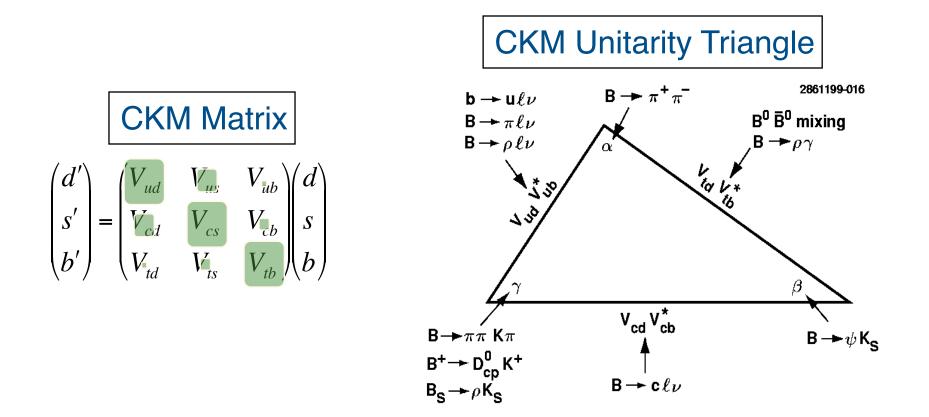
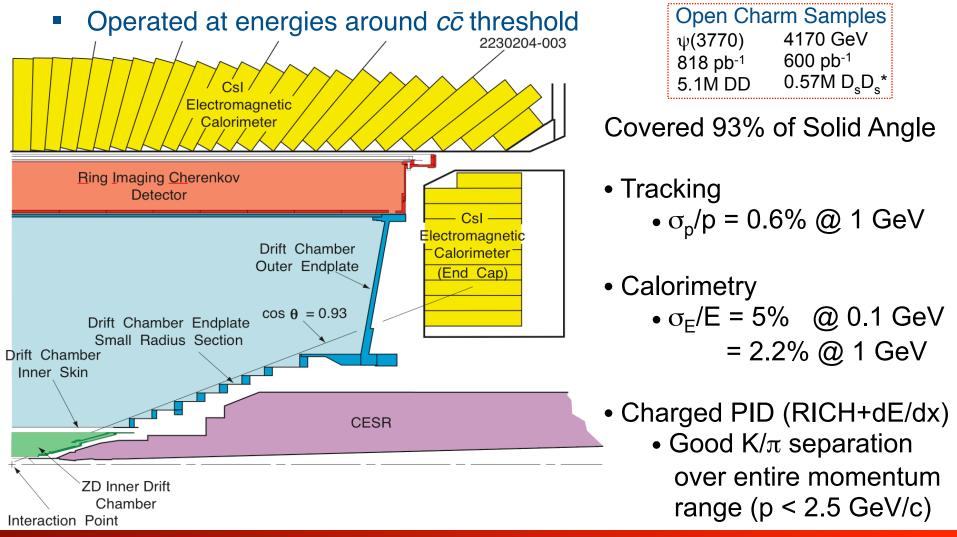

Advances in Open Charm Physics at CLEO-c

Paras Naik

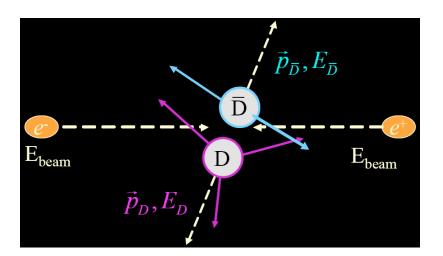

Goals of Open Charm studies at CLEO-c

Other CLEO-c Studies: Charmonium XYZ States D* Spectroscopy

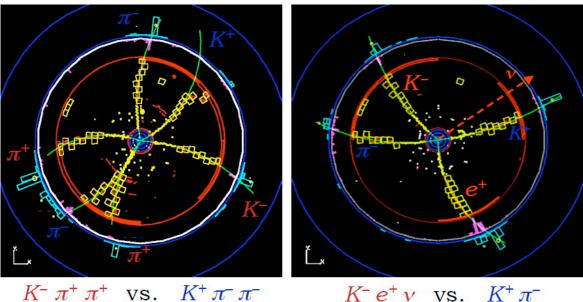
Paras Naik, University of Bristol


CKM

Charm impact on measurements of γ/ϕ_3 with B \rightarrow DK Lattice QCD tests in Charm sector


CLEO-c Detector (December 2003 - March 2008)

Hermetic detector based at CESR (the Cornell Electron Storage Ring)

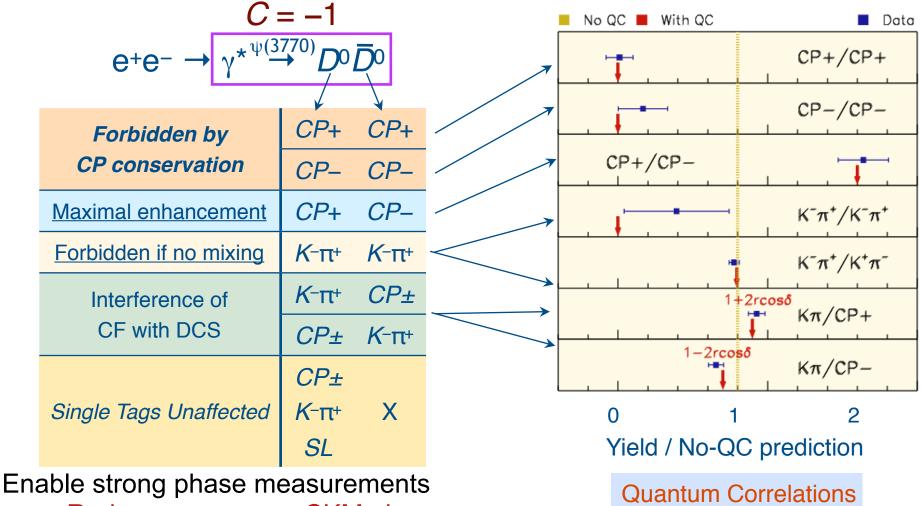


Paras Naik, University of Bristol

D Physics with Tags

- $\psi(3770)$ provides large $\sigma(D\overline{D})$
- Reconstruct 1 D: "single tag"
- Reconstruct 2 D's: "double tag"
- High efficiency tagging of hadronic decays defines "beam" of D's on other side of event

Key Analysis Variables


$$M_{bc} = \sqrt{E_{beam}^2 - p_D^2}$$
$$\Delta E = E_{beam} - E_D$$
$$U = E_{miss} - |P_{miss}|$$
$$MM^2 = E_{miss}^2 - P_{miss}^2$$

Paras Naik, University of Bristol

Coherent vs. Incoherent Decay

D. Asner and W. Sun, Phys. Rev. D73, 034024 (2006) Phys. Rev. D77, 019901(E) (2008)

Clearly visible in data!

- Reduce sys. err. on CKM phase $\boldsymbol{\gamma}$
- Interpret charm mixing results

Paras Naik, University of Bristol

Measuring δ_D^{Kπ} and D-Mixing parameters with Quantum Correlated D's

PRL 100, 221801 (2008) PRD 78, 012001 (2008)

Take advantage of $\psi(3770)$	Parameter	Standard Fit	Extended Fit
281 pb ⁻¹ = 10 ⁶ <i>C</i> -odd <i>D</i> ⁰ D 0	$y (10^{-3})$	$-45\pm59\pm15$	$6.5 \pm 0.2 \pm 2.1$
and calculate mixing parameters	$r^{2}(10^{-3})$	$8.0 \pm 6.8 \pm 1.9$	$3.44 \pm 0.01 \pm 0.09$
via interference of two D decays	$\cos \delta$	$1.03 \pm 0.19 \pm 0.06$	$1.10 \pm 0.35 \pm 0.07$
	$x^2 (10^{-3})$	$-1.5 \pm 3.6 \pm 4.2$	$0.06 \pm 0.01 \pm 0.05$
First	$x\sin\delta\ (10^{-3})$	0 (fixed)	$4.4 \pm 2.4 \pm 2.9$
	$\chi^2_{\rm fit}/{ m ndof}$	30.1/46	55.3/57

First determination (281 pb⁻¹)

 Extended fit with a likelihood scan of the physically allowed region leads to a measurement of:

- Selects one of two possible solutions for δ
- Future
 - We need to control non-linearities in the fit
 - Adding many additional modes
 - Will use full 818 pb⁻¹ sample (3*10⁶ C-odd pairs)

Paras Naik, University of Bristol

23 June 2010, IX BEACH International Conference

IFAG-charm

FPCP 2007

10

8

6

03

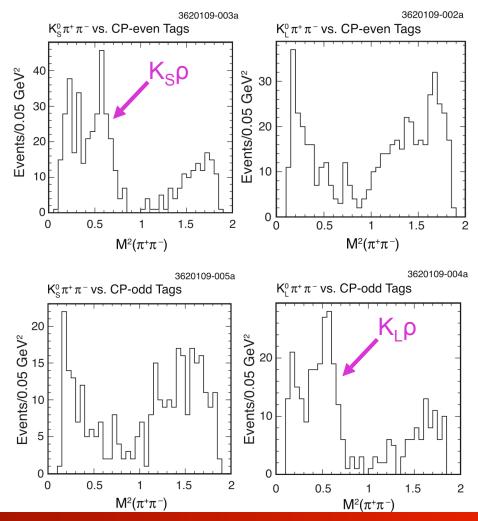
CPV allowed

with CLEO

2

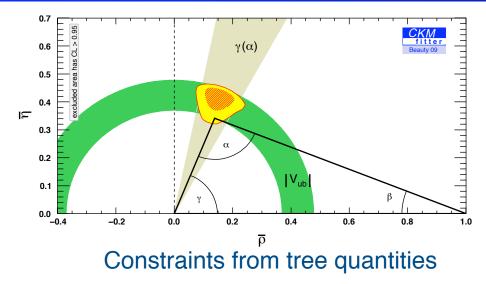
E. Barberio et al., "Averages of b-hadron and c-hadron

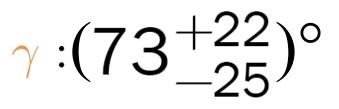
Properties at the End of 2007," arXiv:0808.1297 and online update at


http://www.slac.stanford.edu/xorg/hfag

δ (radians)

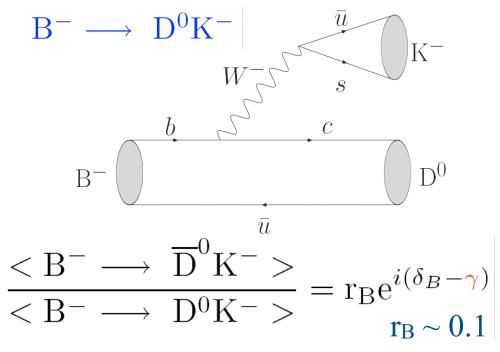
stat.-only rslt

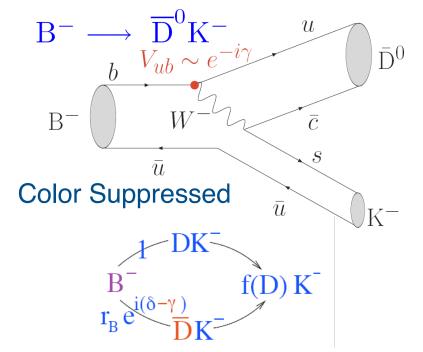

Example: CP-tagged Ks/Lπ+π Dalitz plots Phys. Rev. D 80, 032002 (2009)


Clear differences seen between CP-odd and CP-even:

Paras Naik, University of Bristol

CKM phase γ/ϕ_3





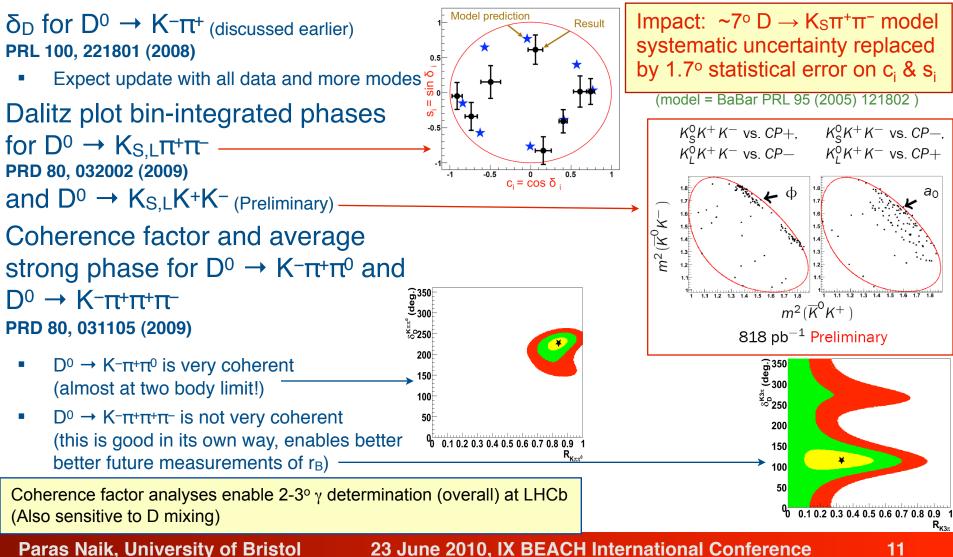
Fit from direct measurements only (CKM Fitter, Beauty 2009) CKMfitter Group (J. Charles et al.), Eur. Phys. J. C41, 1-131 (2005) [hep-ph/0406184], updated results and plots available at: http://ckmfitter.in2p3.fr

- Of the three CKM phases, γ is the least constrained.
- A precision measurement of γ is essential in order to test the internal consistency of the CKM unitarity triangle.
- In addition, tree measurements of γ compared to loop measurements may provide a first indication of New Physics in the flavor sector.
- The precision measurement of γ is one of the most important measurements of LHCb and e+e⁻ flavor factories

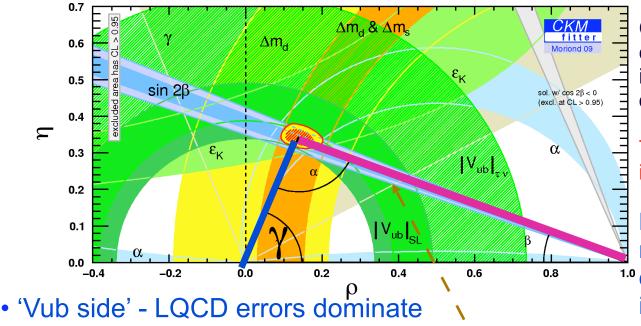
Measuring the CKM phase γ/ϕ_3 via B \rightarrow DK

BaBar: (63⁺³⁰_{−28} ± 8 ± 7)°

(PRD 78 034023 (2008))


Belle: $(76^{+12}_{-13} \pm 4 \pm 9)^{\circ}$

(arxiv:0803.3375)


- The CKM phase γ can be determined through the *interference* between the $b \rightarrow c$ and $b \rightarrow u$ transitions $\mathcal{K}^0_{S} \pi^+\pi^-$ only:
- Require the neutral D mesons to decay to the same final state f(D)
- This method is theoretically clean
- Success of this method requires that the D decay is well understood

D decay studies for γ/ϕ_3 at CLEO-c

• CLEO-c takes advantage of the Quantum Correlations in our $(D^0\overline{D}^0)_{\psi(3770)}$ sample

Tests of Lattice QCD using Charm

CKM unitarity triangle is constrained by over 50 independent measurements in B decays

TeV scale revealed by inconsistencies - not seen.

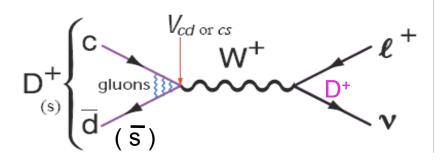
But uncertainty on *key* measurements have high ^{1.0} dependence (direct & indirect) on D decays:

 $D \rightarrow \pi$ form factors (normalization & q² dependence) test/develop LQCD

• 'Mixing' side - Depends on LQCD calculation of ($f_{Bs} \sqrt{B_{Bs}}$) / ($f_{Bd} \sqrt{B_{Bd}}$)

Measure f_{Ds}/f_D to test LQCD 'Mixing Side' of unitarity triangle determined by B_d/B_s oscillation rates – box diagrams sensitive to new physics – and QCD corrections

Calculated on lattice – present assigned uncertainty ~5% (and will decrease) Very well known (~0.3%), since observation of B_s mixing


Length = $(f_B \sqrt{B_B}) / (f_B \sqrt{B_B}) \sqrt{(\Delta m_d m_B)} / (\Delta m_s m_B) = |V_{td}/V_{ts}|$

Highly desirable to cross-check lattice against experiment in the D system!

Paras Naik, University of Bristol

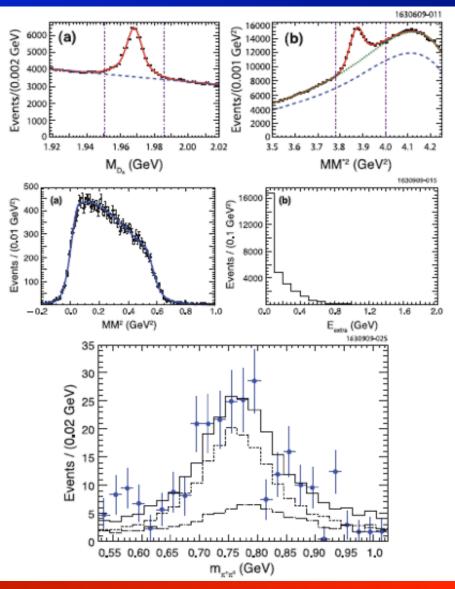
Leptonic D Decays and Decay Constants

In D⁺ and D_s c and spectator quark can annihilate to produce leptonic final state:

In general, for all pseudoscalars:

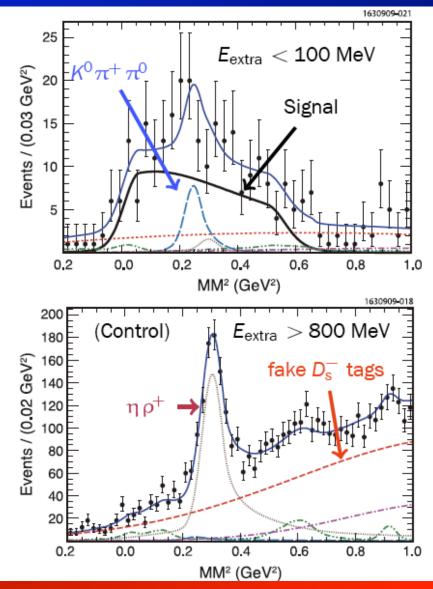
$$\Gamma(\mathbf{P}^{+} \to \ell^{+} \nu) = \frac{1}{8\pi} G_{F}^{2} f_{P}^{2} m_{\ell}^{2} M_{P} \left(1 - \frac{m_{\ell}^{2}}{M_{P}^{2}} \right)^{2} |V_{Qq}|^{2}$$

Since V_{cd} and V_{cs} well known, can extract $f_D \& f_{Ds}$ and compare with lattice calculation


Measurement modes are

- $D^+
 ightarrow \mu^+ \nu$ PRD **78** 052003 (2008)
- $D_{s}^{+}
 ightarrow \mu^{+} \nu$ PRD **79** 052001 (2009)
- $D^+_{
 m s}
 ightarrow au^+
 u$ ($au^+
 ightarrow \pi^+ ar{
 u}$) PRD **79** 052001 (2009)
- $D^+_{
 m s}
 ightarrow au^+
 u$ ($au^+
 ightarrow e^+
 u ar{
 u}$) prd **79** 052002 (2009)
- $D_s^+
 ightarrow au^+
 u$ ($au^+
 ightarrow
 ho^+ ar{
 u}$) PRD **80** 112004 (2009) [NEW]

D_s→µ⁺v Best Measured at Threshold D→µ⁺v, D→τ⁺v & D_s→τ⁺v Only Measured at Threshold Also interested in ratios D_(s)→µ⁺v/D_(s)→τ⁺v


CLEO-c $D_s^+ \rightarrow \tau^+ \nu \rightarrow (\rho^+ \nu)_{\tau^+} \nu$

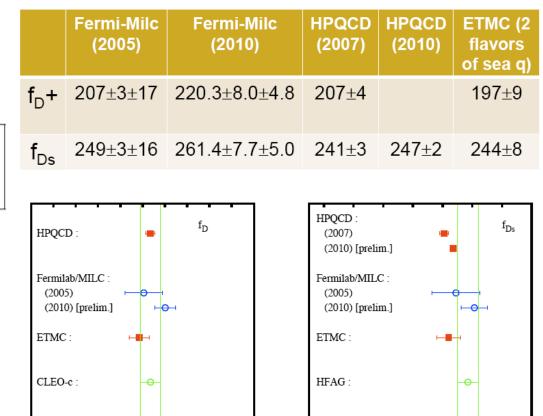
- $\mathcal{B}(\tau^+ \to \pi^+ \pi^0 \bar{\nu}) = 26\%$: large!
- Only two neutrinos to deal with: enough kinematic separation to extract signal
- From sample of D_s⁻ tag events, find ρ⁺, veto extra tracks and compute missing mass squared
 - for signal, is a plateau from 0 to 0.5 GeV²
- For signal, extra calorimeter energy E_{extra} is small

CLEO-c $D_s^+ \rightarrow \tau^+ \nu \rightarrow (\rho^+ \nu)_{\tau^+} \nu$

- Large peaking backgrounds (K⁰ρ⁺, ηρ⁺, π⁰π⁺π⁰) are measured in CLEO-c data
- Fake tag background from tag mass sidebands
- Resolutions checked with data
- Not shown: additional fit for $E_{\text{extra}} \in [100, 200] \text{ MeV}$

Test of Lattice: CLEO-c Combined Leptonic Results

 $D_s^+ \to \mu^+ \nu$ and three $D_s^+ \to \tau^+ \nu$ measurements statistically independent: combine


Average:

Also from CLEO-c:

PRD 78 052003 (2008)

 $f_{D_{\rm s}} = 259.0 \pm 6.2 \pm 3.0 \; {\rm MeV}$

Latest Theory

160

180

200

220

MeV

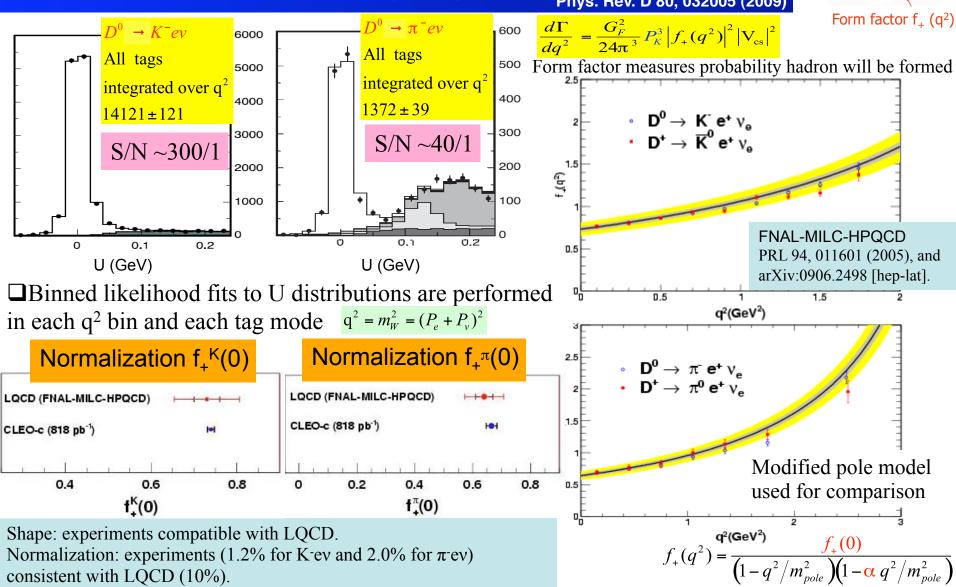
240

260

280

300

 $f_D = 205.8 \pm 8.5 \pm 2.5 \; \text{MeV}$


Paras Naik, University of Bristol 23 June 2010,

100 120 140 160 180 200 220 240 260 280 300

MeV

Advances in Open Charm Physics at CLEO-c

Test of Lattice: $D^0 \rightarrow \{K/\pi\}^-e^+\nu$ Form Factors Phys. Rev. D 80, 032005 (2009)

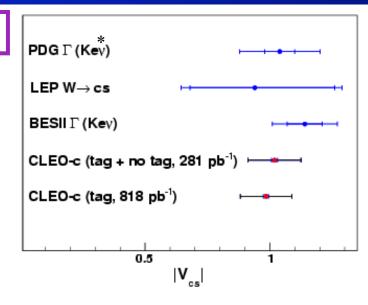
Paras Naik, University of Bristol

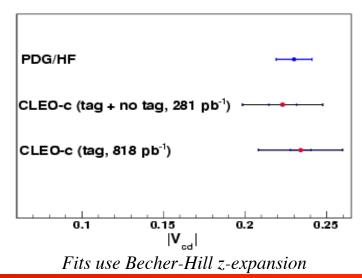
23 June 2010, IX BEACH International Conference

17

V_{cd}

IV_{cs}I & IV_{cd}I Results


Phys. Rev. D 80, 032005 (2009)


500th CLEO Publication: 100 authors, 21 Institutions

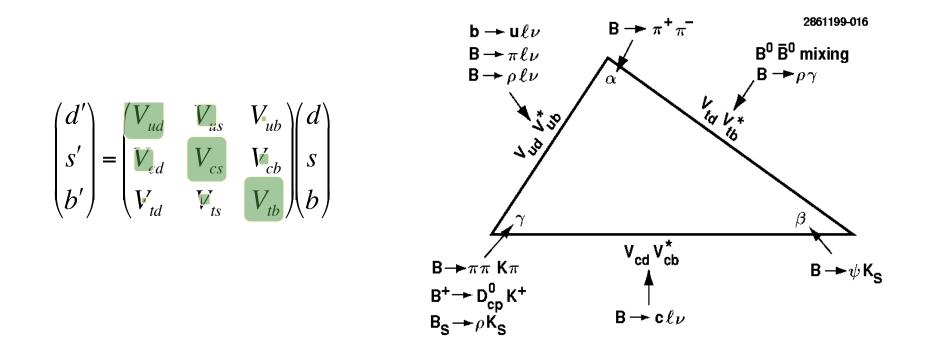
CLEO-c: the most precise *direct* determination of V_{cs} $\sigma(|V_{cs}|)/|V_{cs}| \sim 1.1\%(expt) \oplus 10\%(theory)$ *CLEO-c* $|V_{cs}|$ (818 pb⁻¹) $0.985 \pm 0.009 \pm 0.006 \pm 0.103$ stat syst theory

CLEO-c: $\sigma(|V_{cd}|) / |V_{cd}| \sim 3.1\%$ (expt) $\oplus 10\%$ (theory)

CLEO - c $|V_{cd}|$ (818 pb⁻¹) $0.234 \pm 0.007 \pm 0.002 \pm 0.025$
statstatsysttheory* PDG2000LQCD form factors with improved
precision are eagerly awaited!

Paras Naik, University of Bristol

Summary


Hadronic Decays:	Absolute branching fractions, inclusive yields from D_s , exclusive $D^0/D^+/D_s \rightarrow PP$, exclusive $D_s \rightarrow \omega$, Dalitz
CP Violation:	plots, DCS decays, symmetry tests Experiments entering interesting territory due to data driven estimates of systematic uncertainties. CLEO
Charm Mixing:	D decays will have an impact. Discovery of D ⁰ -D ⁰ oscillation points way forward to searches for CPV & New Physics.
Rare Charm Decays:	Experiments entering interesting territory - expect more results soon from CLEO, BESIII, B-factories & Tevatron that provide constraints on New Physics.
Precision CKM Tests:	Success of the B-factories and the Tevatron has meant that unitarity triangle tests are entering a new, precision era. Charm input is a vital ingredient.

CLEO-c has made many advances in Open Charm physics. More physics results from us in 2010 and 2011!

Additional slides

Charm Impact on CKM

Charm impact on measurements of γ/ϕ_3 with B \rightarrow DK Lattice QCD tests in Charm sector

Paras Naik, University of Bristol

Rare Charm Processes

Charm provides constraints on beyond SM physics that are distinct from B and K sectors
Only now are experiments reaching "interesting" sensitivity

Rare Decays = Search for New Physics
 Charm Mixing → Constraints on New Physics
 CP Violation = Search for New Physics

CPV Searches in CLEO study of $D^+ \rightarrow K^+ K^- \pi^+$

- Singly Cabibbo Suppressed (SCS) decays Interference between tree & penguin can generate direct CP asymmetries which:
 - Could reach ~10⁻³ in SM may be observable!
 - In NP models effects of ~10⁻² possible

(Grossman, Kagan, Nir, PRD 75 (2007) 036008)

Analysis with high sensitivity:

•Compare amplitude fits of D⁺ & D⁻ Dalitz plot (model dependent)

125

100 40 75 20 50 25 0 -25 -40-50 -60 2 1.5 2.5 1.5 2 1 0.5 $m^{2}(K^{-}\pi^{+})$ (GeV²) $m^{2}(K^{+}K^{-})$ (GeV²)

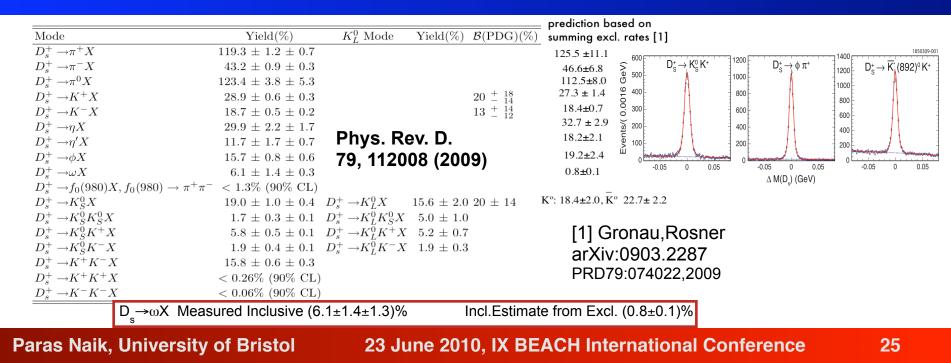
60

CLEO-c 818 pb⁻¹ PRD78:072003,2008

3

Hadronic D/D_s Decays

- Absolute Branching Fractions
 D⁰→Kπ, D⁺→Kππ, D_s→KKπ
- "Complete Set" of PP
 D⁰/D⁺/D_s→PP with P=K±,K_s,K₁,π±,π⁰,η,η'
- Inclusive D_s Rates
- Exclusive D_s→ω
- Baryonic D_s Decay
- Dalitz plots


Already discussed CP Violation CKM phase γ Charm Mixing

24

Comprehensive Analysis of D⁰/D⁺/D_s→PP

with P=K+,K_S,
$$\pi$$
+, π^{0} , η , η' – not K_L
 $\pi^{0} \rightarrow \gamma\gamma$, K_S $\rightarrow \pi^{+}\pi^{-}$, $\eta \rightarrow \gamma\gamma$, $\eta' \rightarrow \pi\pi\eta$
3 Normalization modes
3 Upper limits
23 Branching Fractions
9 D+ modes
9 D+ modes
9 D+ modes
12 D⁰ modes
8 D_s modes
9 D+ modes
12 D⁰ modes
10 mo

Inclusive D_s Rates

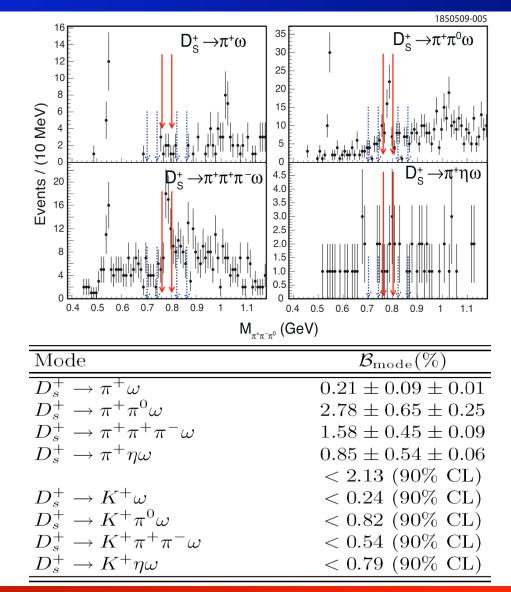
Invariant Mass (GeV)

D_s Exclusive Decays with an ω

Inclusive Branching Fraction $D_s \rightarrow \omega X$ is (6.1±1.4)%

unexpectedly large Previously only excl. mode observed $D_s \rightarrow \pi^+ \omega$ (0.25±0.09)%

Use 18,586±163 D_s tags


 $D_s \rightarrow K_S K$, $\phi \pi$, $K^* K$

Sum of exclusive rates consistent with inclusive

(5.4±1.0)%

Expect $D_s \rightarrow \pi^+ \pi^0 \pi^0 \omega$ O(1%)

Phys.Rev.D80:051102,2009 arXiv:0906.2138

