

Non-extensive solution to the cosmological lithium problem

S.Q. Hou^1 , J.J. $He^{1,2}$, A. $Parikh^{3,4}$, D. $Kahl^5$ C.A. $Bertulani^6$, T. $Kajino^{7,8,9}$, G.J. $Mathews^{8,10}$, G. $Zhao^2$

The disagreement of the predicted abundance of primordial ^7Li with the observed abundance is a longstanding problem in Big Bang Nucleosynthesis theory[1, 2]. Solutions to this problem using conventional astrophysics and nuclear physics have not been successful over the past few decades[3]. We have investigated the impact on BBN predictions of adopting a generalized distribution called Tsallis distribution to describe the velocities of nucleons. We find excellent agreement between predicted and observed primordial abundances of D, ^4He , and ^7Li for $1.069 \le q \le 1.082$, suggesting a possible new solution to the cosmological lithium problem[4].

References

- [1] R.H. Cyburt, et al., Phys. Lett. B, **567** (2003) 227
- [2] A. Coc, et al., Astrophys. J. **600** (2004) 544
- [3] R.H. Cyburt,, et al., J. Cosmol. Astro-Particle Phys., 11 (2008) 012
- [4] S.Q. Hou, et al., Astrophys. J, **834** (2017) 165

¹Key Laboratory of High Precision Nuclear Spectroscopy, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China,

²Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China,

³Departament de Física i Enginyeria Nuclear, EUETIB, Universitat Politècnica de Catalunya, Barcelona E-08036, Spain,

⁴Institut d'Estudis Espacials de Catalunya, Barcelona E-08034, Spain,

⁵Center for Nuclear Study, The University of Tokyo, RIKEN campus, Wako, Saitama 351-0198, Japan

⁶Texas A&M University-Commerce, Commerce, TX 75429-3011, USA,

⁷Department of Astronomy, School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan,

⁸National Astronomical Observatory of Japan 2-21-1 Osawa, Mitaka, Tokyo, 181-8588, Japan,

⁹School of Physics and Nuclear Energy Engineering, Beihang, University, Beijing 100191, China

¹⁰Center for Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, IN 46556, USA