

Transition Form Factors (experimental overview - 2)

Patrik Adlarson A2 collaboration MesonNet 2014 – Sep 29 – Oct 1, 2014

MesonNet Meeting – Frascati, September 29th – October 1st, 2014

1

Outline

Motivation

WASA results

A2 results

BESIII results

Motivation

EM TFF allow us access to intrinsic structures of Pseudoscalar mesons (P)

Possible gluonic contribution to η and η' can be studied

The leading hadronic contribution to anomalous magnetic moment given by exchange of light hadrons coupled to two photons

Light by light contribution expected to scale as m_{had}^{-2}

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

 \mathbf{G}

MesonNet Workshop on MTFF arXiv:1207.6556v2 [hep-ph]

e.g. Dalitz decay

$$\mathbf{P} \longrightarrow \gamma^* \gamma \longrightarrow \mathbf{e}^+ \mathbf{e}^- \gamma$$

...but also other anomalous decays involving TFF.

Motivation

JGU JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Off-shell P form factors not accessible experimentally

Any aspiring model should be able to correctly describe the on-shell scenario

Lowest time like region studied in $4m_l^2 < q^2 < m_P^2$

MesonNet Workshop on MTFF arXiv:1207.6556v2 [hep-ph]

$$P \longrightarrow \gamma^{(*)}\gamma^{(*)}$$

Photons either real or virtual

Motivation: π⁰ **Dalitz Decay**

Gl

Observable: slope parameter a_{π} FF = $(1 - a_{\pi}x)^{-1} \sim 1 + a_{\pi}x$ for small a_{π}

 Theory

 VMD
 +0.031

 ChPT 2 -loop
 +0.029(5)

 Kampf, Knecht, Novotný, EPJ C46 (2006) 191

Experiment

"...we think that a precise measurement of a_{π} which would not rely on any kind of extrapolation remains an interesting issue."

 Extrapolation from space-like region

 CELLO
 +0.0326(26)stat(26)syst

 Behrend et al (CELLO) Z. Phys.C 49 (1991) 401

 CLEO
 +0.0303(8)stat(9)syst(12)

 Gronberg et al (CLEO) Phys.Rev.D 57 (1998) 33

WASA at COSY

Central Detector:

- Superconducting Solenoid
- Plastic Barrel
- Wire Chamber
- Calorimeter

Forward Detector:

- Plastic Scintillators
- Tracker

Phys. Lett. B 726, 187 (2013)

In search of a dark photon in $\pi^0 \rightarrow \gamma U \rightarrow e^+e^- \gamma$

Focus of paper was to set an upper limit on U- γ mixing parameter, ϵ , 20-100 MeV Data sample collected can be used to determine π^0 TFF

Phys. Lett. B 726, 187 (2013)

Phys. Lett. B 726, 187 (2013)

Matches NA60 $\eta \rightarrow \mu + \mu^{-} \gamma$ result

Better accuracy for low m(l^+l^-) Assumes $F_{\eta} = 1$ in fit

2.2 x 10⁴ $\eta \rightarrow$ e+e- γ , (based on 3 x 10⁷ η decays)

1.3 x 10³ in previous measurement A2 Berghäuser et al. (A2-Collaboration) Phys. Rev. B 701 (2011) 562

New analysis based on kinematic fit 3 x more data in final event sample

TL calculation: C. Terschlüsen, Diploma thesis, University Gießen, 2010.
Padé-approximants: R. Escribano, P. Masjuan, P. Sanchez-Puertas, Phys. Rev.
D 89 (2014) 034014. (poster by S. Gonzàlez-Solíz)
DT calculation: C. Hahnhart, A. Kupśc, U.-G. Meißner, F. Stollenwerk, A. Wirzba, Eur. Phys. J. C73 (2013) 2668. (talk by A. Wirzba, mon sep 29, 15.30)

TL calculation: C. Terschlüsen, Diploma thesis, University Gießen, 2010. Padé-approximants: R. Escribano, P. Masjuan, P. Sanchez-Puertas, Phys. Rev. D 89 (2014) 034014. (poster by S. Gonzàlez-Solíz)

DT calculation: C. Hahnhart, A. Kupść, U.-G. Meißner, F. Stollenwerk, A. Wirzba, Eur. Phys. J. C73 (2013) 2668. (talk by A. Wirzba, mon sep 29, 15.30)

Result agrees best with Pade, all within statistical uncertainty

VMD models used to calculate hadr. LbL with Λ = 774(29) MeV

Result of this work Λ = 716(33) MeV

Smaller effective vector-meson masses ought to be used in VMD like models

Outlook

Motivation

EM Dalitz decays of light unflavored mesons have been studied by many experiments

Experimental input needed for how charmonium states interact with EM field.

Theoretical prediction assuming simple pole approximation available

J. Fu, H.B. Li, X. Qin, M.Z. Yang, Mod. Phys. Lett. A 27 1250223 (2012)

$$\Lambda = m_{\psi}^{,} = 3.686 \text{ GeV}$$

$$F_{\psi P}(q^2) = rac{1}{1-rac{q^2}{\Lambda^2}}$$

Decay mode	e^+e^-	$\mu^+\mu^-$
$\psi ightarrow \pi^0 l^+ l^-$	$(3.89^{+0.37}_{-0.33}) \times 10^{-7}$	$(1.01^{+0.10}_{-0.09}) \times 10^{-7}$
$\psi o \eta l^+ l^-$	$(1.21 \pm 0.04) \times 10^{-5}$	$(0.30 \pm 0.01) imes 10^{-5}$
$\psi o \eta' l^+ l^-$	$(5.66 \pm 0.16) imes 10^{-5}$	$(1.31 \pm 0.04) imes 10^{-5}$

Motivation

EM Dalitz decays of light unflavored mesons have been studied

No experimental input previously available on how charmonium states interact with EM field.

Theoretical prediction assuming simple pole approximation available

J. Fu, H.B. Li, X. Qin, M.Z. Yang, Mod. Phys. Lett. A 27 1250223 (2012)

$$F_{\psi P}(q^2) = \frac{1}{1 - \frac{q^2}{\Lambda^2}} \left[\begin{array}{c} \frac{\overline{\text{Decay mode}} & e^+e^-}{\frac{\psi \to \pi^0 l^+ l^-}{(3.89^{+0.37}_{-0.33}) \times 10^{-7}}} \\ \frac{\psi \to \eta l^+ l^-}{\psi \to \eta' l^+ l^-} & (1.21 \pm 0.04) \times 10^{-5} & (0) \\ \frac{\psi \to \eta' l^+ l^-}{\psi \to \eta' l^+ l^-} & (5.66 \pm 0.16) \times 10^{-5} & (1) \\ \frac{\psi \to 0.04}{(1 - 0.09)} \times 10^{-5} \\ \frac{\psi \to 0.04}{(1 - 0.09)} \times 10^{-5} \end{array} \right]$$

General information

BESIII four main components

MDC Resolution @1 GeV/c $\sigma_{dE/dx}$	0.5% 6%
EMC E Resolution Barrel E Resolution End Cap	2.5% 5%
<i>TOF</i> Barrel End caps	80 ps 110 ps
<i>Muon chambers</i> Position resolution	~ 2 cm

B€SⅢ

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

[G|L

Phys. Rev. D 89, 092008 (2014)

First measurement of rare charmonium decays : $J/\psi \rightarrow P e+e-Based on 225 million J/\psi$

B€SⅢ-

Phys. Rev. D 89, 092008 (2014)

First measurement of rare charmonium decays : $J/\psi \rightarrow P e+e-Based on 225$ million J/y

a)
$$J/\psi \rightarrow \eta' e^+e^- \rightarrow \pi^+\pi^-\gamma e^+e^-$$

b) $\pi^+\pi^-\eta e^+e^-$
c) $J/\psi \rightarrow \eta e^+e^- \rightarrow \pi^+\pi^-\pi^0 e^+e^-$
d) $\gamma\gamma e^+e^-$
e) $J/\psi \rightarrow \pi^0 e^+e^- \rightarrow \gamma\gamma e^+e^-$

Internal conversion main source of backgroundcut on radius removes 98% of background and 20% of signal.

MesonNet Meeting – Frascati, September 29th – October 1st, 2014

G

JOHANNES GUTENBERG

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

G

	Modes	N_S	N_B	ε
a)	$J/\psi \to \eta' e^+ e^- (\eta' \to \gamma \pi^+ \pi^-)$	983.3 ± 33.0	27.4 ± 1.0	24.8%
b)	$J/\psi \to \eta' e^+ e^- (\eta' \to \pi^+ \pi^- \eta)$	373.0 ± 19.9	8.5 ± 0.3	17.6%
C)	$J/\psi \to \eta e^+ e^- (\eta \to \pi^+ \pi^- \pi^0)$	84.2 ± 9.6	5.3 ± 0.3	14.9%
d)	$J/\psi \to \eta e^+ e^- (\eta \to \gamma \gamma)$	235.5 ± 16.4	8.7 ± 0.3	22.7%
e)	$J/\psi ightarrow \pi^0 e^+ e^- (\pi^0 ightarrow \gamma \gamma)$	39.4 ± 6.9	1.1 ± 0.1	23.4%

Black – data points Blue – total MC fits Yellow – peaking bgd Green – non peaking bgd

B€SⅢ

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

G

	Modes	N_S	N_B	ϵ
a)	$J/\psi \to \eta' e^+ e^- (\eta' \to \gamma \pi^+ \pi^-)$	983.3 ± 33.0	27.4 ± 1.0	24.8%
b)	$J/\psi \to \eta' e^+ e^- (\eta' \to \pi^+ \pi^- \eta)$	373.0 ± 19.9	8.5 ± 0.3	17.6%
c)	$J/\psi \to \eta e^+ e^- (\eta \to \pi^+ \pi^- \pi^0)$	84.2 ± 9.6	5.3 ± 0.3	14.9%
d)	$J/\psi ightarrow \eta e^+ e^- (\eta ightarrow \gamma \gamma)$	235.5 ± 16.4	8.7 ± 0.3	22.7%
e)	$J/\psi ightarrow \pi^0 e^+ e^- (\pi^0 ightarrow \gamma \gamma)$	39.4 ± 6.9	1.1 ± 0.1	23.4%

Red – data points Blue – total MC fits Yellow – peaking bgd Green – non peaking bgd

M(e⁺e⁻) (GeV/c²) MesonNet Meeting – Frascati, September 29th – October 1st, 2014

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Gll

Phys. Rev. D 89, 092008 (2014)

$$\mathcal{B}(J/\psi \to Pe^+e^-) = \frac{N_S}{N_{J/\psi} \cdot \mathcal{B}(P \to F) \cdot \epsilon}$$

Mode	Branching fraction	Combined Result	Theoretical prediction
$J/\psi ightarrow \eta' e^+ e^- (\eta' ightarrow \gamma \pi^+ \pi^-)$	$(6.01\pm0.20\pm0.34)\times10^{-5}$		
$J/\psi \to \eta' e^+ e^- (\eta' \to \pi^+ \pi^- \eta)$	$(5.51\pm0.29\pm0.32)\times10^{-5}$	$(5.81\pm0.16\pm0.31)\times10^{-5}$	$(5.66 \pm 0.16) \times 10^{-5}$
$J/\psi ightarrow \eta e^+e^-(\eta ightarrow \pi^+\pi^-\pi^0)$	$(1.12\pm0.13\pm0.06)\times10^{-5}$		
$J/\psi ightarrow \eta e^+ e^- (\eta ightarrow \gamma \gamma)$	$(1.17\pm0.08\pm0.06)\times10^{-5}$	$(1.16\pm 0.07\pm 0.06)\times 10^{-5}$	$(1.21 \pm 0.04) \times 10^{-5}$
$J/\psi ightarrow \pi^0 e^+ e^- (\pi^0 ightarrow \gamma \gamma)$	$(7.56 \pm 1.32 \pm 0.50) \times 10^{-7}$	$(7.56 \pm 1.32 \pm 0.50) \times 10^{-7}$	$(3.89^{+0.37}_{-0.33}) \times 10^{-7}$

Good agreement between theory and experiment for P = η , η' 2.5 σ cf. theory and experiment when P = π^0

 $\Lambda_{\rm fit}$ = 3.0(1.0) GeV (from P = η') used for BR uncertainty

Result based on 1/5 of full statistics

Summary TFF from decays

 $π^0$ Dalitz decay large statistics available *Outlook*: BR of anomalous η decays, paper in progress Large ppη data sample available (5 x 10⁸ η tagged)

New improved result of η Dalitz decay (I = e) Outlook: η'

First results on BR $J/\psi \rightarrow P e+e-$ *Outlook:* More J/ψ available, η' Dalitz decay

Thank you

MesonNet Meeting – Frascati, September 29th – October 1st, 2014

28

Phys. Rev. D 89, 092008 (2014)

MesonNet Meeting – Frascati, September 29th – October 1st, 2014

IGIL

UNIVERSITÄT MAINZ

JOHANNES GUTENBERG

15 event candidates in 4 day data taking. 8 more weeks available