superconformal theories

Simone Giacomelli

Introduction

Quivers and 4d/2d correspondence

A class of SCFT's wit ADE flavor symmetry

Conclusion

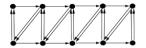
• For SU(2) SYM (setting $\Lambda = 1$) Klemm, Lerche, Mayr, Vafa, Warner '96.

$$f(x, y, w, v) = e^{w} + e^{-w} + x^{2} + y^{2} + v^{2}$$

The superpotential is then $\mathcal{W}=e^X+e^{-X}.$ This is the \mathbb{CP}^1 $\sigma\text{-model}$

• For SU(N) SYM:

$$f(x, y, w, z) = e^{w} + e^{-w} + x^{N} + y^{2} + z^{2}$$



$D_p(G)$ models and their BPS quivers

BPS Quivers and $\mathcal{N} = 2$ superconformal theories

Simone Giacomelli

Introduction

Quivers and 4d/2d corres spondence

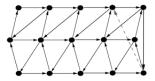
A class of SCFT's with ADE flavor symmetry

Conclusion

Consider the local Calaby-Yau geometry (with G = ADE)

$$f_{p,G} = e^{pw} + \mathcal{W}_G(x,y) + v^2 + e^{-w} = 0 \quad \left(\Omega = \frac{dx \wedge dy \wedge dv}{\partial_w f_{p,G}}\right)$$

Describes G SYM coupled to a matter sector $(D_p(G))$. $D_p(G)$ is superconformal and has (at least) G flavor symmetry.



イロン イ部ン イヨン イヨン 三日

Scaling dimensions and R-symmetry

BPS Quivers and $\mathcal{N} = 2$ superconformal theories

Simone Giacomelli

Introduction

Quivers and 4d/2d corres spondence

A class of SCFT's with ADE flavor symmetry

Conclusion

$$f_{p,G} = z^p + v^2 + \mathcal{W}_G(x,y) + \sum_{ijk} u_{ijk} z^i x^j y^k \quad (z = e^w).$$

From the 2d perspective $f_{p,G}$ has dimension one.

From the 4d perspective Ω has dimension one

$$D_{2d}(\Omega) = D_{2d}\left(\frac{dxdydv}{z\partial_z f_{p,G}}\right) = D_{2d}(x) + D_{2d}(y) - \frac{1}{2} = \frac{1}{h(G)}.$$
$$D_{4d}(u_{ijk}) = h(G)D_{2d}(u_{ijk}).$$

The same relation holds between 2d and 4d R-charges:

$$R_{4d}(u_{ijk}) = h(G)R_{2d}(u_{ijk}).$$

イロン イヨン イヨン イヨン

æ

Scaling dimensions and R-symmetry

BPS Quivers and $\mathcal{N} = 2$ superconformal theories

Simone Giacomelli

Introduction

Quivers and 4d/2d corres spondence

A class of SCFT's with ADE flavor symmetry

Conclusion

$$f_{p,G} = z^p + v^2 + \mathcal{W}_G(x,y) + \sum_{ijk} u_{ijk} z^i x^j y^k \quad (z = e^w).$$

From the 2d perspective $f_{\rho,G}$ has dimension one.

From the 4d perspective Ω has dimension one

$$D_{2d}(\Omega) = D_{2d} \left(\frac{dxdydv}{z\partial_z f_{p,G}} \right) = D_{2d}(x) + D_{2d}(y) - \frac{1}{2} = \frac{1}{h(G)}.$$
$$D_{4d}(u_{ijk}) = h(G)D_{2d}(u_{ijk}).$$

The same relation holds between 2d and 4d R-charges:

 $R_{4d}(u_{ijk}) = h(G)R_{2d}(u_{ijk}).$

イロン イヨン イヨン イヨン

Scaling dimensions and R-symmetry

BPS Quivers and $\mathcal{N} = 2$ superconformal theories

Simone Giacomelli

Introduction

Quivers and 4d/2d corres spondence

A class of SCFT's with ADE flavor symmetry

Conclusion

$$f_{p,G}=z^p+v^2+\mathcal{W}_G(x,y)+\sum_{ijk}u_{ijk}z^ix^jy^k\quad (z=e^w).$$

From the 2d perspective $f_{p,G}$ has dimension one.

From the 4d perspective $\boldsymbol{\Omega}$ has dimension one

$$D_{2d}(\Omega) = D_{2d}\left(\frac{dxdydv}{z\partial_z f_{p,G}}\right) = D_{2d}(x) + D_{2d}(y) - \frac{1}{2} = \frac{1}{h(G)}.$$
$$D_{4d}(u_{ijk}) = h(G)D_{2d}(u_{ijk}).$$

The same relation holds between 2d and 4d R-charges:

$$R_{4d}(u_{ijk}) = h(G)R_{2d}(u_{ijk}).$$

イロト イポト イヨト イヨト

One-loop beta function

BPS Quivers and $\mathcal{N} = 2$ superconformal theories

Simone Giacomelli

Introduction

Quivers and 4d/2d correspondence

A class of SCFT's with ADE flavor symmetry

Conclusion

For $\mathcal{N} = 2$ SCFT's $\beta_1 \delta^{ab} = -\text{Tr}RT^aT^b$.

$$e^{2\pi i n R}
ightarrow \Delta heta = -2\pi n eta_1; \quad (e,m)
ightarrow (e-2neta_1m,m).$$

The 2d monodromy $M = (S^t)^{-1}S$ acts as a $U(1)_R$ rotation on the space of vacua (i.e. the 4d charge lattice)

 $e^{2\pi i nR} \Gamma = M_{p,G}^{nh(G)} (= M_p^{nh(G)} \otimes M_G^{nh(G)}) \Gamma = (-1)^{nh(G)} M_p^{nh(G)} \otimes 1\Gamma.$

For n = p we find

$$(-1)^{ph(G)}M_p^{ph(G)}\gamma = \gamma + \frac{p+1}{2}h(G)\delta\langle\delta,\gamma\rangle \quad \delta = \sum_{i=1}^{p+1}\gamma_i.$$

$$\beta_1 = -\frac{p+1}{p}h(G) \rightarrow \beta_1(D_p(G)) = \frac{p-1}{p}h(G)$$

イロン イボン イヨン イヨン 三日

One-loop beta function

BPS Quivers and $\mathcal{N} = 2$ superconformal theories

Simone Giacomelli

Introduction

Quivers and 4d/2d corres spondence

A class of SCFT's with ADE flavor symmetry

Conclusion

For
$$\mathcal{N} = 2$$
 SCFT's $\beta_1 \delta^{ab} = -\text{Tr}RT^aT^b$.

$$e^{2\pi i n R}
ightarrow \Delta heta = -2\pi n eta_1; \quad (e,m)
ightarrow (e-2neta_1m,m).$$

The 2d monodromy $M = (S^t)^{-1}S$ acts as a $U(1)_R$ rotation on the space of vacua (i.e. the 4d charge lattice)

$$e^{2\pi i nR}\Gamma = M_{p,G}^{nh(G)} (= M_p^{nh(G)} \otimes M_G^{nh(G)})\Gamma = (-1)^{nh(G)} M_p^{nh(G)} \otimes 1\Gamma.$$

For n = p we find

$$(-1)^{ph(G)}M_p^{ph(G)}\gamma = \gamma + \frac{p+1}{2}h(G)\delta\langle\delta,\gamma\rangle \quad \delta = \sum_{i=1}^{p+1}\gamma_i.$$

$$\beta_1 = -\frac{p+1}{p}h(G) \rightarrow \beta_1(D_p(G)) = \frac{p-1}{p}h(G)$$

イロト イポト イヨト イヨト

One-loop beta function

BPS Quivers and $\mathcal{N} = 2$ superconformal theories

Simone Giacomelli

Introduction

Quivers and 4d/2d corres spondence

A class of SCFT's with ADE flavor symmetry

Conclusion

For
$$\mathcal{N} = 2$$
 SCFT's $\beta_1 \delta^{ab} = -\text{Tr}RT^aT^b$.

$$e^{2\pi i n R}
ightarrow \Delta heta = -2\pi n eta_1; \quad (e,m)
ightarrow (e-2neta_1m,m).$$

The 2d monodromy $M = (S^t)^{-1}S$ acts as a $U(1)_R$ rotation on the space of vacua (i.e. the 4d charge lattice)

$$e^{2\pi i nR} \Gamma = M_{p,G}^{nh(G)} (= M_p^{nh(G)} \otimes M_G^{nh(G)}) \Gamma = (-1)^{nh(G)} M_p^{nh(G)} \otimes 1\Gamma.$$

For n = p we find

$$(-1)^{ph(G)}M_p^{ph(G)}\gamma = \gamma + \frac{p+1}{2}h(G)\delta\langle\delta,\gamma\rangle \quad \delta = \sum_{i=1}^{p+1}\gamma_i.$$

$$\beta_1 = -\frac{p+1}{p}h(G) \rightarrow \beta_1(D_p(G)) = \frac{p-1}{p}h(G).$$

・ロト ・回ト ・ヨト ・ヨト

BPS Quivers and $\mathcal{N} = 2$ superconformal theories

Simone Giacomelli

Introduction

Quivers and 4d/2d corre spondence

A class of SCFT's with ADE flavor symmetry

Conclusion

- The quiver is a powerful tool to study the BPS spectrum of $\mathcal{N}=2$ theories. We can determine it studying quiver stable representations.
- The 4d/2d correspondence allows to determine the quiver for $\mathcal{N}=2$ theories with a string theory realization.
- The study of 4d theories can be related, via the 4d/2d correspondence, to problems in 2d field theories. This allows to study problems in 4d theories using 2d techniques and viceversa (e.g. classification of 2d theories with $\hat{c} = 1$). Cecotti, Vafa 1103.5832

Thank You!

イロト イポト イヨト イヨト

BPS Quivers and $\mathcal{N} = 2$ superconformal theories

Simone Giacomelli

Introduction

Quivers and 4d/2d corre spondence

A class of SCFT's with ADE flavor symmetry

Conclusion

- The quiver is a powerful tool to study the BPS spectrum of $\mathcal{N}=2$ theories. We can determine it studying quiver stable representations.
- The 4d/2d correspondence allows to determine the quiver for $\mathcal{N}=2$ theories with a string theory realization.
- The study of 4d theories can be related, via the 4d/2d correspondence, to problems in 2d field theories. This allows to study problems in 4d theories using 2d techniques and viceversa (e.g. classification of 2d theories with $\hat{c} = 1$).

Thank You!

BPS Quivers and $\mathcal{N} = 2$ superconformal theories

Simone Giacomelli

ADE flavor

Conclusion

- The quiver is a powerful tool to study the BPS spectrum of $\mathcal{N}=2$ theories. We can determine it studying quiver stable representations.
- The 4d/2d correspondence allows to determine the guiver for $\mathcal{N} = 2$ theories with a string theory realization.
- The study of 4d theories can be related, via the 4d/2d correspondence, to problems in 2d field theories. This allows to study problems in 4d theories using 2d techniques and viceversa (e.g. classification of 2d theories with $\hat{c} = 1$). Cecotti, Vafa 1103.5832.

イロト イポト イヨト イヨト

BPS Quivers and $\mathcal{N} = 2$ superconformal theories

Simone Giacomelli

Introduction

Quivers and 4d/2d corre spondence

A class of SCFT's with ADE flavor symmetry

Conclusion

- The quiver is a powerful tool to study the BPS spectrum of $\mathcal{N}=2$ theories. We can determine it studying quiver stable representations.
- The 4d/2d correspondence allows to determine the quiver for $\mathcal{N}=2$ theories with a string theory realization.
- The study of 4d theories can be related, via the 4d/2d correspondence, to problems in 2d field theories. This allows to study problems in 4d theories using 2d techniques and viceversa (e.g. classification of 2d theories with $\hat{c} = 1$). Cecotti, Vafa 1103.5832.

Thank You!

イロト イポト イヨト イヨト