Report from

S. Longo — 4° SuperB Collaboration Meeting — La Biodola

Event Processing Track Summary
b -v

Adam Lyon (Fermilab)
Axel Naumann (CERN)
Rolf Seuster (CERN)

CHEP 2012 @ NYC

https://indico.cern.ch/contributionDisplay.f

https://indico.cern.ch/contributionDisplay.py?sessionId=0&contribId=598&confId=149557

Ovutline

Processing on multicores

Processing on GPUs

% b Common frameworks
AT

Simulations

A_ Lyon, Event Track Summary, CHEP 2012 @ NYC

S. Longo — 4° SuperB Collaboration Meeting — La Biodola

Study of a Fine
Grained Threaded

Framework Design

Christopher Jones
FNAL
On behalf of the CMS Offline Organization

https://indico.cern.ch/contributionDisplay.py?sessionld=3&contribld=1948&confld=149557

Friday, May 18, 12

https://indico.cern.ch/contributionDisplay.py?sessionId=3&contribId=194&confId=149557

Events can be processed in parallel

An Event 1s tiltered by Paths

Paths run in parallel

Paths hold a list of Filters

Filter runs only if previous Filter passes

EndPaths hold OutputModules
EndPaths run in parallel after Paths finish

Producers make data

Run first time their data is requested
Producers run in parallel

Filters, Producers & OutputModules

All are referred to as Modules
Run only after their input data is available

C.Jones Threaded Framework 10 CHEP 2012 €k Fermilab

Friday, May 18, 12

S
.—"'_Fl_,

C.Jones Threaded Framework I CHEP 2012 £:Fermilab

Friday, May 18, 12

libdispatch

CMS.
W

Developed by Apple Inc

Port is available for Linux and Windows

Task Queue based system

Task is a C/C++ function plus context
Context can be any data you want

Tasks are placed in a Ii%ht weight queue

Can easily support millions of queues in one process
Tasks are pulled from queues and then run
System guarantees that cores are not oversubscribed

C.Jones Threaded Framework 31

CHEP 2012 £ Fermilab

Friday, May 18, 12

IJmplementation >

Events

Run N Event instances simultaneously using global concurrent queue
N is configurable

Paths

Path starts a task for the first Filter on the Path
When Filter finishes it launches a task to run the next Filter on the Path

Modules

Modules have a list of data they will request from Event
Used to do parallel prefetching

Modules are shared between all Event instances
Keeps memory overhead as low as possible

ModuleWrappers

One per Module per Event
Has serial queue used to guarantee module is run only once per event
Has a task group used to notify when data prefetches have completed

PtoducerWrappets

One per Producer per Event
Remembers if Producer has already run for that Event
Has a task group used to notify others when Producer has made its data

C.Jones Threaded Framework 46 CHEP 2012 €5Fermilab

Friday, May 18, 12

CMS

Measurement Strate =

Approximate reconstruction behavior

489 Producers

2 OutputModules

278 Producers have their data requested directly from OutputModule

Module Dependencies

What data each module uses
Such information is recorded by CMS framework already

Module Timing
Get per event module timing for 201 | high pileup data

~30 interactions per crossing

Feed dependencies and timing to demo tramework

Compare timing to a simple single threaded demo framework
Allows estimate of overhead from libdispatch

C.Jones Threaded Framework 77 CHEP 2012 £k Fermilab

Friday, May 18, 12

Sca,[ing: 16 Cores =

Throughput Relative to Single Threaded
0.5

N

e
M

0.4

e
=

0.3

ot
o

+ Single Threaded
> Fully Re-entrant

+ Single Threaded
< Fully Re-entrant

Events/Second
o
[y]

Throughput/Single Threaded Throughput

Thread-Unsafe 0.4 Thread-Unsafe
0.1
0.2
0 : : : : : 0 : : : : :
0 4 8 12 16 20 0 4 8 12 16 20
Number of Simultaneous Events Number of Simultaneous Events

Producers tully use a core by doing a numeric integration
calibrated how many seconds per integration step

Thread-unsate module case scales to 95+% of single threaded

Both are running N processes rather than N events in one process

Fully re-entrant peaks at 30% faster
C.Jones Threaded Framework 8l CHEP 2012 €5Fermilab

Friday, May 18, 12

Concurrency Limit =

Number of Running Modules vs Time for High Pileup RECO

w
==

M
o

M
=]

s
=

n

=

=]
L

Number of concurrently running modules
o

16

Average timeline for processing one event (sec)

Short periods of high module level parallelism

Long periods with only 1 or 2 modules

First period is tracking
Second period is photon conversion finding

Parallelizing within those module would be benetficial
C.Jones Threaded Framework 86 CHEP 2012 €& Fermilab

=]
=]

Friday, May 18, 12

ms

Conclusion Z
Task queue based systems can be used for HEP frameworks

Technology scales well
Can transition code to be thread safe one module at a time

Don’t expose thread primitives to physicists
Can use task queues internal to their own modules which are simpler than locks

Concurrency limited by dependencies between modules

Parallelizing tasks within long running modules would be beneficial
ment and Evaluation of Vectorised and Multi-Core Event Reconstruction Algorithms within the CMS Software

Framework Software by Thomas Hauth
Session: Engineering, Data Stores and Databases Thursday 5PM

Presently testing additional threading technologies

OpenMP
Intel’s Threading Building Blocks

CMS will choose a threading technology this year

Start transitioning CMS’s framework to use threads in 2013

C.Jones Threaded Framework 87 CHEP 2012 €5Fermilab

Friday, May 18, 12

The art Framework

Chris Green
Fermilab Scientific Software

L, 2 -
Infrastructure Group 2 Fermllab
CHEP 2012 Fermi National Accelerator Laboratory

38 Office of Science / U,S, Department of Energy
21 May, 2012 Managed by Fermi Research Alliance, LLC

https://indico.cern.ch/contributionDisplay.py?sessionId=3&contribId=354&confId=149557

What and why is art?

JFJE
L. 2

e Whatis art?
art is a generic C++-based modular analysis framework,
for use from generator-level or DAQ) event building
through simulation, production and user analysis. art
grew out of the CMS framework and was developed to
satisfy the common requirements of intensity frontier
experiments (initially Mu2e, NOvA and LArSoft).
Why is art?
Most HEP experiments use a framework; art is a
framework that is being used by multiple experiments,
which has relieved them of the need to produce and
maintain their own.

Architecture

Current
Event
Store

Data Model

HEP Framework

[File Input Source] PATH2

PATHI
[Filter Madule A1) |Filter Module A2

[Filter Module B1] Filter Module B2

[Reco Module X]
|Reco Module Y|

Reca Module T| |Reco Module S

[Analysis Module 1|

|Analysis Module V|

|File Ouput Stream A| [Ouput Stream B|
Modules and Warldlow

o

Configuration

Services

Architecture

T
L 2

Experiments use art as an external package — their build
system is not tied to that used to develop art.

[/O and work schedule are handled by a state machine.
Modules are generally provided by users, and are divided
into inputs (sources), producers, filters,
analyzers and outputs.

Inter-module communication is handled principally by
means of persistent data structures (products) passed via
entities with known lifetimes: event, subrun, run.
products are distinguished from algorithms —
modules don’t need to address persistency mechanics.
products retrieved from the data store are
non-modifiable: derived or edited data are saved as a new
product.

Configurable exception handling: categorization of a
failure is distinct from its handling action.

Key features 4

e Facility for products to refer to other products in
collections already saved (Ptr).

product mixing (“pile-up”): users need to know how to
combine the data from multiple instances of a particular
product, but not the mechanics of obtaining those data
and writing out the merged product.

Metadata may be stored in a relational SOLite database in
memory and / or embedded in a ROOT data file.

Simple configuration language with partitioned module
configuration information.

Bi-directional associations (Assns) between products
already in the data store.

An input source class template for more straightforward
user implementation of “raw” data input.

Future enhancements #
Expand use of SOLite DB to all existing metadata.

Unify the concepts of event, subrun and run.
Revamp processing intervals.

Remove internal use of Reflex to be ready for ROOT/
Cling,.

Move to ISO C++ 2011 (already used in development,
artdaq).

o Allow user-defined metadata in SOQOLite DB.

» Event display toolkit (graphical toolkit agnostic):
better-defined / -suited interface to framework for
operators, algorithm developers.

» Generalize and expand CMake-based build / package
delivery system for use by experiments as an alternative to
supporting their own build system.

“Multi-schedule art”: process multiple events
simultaneously in the same executable; in addition,
allowing for algorithm parallelization within modules.

Currently prototyping DAQ event-building and triggering
using art (artdaq) in conjunction with MPI3 for DS50,
Mu2e, puBooNE, NOvr A experiments.

®» Multi-thread and multi-process parallel 1/0.

The ATLAS ROOT-based data formats:
recent improvements and

performance measurements

Wahid Bhimji
University of Edinburgh

J. Cranshaw, P. van Gemmeren, D. Malon,
R.D. Schaffer, and I. Vukotic
On behalf of the ATLAS collaboration

https://indico.cern.ch/contributionDisplay.py?sessionId=3&contribId=378&confId=149557

ROQOT I/0 features we use

_ . See e.g. P. Canal'’s talk at CHEP10
Writing files:

Split level: object data members placed in separate

branches
Initial 2011 running: AOD /ESD fully-split (99) into primitive data

From 2011 use ROOT “autoflush” and “optimize baskets™
Baskets (buffers) resized so they have similar number of entries
Flushed to disk automatically once a certain amount of data is
buffered to create a cluster that can be read back in a single read
Initial 2011 running we used the default 30 MB

Also use member-wise streaming
Data members of object stored together on disk

Reading files:
There 1s a memory buffer TTreeCache (TTC) which learns
used branches and then pre-fetches them
Used by default for AOD->D3PD in Athena
For user code S 16 theti “ = 2

Performance Results

Repeated local disk read; Controlled environment; Cache cleaned

AOD Layout Reading all events Selective 1% read

OLD: Fully split, 55 (£3) ms/ev. 270 ms /ev.
30 MB Auto-flush

CURRENT: No split, 35 (£2) ms /ev.

60 ms/ev.
10 event Auto-flush

Reading all events 1s ~30% faster

Selective reading (1%) using TAGs: 4-5 times faster

ATLAS ROOT-based data formats - CHEP 2012

CPU Efficiencies over WAN

CPU eff. for 100% default cache

CERMN-=AGLT?

CERM-=BMNL

CERN-=0U OCHEP SV
MWTZ2-=AG

MWT2 =

MWT2-=0U_OCHEP_SW
OU_OCHEF_SWT2->AGLT?
OU_OCHEF_SWT2Z-=BNL

QU_OCHEP SWTZ2->=0U_OCHEP_SWTZ
SLAC-=AGLT?

] =T -
2= -
b oy

SLAC-=BNL

SLAC—=0U_OCHEP_SWT2

SWTZ2_CPB-=AGLT2
SWT2_CPE-—=EBN

SWT2_CPE—=0U_OCHEP_SWT2

First measurements not bad rates
* 94% local read eff. drops to 60%-80% for other US sites
- and around 45% for reading from CERN

Offers promise for this kind of running if needed
« Plan to use such measurements for scheduling decisions

ATLAS ROOT-based data formats - CHEF 2012

Argonne°

NATIONAL LABORATORY

I/0 Strategies for Multicore Processing in
ATLAS

P van Gemmeren?, S Binet?, P Calafiura3, W Lavrijsen3, D Malon!

and V Tsulaia® on behalf of the ATLAS collaboration
1Argonne National Laboratory, Argonne, lllinois 60439, USA

2Laboratoire de I'Accélérateur Linéaire/IN2P3, 91898 Orsay Cédex, France
3Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

E-mail: gemmeren@anl.gov

https://indico.cern.ch/contributionDisplay.py?sessionld=3&contribld=377&confld=149557

(@) ENERGY

https://indico.cern.ch/contributionDisplay.py?sessionId=3&contribId=377&confId=149557

Current AthenaMP |I/0 infrastructure

| bnntstraEI E
| bnntstrapl E

-

' hootstraél E

[l init | fork collect &]

merge

hootstraEI E

parallel event processing

" Multiple workers handle 1/0O independently using distinct instances of a serial I/0
framework

— Each worker process produces its own output file, which need to be merged after all
workers are done.

‘ Peter van Gemmeren (ANL): "1/0 Strategies for Multicore Processing in ATLAS"
o\—- =)

18 05/21/2012

e

[init, metadata retrieve, fork]

Scatter / Gather architecture for multicore 1I/0

-

boot strap, event data processing

L
"

4 I

l- .

-~

boot strap, even:t data prncessing: ;

)

.

™
v -

boot strap, everit data proces_ﬁhir_}é 4

UL LU T TP P

Ly e '
] I" ':'. ‘
- L :.. ‘
G \
[boot strap, eve#t data prégessing] 1
E -l: - ."‘* C - \
E.'. ::" ..': & : \
E:: l'i:.‘.r'lﬂ:' - *'.‘ .‘
= |
=' _:i- -l & ‘

[~ -

T

Input Daemon (Reader)
Decompress, stream, provide pers. objects

Input File

Qutput Daemon (Writer)

Receives pers. objects, stream, cOMpresses

f
r Output File

ter van Gemmeren (AML): "1/0 Strategies for Multicore Processing in ATLAS"

A

05/21/2012

10

Shared reader strategies:
ByteStream data

" For Raw data, providing the next event is rather straightforward as all event data
are contiguously stored in a single block which is read entirely.

— At the same time, benefit of a single reader for ByteStream is small as Raw events can
be decompressed individually.

[init, metadata retrieve, fork bootstrap 4 j E E collect &]

x merge

bootstrap

+ L C] : i e 4
event# queue i]"l ITIDth'EI' process
Calls seek() to schedule #ﬂ{} to process event in worker

T

Input Daemon (Reader)
- Decompress, pmmde event data via shared memur',t announce

‘ Peter van Gemimeren (AMNL): "1/0 Strategies for Multicore Processing in ATLAS"
N\———

. 05/21/2012

Summary and Outlook

A multi-process control framework (like AthenalMP)) to enable HEP event
processing on multicore computing architectures is an important step, but it is
only one of many steps that need to be accomplished.

Optimizing event data storage, so that it can be efficiently retrieved in the
granularity needed by the multiple worker processes is key to avoiding
performance penalties during reading.

— The 2011 change to member-wise streaming with a small number of entries per basket
will help ATLAS to tackle inefficiencies in multi-process reading of ROOT data.

— The data layout also must ensure that data produced by multiple processes can be:
» efficiently combined, as merging is typically done serially,

= the resulting output is as efficient to read and store

ATLAS is in the process of developing an 1/O architecture and components that
can efficiently support even higher numbers of parallel worker processes.

First prototypes are being tested, but much work remains.

Peter van Gemmeren [AMNL): "I/ Strategies for Multicore Processing in ATLAS"

05/21/2012

17

Other really
interesting Talks

S. Longo — 4° SuperB Collaboration Meeting — La Biodola

i

N

b

\J
\

Track finding and fitting with GPUs
First steps toward a software trigger

Mohammad Al-Turany
(GSI-Scientific Computing)

https:’in" ico.cern.ch/contributionDisplay.py?sessionld=3&contribld=353&confld=149557

‘

Sy ~‘“'_“"'_.I_““,5-
¢ 2 !
I - &
- [\
_AN

https://indico.cern.ch/contributionDisplay.py?sessionId=3&contribId=353&confId=149557

107 Events/s full reconstruction in real time!

* 1 Event/s full reconstruction = 1 -10 ms = 10 000 — 100 ooo CPU
cores are needed for the online trigger

* The Challenge:
s On which data level we have to parallelize

* Event
« Tracks
 Clusters

> Which hardware to use:
« CPUs
+ GPUs
- FPGA

5/24/2012 Chep2o12

- 9
What we gain? N

{
)
4
g

[S

P |
Track/Event 50 | 100 | 1000 | 2000 70,00
GPU (Double) 25 |33 |37.5 [440 'é 60,00 11w GPU (Float)
GPU (Float) 3.0 |42 |66.7 |68.8 — 50,00
-9
1000,0 [CIGPU (Emulation)] g o
s
mCPU i B 30,08
B GPU (Double) | = 20.00-
FIGPU (Float) E ’
100,0 Q 10,001
fg 0,00-
g 50 100 1000 2000
g e Track/Event
.{:: ’
1,0
50 100 1000 2000
Track/Event G
03/26/09 CHEP 09, Prague 20

https://indico.cern.ch/contributionDisplay.py?sessionld=60&contribIld=109&confld=35523

5/24/2012 Chep2012

Just following the development in CUDA we improved
on the same hardware

The same program code, same hardware, just using Pinned Memory
instead of Mem-Copy!

CPU time/GPU time e GPU
W GPU Zero C
Track/Event 50 100 1000 (2000 22.50 o
GPU 3.0 4.2 |18 18 15.00
GPU (Zero Copy) L5 13|22 20 750
0
Copy data | me—
Execute | 50 100 1000 2000
o L R —
Execute = == = ==

5/24/2012 Chep2012

ore GPU specific features:
Texture memory for field maps

Track propagation (RK4) using PANDA Field

ENVS 290 W 8400 GT Event 290 GT
8800 GT Tesla

100 -- 3506
50 -‘ 110028

ol—L 440 100 1230 47
200 14,5049

. 500 -- 18.5/1.80
1000 -- 21-

5000 210478

ACAT 2010: Applying CUDA Computing Model To Event Reconstruction Software
https://indico.cern.ch/contributionDisplay.py?contribld=147&confld=59397

5/24/2012 Chep2012

Speedup : up to factor 175

GEN

—RIC O

DATA A

NALYZ

P TIMIZATION

-R

P Calafiural, S. Eranian?, D. Levinthal?, S. Kama3, R. A Vitillo!

CHEP 2012, New York, May 21-25

|. Lawrence Berkeley National Laboratory

2. Google

3. Southern Methodist University
https://indico.cern.ch/contributionDisplay.py?sessionld=3&contribld=353&confld=149557

https://indico.cern.ch/contributionDisplay.py?sessionId=3&contribId=353&confId=149557

WHAT IS GOODA!

+ Low overhead open source Performance Monitoring Unit (PMU) event data analysis package
» A CPU profiler

« Developed in collaboration between Google and LBNL

* Logically composed of four main components:
» A kernel subsystem that provides an interface to the PMU
» An event data collection tool

» An analyzer creates call graphs, control flow graphs and spreadsheets for a variety of
granularities (process, module, function, source etc.)

» A web based GUI displays the data

CONCLUSION

» Low overhead profiler
* Implements a novel cycle accounting methodology
» Visualization of reports require only a browser

» Open Source Tool (contributions welcomel)

CHEP 2012
May 20 — 25, 2012

Lennart Johnsson

Computing Technology Future

Lennart Johnsson,
University of Houston, Houston, TX

ern.ch/contributionDisplay.py?sessionld=0&contribld=594&confld=149557

https://indico.cern.ch/contributionDisplay.py?sessionId=0&contribId=594&confId=149557

«Backup»...
If we have more time

S. Longo — 4° SuperB Collaboration Meeting — La Biodola

THE SIMULATION- AND
ANALYSIS-FRAMEWORK
FAIRROOT

https://indico.cern.ch/contributionDisplay.py?sessionId=3&contribId=431&confId=149557

FairRoot
s

- Framework for simulation, reconstruction and data
analysis

- Very flexible

No executable

m Use plug-in mechanism from Root to load libraries only when
needed

® Use Root macros to define the experimental setup or the tasks for
reconstruction /analysis

m Use Root macros to set the configuration (Geant3, Geant4, ...)

No fixed simulation model

m Use different simulation models (Geant3, Geant4, ...) with the
same user code (VMC)

Florian Uhlig CHEP 2012, New

York 22.05.12

Summary and Outlook
R

- Hope | could show you that FairRoot
is flexible
is easy to use
is easy to extend

- Special tools to do dose studies

- Tools for time based simulation are implemented
Calculation of event time

Mixing of events by automatic buffering and write out when
needed

Fast sorting of data
Several event builder functions

Florian Uhlig CHEP 2012, New 22.05.12
York

Summary and Outlook
o0

1 Many more topics only touched or not showed at all

Proof integration
Database connectivity
GPU usage inside of FairRoot

Build and test system

-1 Resources
Webpage: http://fairroot.gsi.de
Forum: http://forum.gsi.de
Test Dashboard: http://cdash.gsi.de /CDash

Florian Uhlig CHEP 2012, New 22 05.12
York

(panda @EEGF7 FR

https://indico.cern.ch/contributionDisplay.py?sessionld=3&contribld=394&confld=149557

Event Reconstruction |
|n The PandaRoo‘r Fr'amewor'k J

Stefano Spataro

for the |:l @ md & collaboration

UNIVERSITA LN
DEGLI STUDI =7 " o V-
DITORING (f e B
ALMA UNIVERSITAS (S ot A5/
TAURINENSIS St
o [3 4002
,-) ISTITUTO NAZIONALE - 3 5
! piFisica NUCLEARE ‘ " B H J
INEN R

l pes Sezione di Torino

Tuesday, 22t May, 2012

https://indico.cern.ch/contributionDisplay.py?sessionId=3&contribId=394&confId=149557

FairRoot

M.Al-Turany,
D.Betrtini,
F.Uhlig,
R.Karabowicz

PandaRoot

/ Cuts,
processes

propagation

} Run Manager

Application]

{

10 Manager}

\-n Hits,

RTDataBase]q\ Digits,

Event

\Detector base]{ Generator }

4&!?'-

/

Producers

digitizers

Hit

field

findin
g A

TraCkJ [— const.

Root files

—
e ——

Oracle L

Root files

‘-._._-_-—-_._._.-r'

MySQL

DIpD|E‘: Map)

Snlenmd
Map

Panda Code

/

3
Postgresql
'H-._.___'_,_,_,—»-"

/Cmeoot \
R3BRoot
MPDRoot (NICA)
ASYEOSRoot

. EICRoot

\§)

ITEEI mda 22" May2012 | EventReconstruction in " ’?‘;ﬂ

the PandaRoot framework -

Stefano Spataro

[Summary]

v PandaRoot is the framework for the Panda full simulation
v Used successfully for massive data production on Panda6rid

Reconstruction
» Central Tracking in the Barrel = complete (submitted TDRs for STT&MVD)
» Forward Tracking = just started, promising results
» Bayesian Particle Identification = available, flexibility at the analysis stage
» Investigation on TMVA methods for PID
» Analysis of physics benchmark channels = ready |

Time Based Simulation
» New concept, challenging online and of fline reconstruction
» Basic Event Mixing algorithms and cleaning code ready
» Time Based structure implemented in the framework and in some detectors
» Redesign reconstruction code..

