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Outline

) the Interferometer cold?

2Ing done regarding
spensions.

INn non-equilibrium thermal

noise.



Cryogenics in Gravitational Wave
Interferometers: the cooling problem

a few Watts absorbed



Cooling methods

Conductlon
Radiation ﬁ




Cooling power as a function of fiber
diameter and temperature
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Cooling power as a function of fiber
diameter and temperature

More conduction
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Cooling power as a function of fiber
diameter and temperature

More conduction
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Thermal Noise as a function of fiber
diameter and temperature

Thermal Noise (arb.)
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Thermal Noise as a function of fiber
diameter and temperature

Thermal Noise (arb.)
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Thermal Noise as a function of fiber
diameter and temperature

Thermal Noise (arb.)
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More thermal fluctuations



fiber diameter (mm)

Cooling vs Noise trade-off

10 Cooling per Noise (logarithmic arb.)
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Temperature and cooling trade-off

» Differing approaches

» KAGRA - Sapphire 20K Thick fibers (higher
thermal noise than thin)

 ET - Silicon 20K Low power (requires two
iIndependent interferometers)

e LIGO3 Blue - Silicon 120K radiative cooling (not
as cold)



120K Silicon

» The only way for one detector to achieve
significant broadband improvement over
advanced detectors (high power AND low
thermal noise)

* Low frequency improvement due to thermal
noise (zero thermo-elastic noise)

* High frequency improvement due to high stored
arm power

- 120K Silicon has higher thermal conductivity

than copper, thermal distortion greatly
reduced



ad Suspension

295 K

IS
stage 2
 liquid
nitrogen hose
(77 K =-196 Q) 77-120K
pr——— ~ 3 Wat 120 K
"
/ ~. Heat
1560 nm laser shield
rather than 1064 nm 77 K

120 K B. Shapiro



me unknowns

thod
at 1550nm
oating
~» How to mitigate surface losses
* Bonding of silicon to silicon

* How to create high purity masses at LIGO3
scale

e Unknown unknowns
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test mass cooling @ Stanford

B. Shapiro

Thermally
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Cryogenic Reference Cavities
@Caltech

* Provides experience
for many relevant
technologies

» Ultra-stable DC
frequency reference

- Potentially interesting
system for studying
macroscopic
quantum mechanics




Sivity coating experiment



Losses In Silicon Samples
@dJena/Glasgow/Moscow

* Losses In silicon samples still limited by surface
quality or other dirty physics

* More tests required to hit the true loss limit
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Silicon Cantilever @ Jena/Glasgow Silicon Wafer @ Moscow
Nawrodt et al. arXiv:1003.2893 Prokhorov, Mitrofanov




ainter Silicon Etching
@Caltech

ing of mechanical
oscillator to quantum
ground state

* Willing to collaborate
with us on Silicon
etching techniques for
low surface losses




Silicon macro-mechanical cantilever
@Caltech

» Allows direct measurement of thermal noise at
cryogenic temperatures




Silicon macro-mechanical cantilever

@Caltech

» Allows direct measurement of thermal noise at
cryogenic temperatures

——  Thermal Noise

—  Frequency Noise |
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-
Prototype suspension @Caltech

» Good for developing fabrication techniques,
though likely difficult to see thermal noise




Thermal Noise Modelin

Eigenfrequency=0.938058 Surface : Total displacement (m)

* The dream: design your
suspension in an FEA tool,
and directly predict the
thermal noise

- Prevents bookkeeping
errors

A Cumming et al 2009 Class.
Quantum Grav. 26 215012

« Abraham R Neben et al 2012
New J. Phys. 14 115008




An Open Question in Thermal Noise
Modeling: Non thermal equilibrium

» Cryogenic
Interferometers will
have thermal
gradients along the
suspension wire

* |t is not yet settled
how to calculate the
noise correctly



al Noise Cookbook:
e of freedom oscillator

lon from Saulson (1990)




Multiple degree of freedom system

* System may have many
'modes’ but you are only
interested in the thermal
noise measured by some
degree of freedom (x)

* There are multiple recipes in
the Cookbook to approach
this

* My example: the position of
the end of a beam



Muti-DOF system: the modal approach

Step 1:
Break the system into the normal mode DOFs

J s




. the modal approach

plitude of each mode (from

Sw, (f)



Muti-DOF system: the modal approach

Step 3:
Find overlap of each mode with desired DOF,
and combine them.

Sa(f) = >, (®[¥n)* Sy, (f)

* Major drawback: not straightforward to use
when loss angle is function of position



The Levin approach

» Uses the fluctuation
dissipation theorem while s

treating the system
holistically

Step 1.
Convert your desired DOF into

a conjugate force and apply
that force to the system

s

o=



evin approach

Ipation
e force

o=

WdlSS — 27Tf/ d3 3



Levin approach

BTWdiss
71-2 f2 F2

27rf/ 7 A>T

Sum over volume elements instead of sum over
modes

Wdiss



New recipe

pproach to find the coupling
ment to your degree of

e element to have its own
emperature (and loss angle)



radient Effect

he noise?

£X
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The Need to Complete the Cookbook

* [he problem of thermal noise in non-thermal
equilibrium is very relevant for cryogenic
interferometers

* Very Interesting results presented here suggest
some (large) effects due to thermal gradients

» Talk by Claudia Lazzaro and poster by
Rossana De Gregorio
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