

Report from CHEP 2012 Track report:

Distributed Processing and Analysis on Grids and Clouds

Armando Fella

SuperB contributions

- Computing for High Energy Physics contributions:
 - Oral presentation: "Exploiting new CPU architectures in the SuperB software framework", M.Corvo
 - Oral presentation: "SuperB R&D computing program: HTTP direct access to distributed resources", A.Fella
 - Poster: "Testing and evaluating storage technology to build a distributed Tier1 for SuperB in Italy", S.Pardi
 - Poster: "SuperB Simulation Production System", L.Tomassetti
 - Poster: "DIRAC evaluation for the SuperB experiment", A.Fella

Report from CHEP, summary

- Contributions have been appreciated
 - Several questions and comments
 - Useful discussions and meetings arisen
 - Both orals cited in final track summaries
- Included in R.Pordes, "Open Science Grid in Adolescence: 2012-2016" oral presentation:
 - "Embrace future physics, nuclear physics, astrophysics experiments: Belle II, DES, EIC, LSST, SuperB"
- Many private meetings and discussions
 - PhEDEx system evaluation
 - Fermilab resource access
 - ROOT I/O optimization
 - Dirac system
 - GlideinWMS use in OSG

Meeting: PhEDEx system evaluation I

- **Participants**: D.Bonacorsi (CMS management), T.Wildish (developer leader), C.Grandi, A.Fella
- Since ~one year Phedex group is working for project generalization
- Integrated with long term project as FTS --> FTS3
- Proved to be an optimal data management framework
- Documentation will be available for non CERN experiments in few weeks
- Phedex backend:
 - Modeling pure data placement information
 - Adoption determines the SuperB information systems design:
 - bk-prod + bk-analysis + data-placement + file-catalogue
 - Isolation of data placement metadata seems to be a correct design choice, need to be verified
 - Difficult porting from Oracle to PostgreSQL IS tech

Meeting: PhEDEx system evaluation II

- CMS interest and declared support capacity is very high
- Testbed ready at CNAF and one day ready at CERN via CernVM
- Integration in a wider computing model scenario including Workload Manager has been discussed
 - "Compatible" with a federated storage environment
 - Simple integration divers file-catalogues ex: LFC/ng or DFC
- SuperB side:
 - Need to find a person for evaluation work coordination
 - Tentative next contact, end 2012

Fermilab resource access

- Participants: S.Timm (Data Management manager), A.Fella
- In the context of OSG support collaboration work (S.Timm introduced by G.Garzoglio)
 - SuperB requirements for official production use case
 - Disk resource access via dCache, amount, kind of services, per use case plan(production, analysis)
 - CPU availability, spare cycle
 - Plan on resource access at short/mid-term

ROOT I/O optimization

- P.Canal from fermilab (pcanal@fnal.gov)
 - http://root.cern.ch/drupal/content/root-presentation-chep-2012 and [*]
- Improvements in ROOT I/O span many dimensions including:
 - reduction and more control over the memory usage
 - drastic reduction in CPU usage
 - optimization of the file size and the hardware I/O utilization
- A certain level of support have been asked for SuperB developing the data access general library[**]
 - Email exchange has already started
 - We are proposing a discussion among computing group to agree on a ROOT version upgrade plan to better coordinate groups requirements and suggestions
 - [**] see G.Donvito presentation on distributed computing session: Sat 2nd, 18:00->19:30
 - [*]The ATLAS ROOT-based data formats: recent improvements and performance measurements: https://indico.cern.ch/contributionDisplay.py?sessionId=3&contribId=378&confId=149557
 - I/O Strategies for Multicore Processing in ATLAS: https://indico.cern.ch/contributionDisplay.py?sessionId=3&contribId=377&confId=149557

Dirac system

- A.Tsaregorodtsev: project leader and developer
- https://indico.cern.ch/search.py?p=dirac&confId=149557&collections=Contributions
- 17 contributions, posters and orals, about both Dirac itself and experiments are using it.
- Discussion about:
 - Coexistence of Dirac framework with other key elements of Data Model and Workload management
 - Integration between Dirac File catalogue and LFC/LFC-newgeneration from EMI R&D works
 - Historical considerations around Dirac evolution and interactions with Ganga project

GlideinWMS use in OSG

- I.Sfiligoi (sfiligoi@fnal.gov)
 - https://indico.cern.ch/search.py?p=Glideinwms&confId=149557&collections=Contributions
- OSG resource exploitation via unique point of submission and brokering: GlideinWMS
- Collected information about procedures and setup to be applied to SuperB submission system to be compliant with GlideinWMS
- GlideinWMS group is available for supporting in such a task
 - http://tinyurl.com/glideinWMS
 - http://www.thinkmind.org/index.php?view=article&articleid=cloud_computing_2011_8_40_20068
 - http://iopscience.iop.org/1742-6596/331/7/072031
 - http://www.thinkmind.org/index.php?view=article&articleid=adaptive_2011_2_20_50040

Track report:

Distributed Processing and Analysis on Grids and Clouds

- Merged track from previous CHEPs:
 Grid and Cloud Middleware and Distributed Processing and Analysis
- 174 abstracts after merging and reassignments to/from other tracks
- 31 talks in 7 parallel sessions 2 no-shows
- 143 posters accepted
- 27 papers already submitted to the journal
- ⇒ Largest Track very difficult to make everybody happy
- Broad variety of Grid and Cloud related topics

Outline, macrosubject

- WM and DM evolutions for LHC exp
- WAN data access
- Clouds and virtualization
- EGI and OSG middlewares

Hot subjects, a catch all list

- Cloud computing and virtualization
- Non-relational databases
- Many core processors exploitation
- CERNVM File System for data access
- End to end network monitoring
- Event and file level caching
- Federated distributed storage systems
- WAN data access
- Http/WebDAV data interface
- Dynamic file catalogue
- FTS3
- Peer to peer data access solutions
- Three tiers memory stack including SSD

WM and DM evolutions for LHC exp

- All experiments have built their customized workload management systems for production and analysis and data management system on top of the existing grid middleware
 - Very successful in delivering physics results
- But experiments are trying to
 - streamline systems
 - remove unnecessary components
 - ease operations with limited person-power
 - find commonalities
 - scale to higher needs
 - adapt to new technologies
- The CMS workload management system https://indico.cern.ch/contributionDisplay.py?contribId=579&confId=149557
- The ATLAS Distributed Data Management Project, Past and Future https://indico.cern.ch/contributionDisplay.py?contribId=336&confId=149557

The CMS workload management system

https://indico.cern.ch/contributionDisplay.py?contribId=579&confId=149557

Workload Management (old)

- No workflow repository or request bookkeeping.
- Agent scalability issues:
- Manpower intensive: feed workflow, monitor output, check for errors etc.
- Limit on number of jobs an instance can handle speed of submission / tracking.
- Designed for producing simulation data rather than processing real data (loss of few % of events no longer acceptable).
- Analysis (users) used different system.
- Very little shared code / experience.

CMS

New WM system

WMAgents acquire Blocks of Work

- Consolidate analysis and organized activity
 - Same components but different instances
 - Prevent interference
- Single entry point for requests.
 - Permanently recorded reproducible
 - Requester can view status.
- Prioritization between requests.
- Approval chain.
- Work distributed automatically & optimally to resources.
- Reduced manpower needs.
- Adapt to new features / requirements:
- Pilot jobs.
- Multi-core processes.
- Some use cases require all events to be processed.
 - Cope with intermittent problems.

The ATLAS Distributed Data Management Project Past and Future

https://indico.cern.ch/contributionDisplay.py?contribId=336&confId=149557

The next \mathcal{DDM} version: \mathcal{R} ucio

Why a new major version?

- New high-level use cases and workflows
- New technologies, paradigms and middleware
- Difficult to extend the existing system with new concepts
- Old design (2006) with some conceptual limitations and heavy operational burden

High Level Roadmap

- 2011: Technical meetings with other LHC experiments, user surveys, collection of use cases
 - ⇒ Conceptual model document
- 2012: Parallel and incremental development track, incubator projects, preparatory steps
- 2013: Rucio in production

Open Protocols - \mathcal{DQ}_2 Share

 \mathcal{DQ}_2 via HTTP - https://bourricot.cern.ch/dq2/share/

- HDFS cluster as cache back-end
- HTTP redirection to webday sites (in development)

Rucio Base Technologies

Clients & Server

- RESTful APIs
- Web Service Gateway Interface (WSGI) Python server
- Service-Based authentication with token and support of different types of credentials: X509, GSS, etc.

Backend baseline services

- Relational database management system (Oracle)
 - Use cases: Real-time data and transactional consistency
- Non relational structured storage (Hadoop)
 - Use cases: Search functionality, realtime stats, monitoring, meta-data, complex analytical reports over large volumes
 - See "The ATLAS DDM Tracer monitoring framework"

ATLAS DDM references

- ullet ATLAS Distributed Data Management delivered a working $\mathcal{D}\mathcal{D}\mathcal{M}$ system to the collaboration in time for LHC data taking
- New services, to manage the complete data life cycle, have been introduced and tuned over the year
- The \mathcal{DQ}_2 system is scaling and manages the current load to date
- We continue to optimise and tune the system, but we need to adapt to a changing landscape of distributed computing services
- \mathcal{DDM} team are currently developing a new version \mathcal{R} ucio , anticipated for 2013, in order to ensure system scalability, reduce operational overhead and support new ATLAS use cases

EXPERIMENT GRID IMPROVEMENTS, COMMONALITIES

Conclusions

- HC was successful in stress testing, and is now heavily used for functional testing
 - · 8.3 million ATLAS jobs, 8 million CMS jobs in 2012
 - ~130 ATLAS sites, ~80 CMS sites tested
 - More that 2 billion metric records stored in 2012.
 - LHCb still developing...
- Use-cases are expanding, so we are working on scalability of the service.
 - Improved service design/procedures
 - Finding redundant tests should lead to improved efficiency

Experience in Grid Site Testing with 21
EGI-InSPIRE RI-261323

D. van der Ster

Study if ATLAS Panda is suitable for analysis in CMS - HammerCloud is used among 3 experiments for grid site validation

Employing peer-to-peer software distribution in ALICE Grid Services to enable opportunistic use of OSG resources

- Managed Central Software
 - Additional AliEn torrent store
 - Catalogue, seeder & tracker
- Grid site SW deployment
 - VO Box is not involved
 - Jobs pull SW from:
 - · alitorrent.cern.ch seeder
 - local peers
 - · other sites as available
 - though typically behind a FW
- Resolves:
 - Bottleneck & single point failures
 - Site level maintenance of shared area

Employing peer-to-peer software distribution in ALICE Grid Services to enable opportunistic use of OSG resources

- Software deployment on shared area
 - Bottleneck & site-level single point failure
 - site-level SW corruption requires admin intervention
- Torrent model → AliTorrent
 - Removes bottleneck & site-level single point of failure
 - Eliminates a site service & reduces site management
 - Performance capabilities meets typical ALICE workflow & site requirements
 - Eliminates requirement for site-specific VO box
- We have leveraged this capability to demonstrate AliEn workflow for opportunistic use of multiple OSG resources
- AliTorrent is a site-friendly tool for opportunistic (or general) use
 - don't ask the site to "do" something → install or manage a service
 - ask the site to "not do" something → block torrent use

WAN data access

https://indico.cern.ch/contributionDisplay.py?contribId=591&confId=149557

Content Delivery

Why is our problem harder than Netflix?

NETFLIX

- Netflix delivers streaming video content to about 20M subscribers
- Routinely quoted as the single largest user of bandwidth in the US

Catalogs

Content Servers

Contents Servers

3 Terabit service providers

Content Servers

By the numbers

We have a smaller number of clients, less distribution, and higher bandwidth per client

	NETFLIX	HEP
Bandwidth per client	1.5Mbit	IMB
Clients	IM*	100k cores
Serving	1.5Tbits	0.8Tbits
Total Data Distributed	I2TB	20PB

They have much less data

Similar Problems
Not all files
are equally accessed

Forward Physics

LHCOne intro

- High Energy Physics has a lot of data in a highly distributed environment
 - Hard to make many multiple static copies
 - Need to be able to make dynamic replicas and clean up
 - Need to access data over long distances
- Trying to make networking more predictable
 - Enter LHCOne

LHCONE in a Nutshell

- ► LHCONE was born (out the 2010 transatlantic workshop at CERN) to address two main issues:
 - To ensure that the services to the science community maintain their quality and reliability
 - To protect existing R&E infrastructures against overuse by our traffic
- ➡ LHCONE is expected to
 - Provide some guarantees of performance
 - Large data flows across managed bandwidth that would provide better determinism than shared IP networks
 - ♦ Segregation from competing traffic flows
 - Use all available resources, especially transatlantic
 - Provide Traffic Engineering and flow management capability
 - Leverage investments being made in advanced networking

Using Xrootd to Federate Regional Storage

http://indico.cern.ch/contributionDisplay.py?contribId=381&confId=149557

Introducing Federations

- Remote access gives us data for one site. We need a federation to access all sites.
- Definition of a federated storage system*:
 - A collection of disparate storage resources managed by cooperating but independent administrative domains transparently accessible via a common namespace.

Federations, in practice

- The federation approach has been used by ALICE for many years; used ALIEN, not Xrootd to federate.
- USCMS started federating T2s in 2010; grew to all sites in 2011.
 - Project is named "Any Data, Any Time, Anywhere" or AAA.
- USATLAS started in 2011 and quickly grew to all sites.
 - Project named "Federated Atlas Xrootd", or FAX.
- Equivalent projects in EU are being worked on.

AAA Deployment

- Currently, redirector at xrootd.unl.edu.
- Includes the FNALTI (dCache) and 8T2s (5 HDFS, I dCache, I Lustre, I L-Store).
- During April, our monitoring recorded:
 - Over 300 unique users,
 - 900K file transfers
 - 300TB moved.

FAX Deployment

FAX is a 15PB federation, including ATLAS T3s and multiple layers of hierarchy.

CLOUD COMPUTING IN ATLAS

EFFICIENCY, ELASTICITY

ATLAS Cloud Computing R&D

- ATLAS Cloud Computing R&D is a young initiative
 - Active participation, almost 10 persons working part time on various topics
 - Goal: How we can integrate cloud resources with our current grid resources?

Data processing and workload management

- · PanDA queues in the cloud
 - . Centrally managed, non-trivial deployment but scalable
 - Benefits ATLAS & sites, transparent to users
- Tier3 analysis clusters: instant cloud sites
 - Institute managed, low/medium complexity
- Personal analysis queue: one click, run my jobs
 - . User managed, low complexity (almost transparent)

Data storage

- Short term data caching to accelerate above data processing use cases
 - Transient data
- Object storage and archival in the cloud
 - Integrate with DDM

EGI-InSPIRE RI-261323

Fernando H. Barreiro Megino (CERN IT-ES) CHEP+ New York May 2012

www.egi.eu

Data Access Tests

- Evaluate the different storage abstraction implementations that cloud platforms provide
- Amazon EC2 provides at least three storage options
 - Simple Storage Service (S3)
 - Elastic Block Store (EBS)
 - Ephemeral store associated with a VM
 - Different cost-performance benefits for each layout that need to be analyzed
- Cloud storage performance on 3-node PROOF farm
 - EBS volume performs better than ephemeral disk
 - But ephemeral disk comes free with EC2 instances
 - Scaling of storage space and performance with the size of the analysis farm

Results

- 100 nodes/200 CPUs at Cloud Sigma used for production tasks
- · Smooth running with very few failures
- Finished 6 x 1000-job MC tasks over ~2 weeks
- We ran 1 identical task at CERN to get reference numbers

	HELIX	CERN
Success Rates	265 failed, 6000 succeeded	36 failed, 1000 succeeded
Mean Running Times	$16267s \pm 7038s$	$8136.6s \pm 765.5s$

- Wall clock performance cannot be compared directly, since we don't have the same hardware on both sites
 - CloudSigma has ~1.5Ghz of AMD Opteron 6174 per jobslot, CERN has a ~2.3GHz Xeon L5640
- Best comparison would be CHF/event, which is presently unknown

EGI-InSPIRE RI-261323

Fernando H. Barreiro Megino (CERN IT-ES CHEP – New York May 2012

www.egi.e

ATLAS with extensive Cloud R&D, tested production on commercial cloud

F. Barreiro Megino, ATLAS

FURTHER CLOUD EXAMPLES

DIRAC Virtual Engine

Virtual Machine Job Running

Fernandez Albor, V. Mendez Munoz,

FURTHER CLOUD EXAMPLES

INTH WNoDeS, Architectural Overview It can be a local job, a Grid job, a VM instantiation request, a General schema to handle a VW request for a Cloud service. All Request service/lob instantiation request these requests get transparently translated into 'jobs'... that are handled by an LRMS (a batch system). LRMS-based policies allow flexible scheduling and (Batch System) scalable access to resources... Every physical system runs a special process called "bait". Its purpose is to manage local that can be based on a mix of systems: some capable of resources and arbitrate access to Resources KVM-based virtualization, some dynamically created local VMs. traditional, non-virtual resources. CHEP - May 22, 2012 Exploiting resources with WNoDe5 - D.Salomoni

- Setup local Virtualization or Cloud cluster with ROCED
- WNoDeS Mixed Mode lets a resource center to progressively introduce virtualized services without disrupting existing setups and maximizing resource utilization

D. Salomoni

Development Roadmap of the EMI middleware

https://indico.cern.ch/contributionDisplay.py?contribId=273&confId=149557

EMI Ecosystem zoomed

Show-case 1: Data Industry Standards

- Industry standard protocols for accessing SEs and the catalog
 - DPM and dCache ready for NFS4.1
 - HTTPS offered by DPM, StoRM and dCache
 - WebDAV support in DPM and dCache
 - WebDAV support being developed in FTS3 and LFC
- Vital part of the greater vision for EMI Data

The last peak (Y3 development plans)

General strategy:

- Complete product developments:
 - FTS3, GFAL2
 - STS
 - EMI Datalib
- Product hardening, focus on usability
- Integration and adoption of common EMI solutions (EMIR, CANL)
- Migration plans, compatibility

The Open Science Grid – Support for Multi-Disciplinary Team Science – the Adolescent Years

https://indico.cern.ch/contributionDisplay.py?contribId=475&confId=149557

Maturing

- ◆OSG is being supported for another 5 years.
 - ★ Strong support from DOE and NSF.
- ◆ Endorsement to not only continue focus on physics but also continue broad engagement of other sciences making use of OSG.
 - ★ Sustain services for LHC and make significant contributions to LHC upgrade.
 - ★ Extend, simplify, and adapt services and technologies for other sciences.
 - ★ Continue community partnerships and facilitation of peer infrastructures in Europe, South America, Asia, Africa.

Sustain Services & Expand Science Communities

◆LHC

- ★ Continued focus on LHC support for ATLAS, CMS, ALICE USA distributed computing in the US.
- ★Active /proactive contributions on behalf of US LHC to WLCG to TEG reports and implementation follow ons.
- ★ Prepare for LHC shutdown and upgrade.
- ◆ Embrace future physics, nuclear physics, astrophysics experiments: Belle II, DES, EIC, LSST, SuperB... (will explain these..)

Looking towards and beyond 2015 – Computer Science Research

- ◆OSG's existing capabilities are effective but basic and primitive.
 - ★ Improvements will rely on external research, development and contributions.
- Integrate static resources with dynamically allocated resources (like clouds).
- New globally capable, usable, and integrated frameworks for collaborative environments: data, security, workflows, tools for transparency, diverse resource resources.
- http://osg-docdb.opensciencegrid.org/0011/001106/001/OSG-CSresearchNeeds.pdf

Posters of interest

- Hybrid C++/Python components for physics analysis and trigger
- Preparing for the new C++11 standard
- Improvements in ROOT I/O
- XRootD client improvements
- ROOT: High Quality, Systematically
- . Computing On Demand: Dynamic Analysis Model
- The PhEDEx next-gen website
- From toolkit to framework the past and future evolution of PhEDEx
- Belle II Data Handling System
- EMI-european Middleware Initiative
- Workload management in the EMI project
- A General Purpose Grid Portal for simplified access to Distributed Computing Infrastructures
- . Improving Geant4 multi-core's performance and usability
- . The Geant4 Virtual Monte Carlo
- GFAL 2.0 Evolutions & GFAL-File system introduction
- Multi-threaded Event Reconstruction with JANA
- The WLCG Messaging Service and its Future