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Introduction

•Recent years have born testimony to the fact that the role of external
magnetic field can have significant effect on the study of mass modification
of pions. The distinct phase of dense matter in the QCD diagram invoke the
concept of introduction of the magnetic field effects into the phenomenology
of compact stars which are laboratories of high density matter and magnetic
fields alike; with fields as high as eB ∼ 1MeV 2 in some magnetars. On
other hand, for off-central heavy ion collisions, the intensity of the magnetic
field due to presence of charged species can be as high as eB ∼ m2

π ∼
0.02GeV 2 (at RHIC) and eB ∼ 15m2

π ∼ 0.3GeV 2 (at LHC).

• In this work, we have derived the expression of the self energy of π0 and
π± in the limit of weak external magnetic field (eB << m2

π). For our
purpose, we have calculated the results up to one loop order in self energy
diagrams.

Figure 1: Interior of Neutron star and Relativistic heavy ion collision
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Figure 2: (a) represents the one-loop self-energy diagram for π0 and (b)

represents the same for π±.• The Lagrangian density for pseudo- scalar coupling (Γ(q) = −iγ5gπ):

LPS
int = −igπΨ̄γ5(~τ · ~Φπ)Ψ

LPS
int = −

√
2igNNπ[ψ̄pγ5ψnπ

(−) − ψ̄nγ5ψpπ
(+)]− igNNπ[ψ̄pγ5ψpπ

(0) − ψ̄nγ5ψnπ
(0)]

• The Lagrangian density for pseudo- vector coupling (Γ(q) = −i(fπ/mπ)γ5q/):

LPV
int = − fπ

mπ
Ψ̄′γ5γ

µ∂µ(τ .Φ
′
π)Ψ

′

• Notations: q2 = q2|| − q2⊥ and gµν = gµν|| − gµν⊥

Fermionic propagators in weak field limit

• The fermionic propagator G(k) up to order (eB)2 in weak magnetic field
can be written as,

G(k) = G(0)(k) + eB G(1)(k) + (eB)2 G(2)(k) + ...

where,

G(0)(k) =
k/+m

k2 −m2
,

G(1)(k) =
iγ1γ2(γ.k|| +m)

(k2 −m2)2
and

G(2)(k) =
−2k2⊥

(k2 −m2)4
[k/ +m− γ.k⊥

k2⊥
(k2 −m2)].

• Eqs.[6] and [7] are the weak field corrections to the free propagator.

• Let us consider the magnetic field along the z direction with the choice of
vector potential ~A = (−By/2, Bx/2, 0)

Self energy of pions in weak field limit for PS coupling

• The one loop contribution to the π self energy is given as,

Ππ(q) = −i
∫

d4k

(2π)4
Tr[{iΓ(q)}iSa(k){iΓ(−q)}iSb(k + q)]

Ππ0 = Π
(0,0)

π0
+ (eB)2Π

(1,1)

π0
+ (eB)2Π

(2,0)

π0
+ (eB)2Π

(0,2)

π0
.

Ππ± = Π
(0,0)

π± + 0 + (eB)2Π
(2,0)

π±

• On evaluation of Dirac traces, all the terms proportional to (eB) have vanishing traces

either due to odd no. of γ matrices or off-diagonal elements of metric tensor.

Vacuum contribution to the self energy

Π
(0,0)

π0
(q) = −ig2π

∫

d4k

(2π)4
Tr[γ5 iS

(0)
p (k) γ5 iS

(0)
p (k + q)] + [p→ n]

Π
(0,0)

π0
(q) = =

g2π
4π2

[q2

3
+
[

1 +
1

ε
− γE + log(4πµ2)

]

(m2
p −

q2

2
)

−
∫ 1

0

dx
(

m2
p − 3x(1− x)q2

)

log[m2
p − x(1− x)q2]

]

+ [p→ n]

Renormalisation of the pion self energy

• For Π±, the corresponding term for n will be absent. Here, ε = 2−N
2 and

µ is an arbitrary scaling parameter. γE is the Euler-Mascheroni constant.
It is clearly seen that ε contains the singularity and it diverges as N → 4.

Π
(0,0)
π R (q) = Π(0,0)

π (q)− β1(q
2 −m2

π)− β2

β1 =

(

∂Π
(0,0)
π (q)

∂q2

)

q2=m2
π

and β2 =

(

Π(0,0)
π (q)

)

q2=m2
π

The renormalised part

Π
(0,0)

π0R
= −

g2
ppπ0

4π2

∫ 1

0

dx

[

(q2 −m2
π0
) x(1− x)

[

m2
p − 3m2

π0
x(1− x)

]

m2
p −m2

π0
x(1− x)

+
[

m2
p − 3q2 x(1− x)

]

log
∆R

m2
p −m2

π0
x(1− x)

]

+ [p→ n],

here ∆R = m2
p − q2x(1− x) and mπ0 is mass of the neutral pion.

The magnetic field contribution in PS coupling

• The first term contribution at (eB)2 is given as,

Π
(1,1)

π0
(q) = −ig2π

∫

d4k

(2π)4
Tr[γ5 iS

(1)
p (k) γ5 iS

(1)
p (k + q)]

Π
(1,1)

π0
(q) = − g2π

4π2

∫ 1

0

dx x(1− x)
[ 1

∆R
+
m2
p + x(1− x)q2||

∆2
R

]

•Π(1,1)
π± (q) contribution is absent.

• The second term contribution at (eB)2 is given as,

Π
(2,0)

π0
(q) = −ig2π

∫

d4k

(2π)4
Tr[γ5 iS

(2)
p (k) γ5 iS

(0)
p (k + q)]

Π
(2,0)

π0
(q) = − g2π

4π2

[

∫ 1

0

dx(1− x)3
[ 1

∆R
+
q2x(1− x) + q2⊥x(4x− 1) +m2

p

3∆2
R

+
2x2q2⊥[q

2x(1− x) +m2
p]

3∆3
R

]

+

∫ 1

0

dx(1− x)2
[ 1

∆R
− q2⊥x(1− x)

∆2
R

]

]

Pion self energy in PV coupling

• Calculating the vacuum part and subsequent re-normalisation,

Π
(0,0)

π0R
(q) = (

fm
mπ

)2
q2

4π2
4m2

[

√

4m2 − q2

q
tan−1

( q
√

4m2 − q2

)

−

√

4m2 −m2
π0

mπ0
tan−1 mπ0

√

4m2 −m2
π0

]

•Magnetic contribution to pion self energy in pseudo vector coupling,

Π
(1,1)

π0
(q) = −(

fπ
mπ

)2
1

4π2

∫ 1

0

x (1− x) dx
[x(1− x)q2(2q2|| − q2) +m2q2||

∆2
R

]

.

Π
(2,0)

π0
(q) = (

fπ
mπ

)2
1

4π2

[

∫ 1

0

dx
(1− x)3

3
q2
[ 3

2∆R
+ x(1− x)

q2⊥
∆2
R

− [x(1− x)q2

+m2](
1

∆2
R

+ 2x2
q2⊥
∆3
R

)
]

+

∫ 1

0

dx(1− x)2
[q2 + q2⊥

∆R
+ x(1− x)

q2q2⊥
∆2
R

]

]

.

• The value of Π(0,2)
π0

(q) is identical with Π
(2,0)
π0

(q) because we considermp =
mn = m.

Pion dispersion relation

• In order to estimate the effective pion mass, i.e mass modification of the
pion in constant field, we need to introduce the pion dispersion relation,

ω2 − ~q2 −m2
π + Π(ω, ~q) = 0 (1)

where mπ is the bare pion mass and Qµ = (ω, ~q) is the 4-momentum of
the pions. In the limit of vanishing momenta,

m∗2
π = m2

π −ReΠ (2)

where, in the self energy modification, we have taken into account the
Landau level quantizations through the effective Fermion propagators.

The vertex factor for pseudo vector coupling is (
f 2π
4π = 0.08).

What we have found ?
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Figure 3: The upper left panel shows a comparison of the π0 mass (pseudo- scalar coupling) with q
z
for magnetic fields

of strength (eB) = 0.001GeV 2 and (eB) = 0.018GeV 2 and for q⊥ = 0, 0.25GeV . The upper right panel shows a similar comparison

for the π± mass. The lower left panel shows the dispersion relation for neutral pion with the z- component of momentum for

pseudovector coupling. The lower right panel shows a similar plot for the case of charged pions.
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Figure 4: The left panel shows a comparison of the π0 and the π± mass with magnetic field for pseudo- scalar coupling.

The right panel shows a similar comparison for pseudo- vector coupling.

Summary and Conclusions

• In this work, we have re-visited the modification of the pion dispersion
relations by the introduction of the external magnetic field on the charged
and neutral pions. For our purpose, we have used Schwinger’s proper
time method of fermion propagator in presence of background magnetic
field. The effect of the external magnetic field appears as corrections of
order (eB)2 over the vacuum contribution to the pion self energy which are
relevant for the study of neutron stars and relativistic heavy ion collisions.

• The phenomenology of pions in nuclear matter is generally described by a
chiral invariant pion-nucleon interaction which leads to the additional La-
grangian term LπNN = −(gπNN/2gAmN )2Ψ̄Nγ

µτΨN (~Π× δµ~Π) known
as the Weinberg-Tomozawa term in the literature. We have found that
the contribution for the corresponding diagram for the ππNN interaction
vanishes at the (eB) and (eB)2 order of the external magnetic field.

• From the numerical estimates, we conclude decreasing nature of effective
pion masses in case of PS coupling while an increasing nature is noticed
for PV coupling.

• The results obtained here serve as a theoretical framework for study at
finite density and/ or temperature in presence of arbitrary magnetic field.
Finally, it should be noted that we have not incorporated the nucleon’s
magnetic moment in the present work. Inclusion of this will contribute in
(eB) order. We do not include the medium modifications in our calculation
which will be reported soon in a future work [5].
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