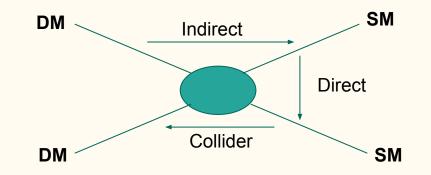


New Phenomena at the TeV Scale With Top Quarks Europeen Research Council

Dark Matter searches with the ATLAS experiment at the LHC

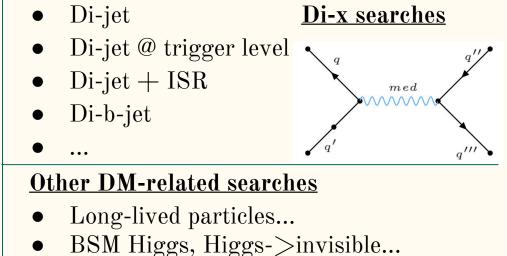
Marco Vanadia


Tor Vergata University of Rome and INFN *IFAE 2017* 21st April 2017 Trieste

ene

Introduction

- Overwhelming astrophysical evidence for **Dark Matter** (DM) in our Universe
 - DM accounts for ~26% of the Universe content
- Ok, so what is DM?
 - gravitationally interacting matter
 - \circ huge number of candidates
- I'll focus on the **WIMP** paradigm (weakly interacting massive particles)
 - \circ several nice features, weak cross section -> correct relic abundance, stable, cold
 - \circ excellent interplay between **indirect**, **direct** and **collider** searches

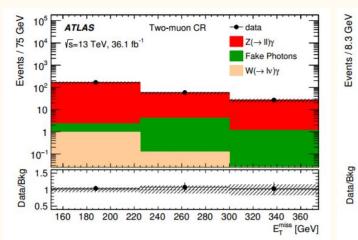


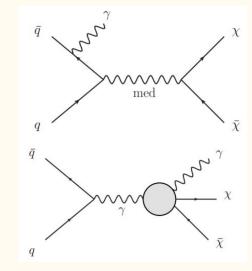
<u>Overview on DM searches in ATLAS</u>

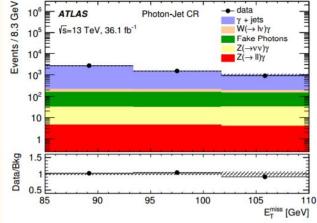
DM benchmarks for run-2: EFT -> Simplified Models (see arxiv: 1507.00966, 1603.04156)

- Jet+X **Mono-x** searches
- Photon+X
- H+X
- W+X
- Z+X
- $\ell\ell + X$
- tt+X
- bb+X

- - med

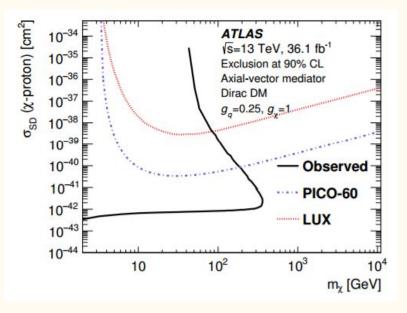

- More exotics results...

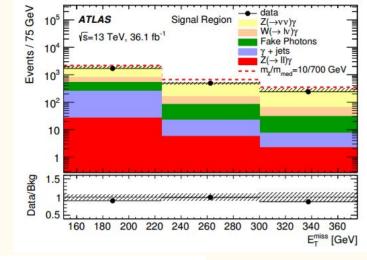

In this talk I'll focus on <u>very recent</u> ATLAS results on full 2015+2016 dataset:

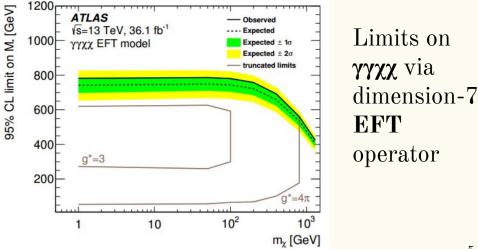

- Photon+X arXiv: arXiv:1703.09127
- Di-jet arXiv:<u>1703.09127</u>
- H(->bb)+X conf-note <u>ATLAS-CONF-2017-028</u> and $H(->\gamma\gamma)+X$ <u>ATLAS-CONF-2017-024</u>³

$\underline{\gamma + X}$ NEW, 36/fb arXiv:1703.09127

- >=1 isolated photon and E_T^{miss}
- **3** E_T^{miss} regions: 150-225, 225-300, >300 GeV
- Z and W bkg from control regions (CRs) with leptons
- Fake photons from electrons from Z-> $e\gamma/Z$ ->ee
- Fake photons from jets with ABCD method, CRs with inverted isolation/inverted quality cuts
- γ+jet with a wrong jet reconstruction: low E_T^{miss} CR

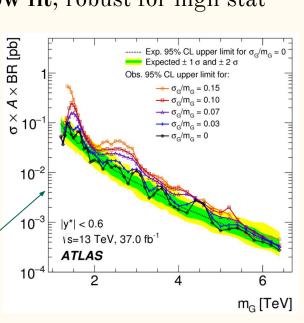


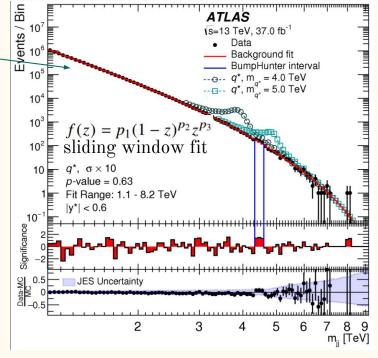


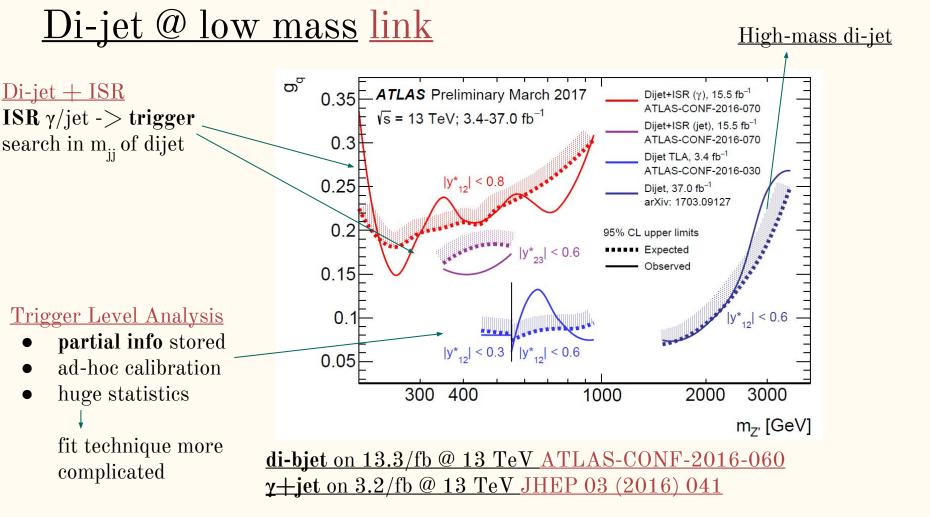

 $\underline{\gamma}$ <u>+X</u> NEW, 36/fb <u>arXiv:1703.09127</u>

simultaneous fit to all CRs and SR, no bkg shape fit

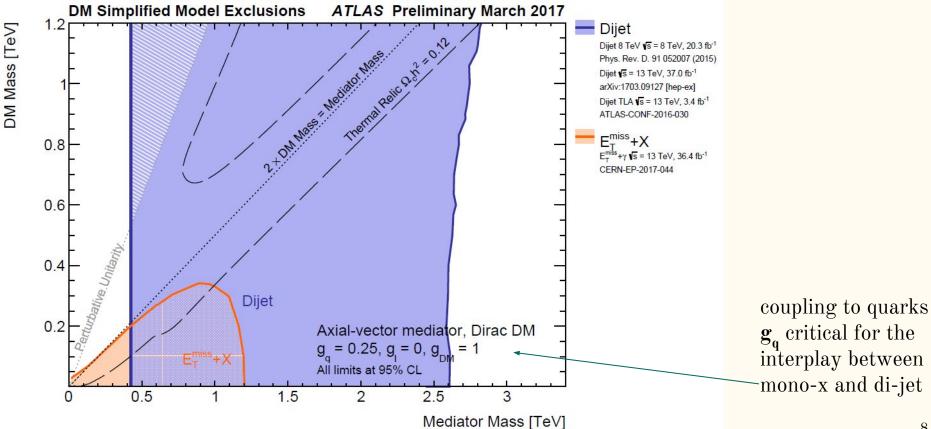
- Statistically limited measurement
- Limits on **DM production** via vector/axial-vector
 - X+MET @ collider important for low DM mass, and particularly for spin-dep. int.

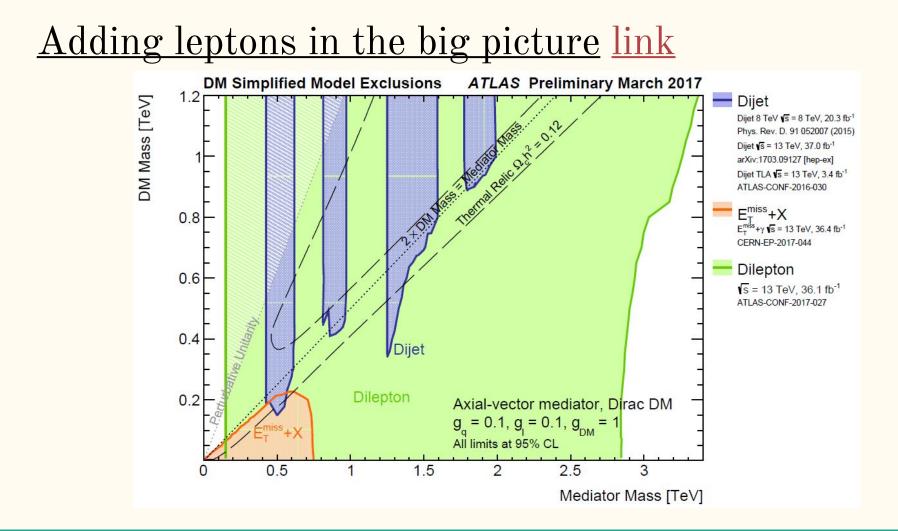





Di-jet analysis NEW, 37/fb, arXiv:1703.09127

- Search for **resonances** on **m**_{ii} **spectrum**
- Completely data-driven: functional fit
- New sliding window fit, robust for high stat
- No significant excess: limits on q^{*}, quantum black holes, W', Z', W^{*}
- New folding with transfer-matrix: limits on generic gaussian with a truth-level width
- Also: angular analysis (see backup)

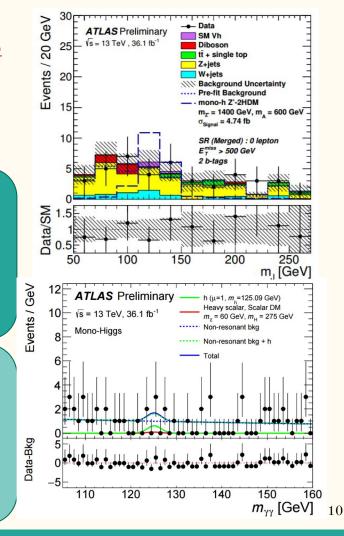




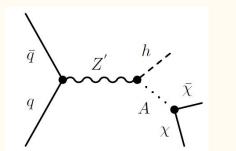
 $\begin{array}{l} y^* \!\!=\!\! (y_1 \!\!-\!\! y_2)/2 <\!\! 0.6 \text{ explored (1.2 for } W^*) \\ \text{leading jet } p_T \!\!>\!\! 440 \text{ GeV (due to trigger)} \\ m_{jj} \!\!>\!\! 1.1 \text{ TeV (due to trigger)} \end{array}$

<u>Photon+X and di-jet: filling the empty space link</u>

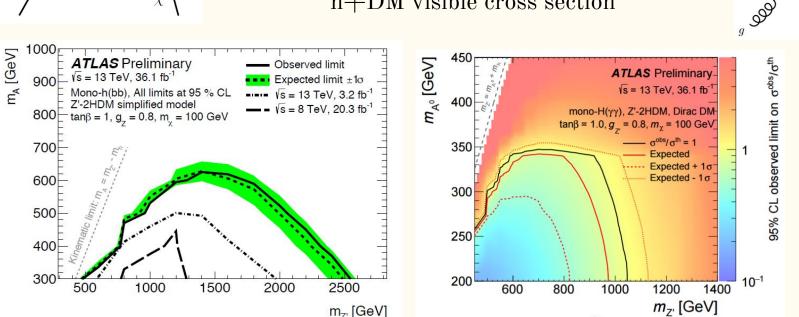
 $\frac{Mono-h(bb)}{Mono-h(\gamma\gamma)} \frac{36}{fb} \frac{ATLAS-CONF-2017-028}{ATLAS-CONF-2017-024}$


h-ISR suppressed: higgs involved in DM mechanism!

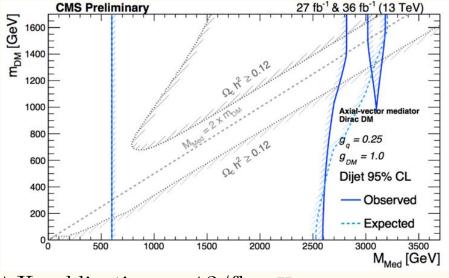
<u>h->bb</u>


- resolved category: 2 small-R b-jets
- merged category (high E_T^{miss}): 1 large-R jet, track-jets used for b-tagging
- Fit in m_h^{reco} to CRs and SR in 4 E_T^{miss} regions

<u>h->үү</u>


- Several categories mainly based on E_T^{miss} significance and $p_T^{\gamma\gamma}$
- Fit to m_{γγ} in the different categories searching for signal contributions

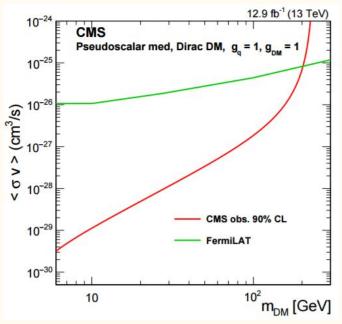
Mono-h results



- Results interpreted in a Z'-2HDM model
- h->bb dominates the sensitivity
- h-> $\gamma\gamma$ presents limits also for a heavy H-EFT model and for a Z'_B model
- h->bb presents generic limits on h+DM visible cross section

H

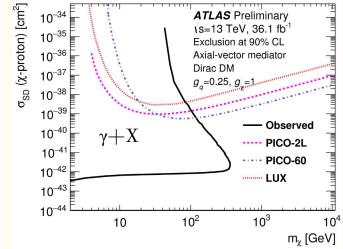
DM @ CMS


<u>Jet+X</u> publication on 13/fb <u>arXiv:1703.01651</u>

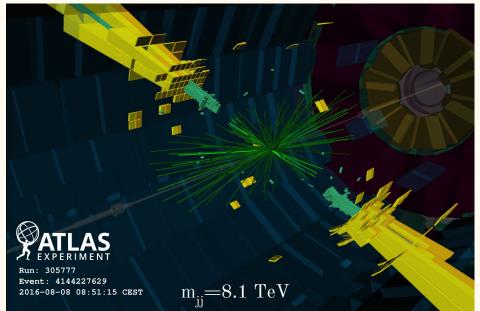
- challenging, limited by syst in significant region
- W+X and Z+X considered and combined
- γ +jet CR used in addition to leptonic ones

Also: h->(bb,γγ)+X 2015 dataset <u>arXiv:1703.05236</u>

<u>Di-jet</u> preliminary results <u>PAS-EXO-16-056</u>


- high-mass and low-mass (data scouting)
- used wide-jets, less sensitive to FSR
- limits for qq, qg, gg resonances

<u>Conclusion</u>

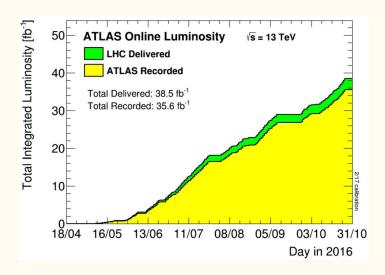

Searches for Dark Matter at colliders:

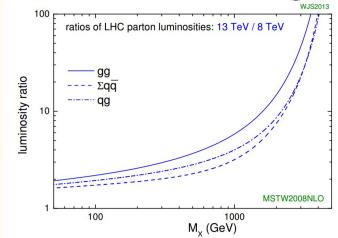
<u>Complementary</u> with other DM searches

- 2015+2016 dataset > Run 1
- Many results on their way
- CMS recent results:
 - **di-jet** full 2015+2016 dataset <u>PAS-EXO-16-056</u>
 - Jet+X partial 2015+2016 dataset <u>arXiv:1703.01651</u>
 - h->(bb,γγ)+X 2015 dataset <u>arXiv:1703.05236</u>
- ATLAS+CMS+theorists working together <u>Dark Matter Working Group</u>

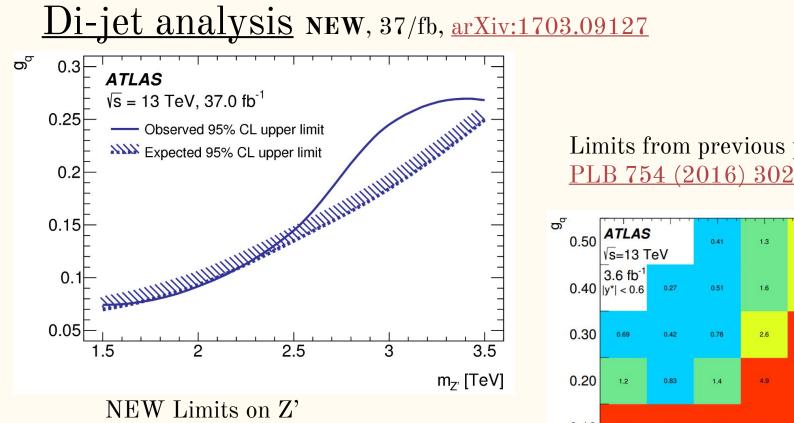
<u>Challenging</u>! Invisible particles, control of detector performance in extreme regimes, control of backgrounds...

BACKUP

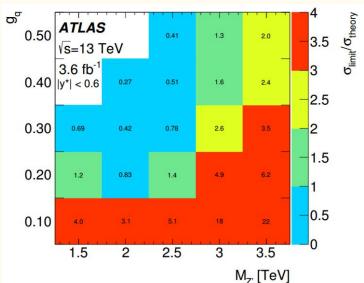

From EFTs to Simplified Models



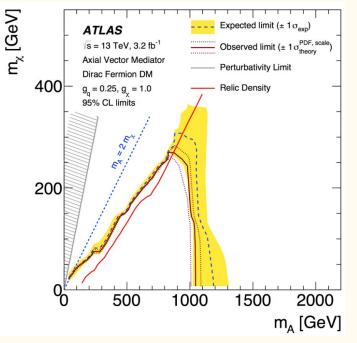
- Effective Field Theories (EFTs) used in the past to model in a general way DM production
- Recent collider DM papers moving to simplified model approach (see arxiv:<u>1507.00966</u>, <u>1603.04156</u>)
 - a mediator (scalar, pseudo-s., vector, axial-vector,...) is assumed
 - $\circ~$ less general, richer phenomenology, better defined comparison with direct searches
- Mediatior with mass $> 10 \text{ TeV} \rightarrow \text{EFT}$

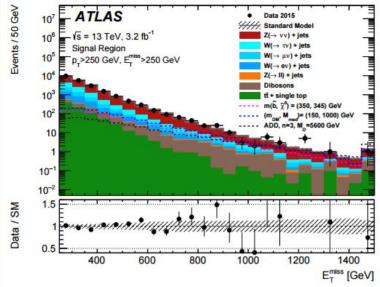

The Large Hadron Collider and the ATLAS exp.

- LHC started run-2 in 2015, proton vs proton @ $\sqrt{s=13 \text{ TeV}}$
- Parton luminosity for producing massive states is greatly enhanced -> great opportunity for searches!



- Almost **40/fb of data collected** by the ATLAS experiment with excellent performance
 - \circ already more than run-1!

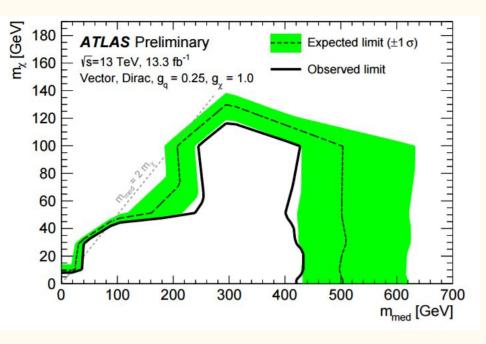

Limits from previous publication PLB 754 (2016) 302

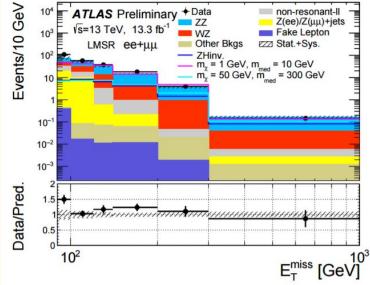


17

<u>Jet + X</u> 3.2/fb @ 13 TeV, <u>PRD 94 (2016) 032005</u>

- Select events with high p_T jet(s) and E_T^{miss}
- Trigger fully efficient for $E_T^{miss} > 250 \text{ GeV}$
- Dominant bkg Z(->vv)+jets, W(->lv)+jets
 - \circ constrained in control regions (CRs) with leptons

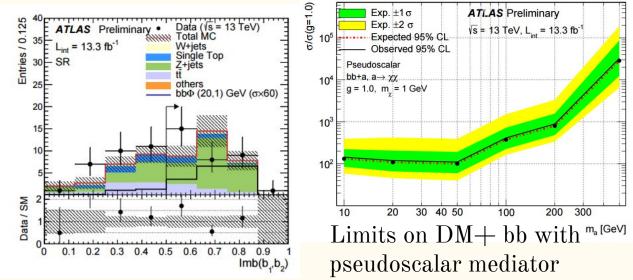




- Simultaneous fit to CRs and signal region (SR)
- No excess -> limits on several models
- ADD for Large Extra-Dimensions, squark pairs production, **WIMPs** produced by axial-vector mediator

 $\underline{X + \ell \ell}$ 13/fb @13 TeV <u>ATLAS-CONF-2016-056</u>

- $ee/\mu\mu + E_{T}^{miss}$
- ZZ from MC, WZ 25% from 3t CR
- Z+jets (small) with data-driven method



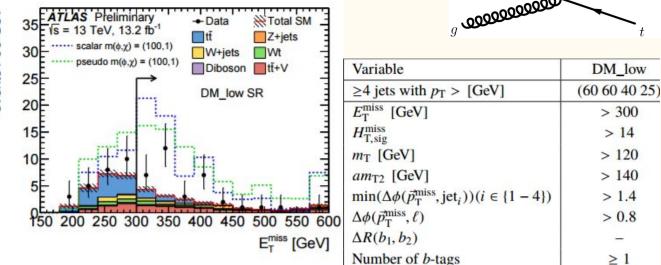
- Non-resonant (WW, tt, Wt, Z->ττ)
 from eµ CR
- Bkg uncertainty dominated by Z+jets
- Limits produced for heavy Higgs, RS graviton, Zh with h->invisibile, DM with vector mediator

<u>DM+bb</u>13/fb@13 TeV <u>ATLAS-CONF-2016-086</u>

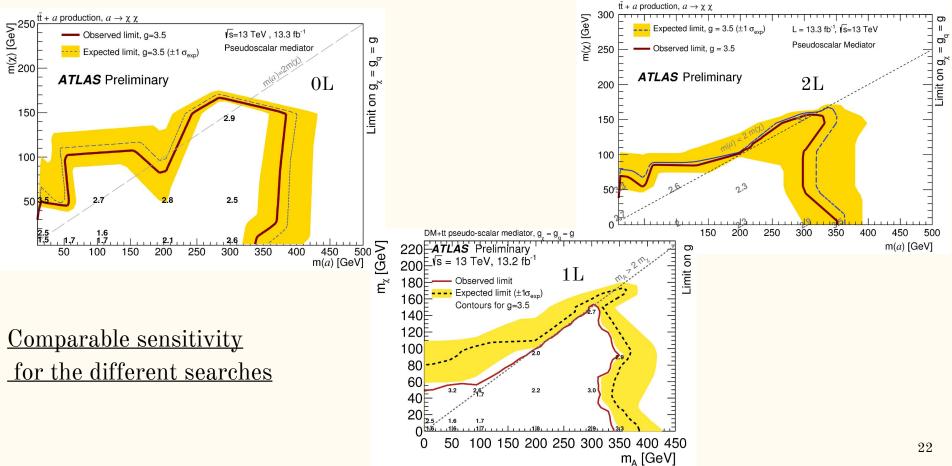
- Events with exactly 2 b-jets and $\mathbf{E}_{\mathbf{T}}^{\text{miss}}$, 3^{rd} jet veto
- **b-tagging** based on **multivariate** algorithm with $\varepsilon = 60\%$
- Dominant bkg from **Z+bb**, reduced with cut on ΔR_{ii} (separation)
- Cut on momentum imbalance between jets $Imb(b_1, b_2)$
- CRs defined for $2\ell + 1b$ (->Z+bb), $1\ell + 2b$ (->ttbar), $1\ell + 1b$ (->W+hf, single-t)
- Validation regions used to validate bkg
- Combined fit to all CRs + SR
- **Dominant syst** from jet energy scale, b-tagging, V+jets modelling

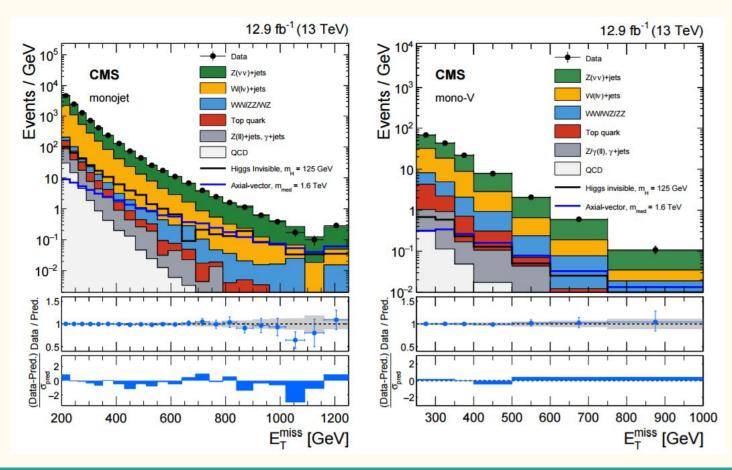
مومومومه

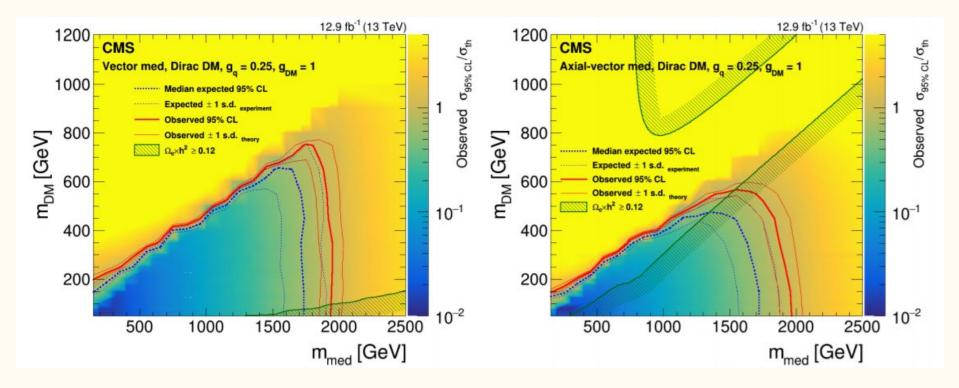
8 ODDDDDD

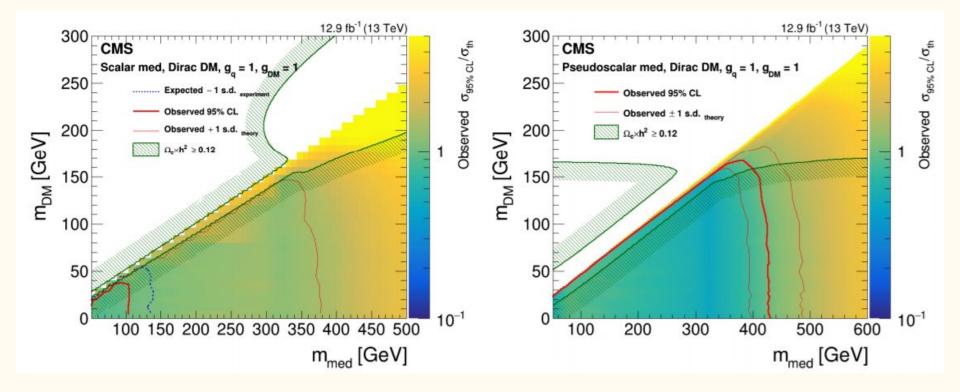

 ϕ/a

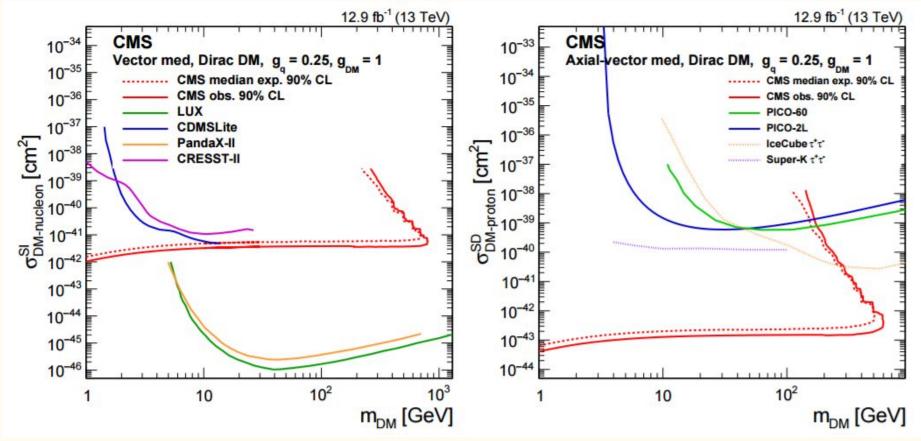
<u>DM+tt</u> 13/fb @ 13 TeV, <u>ATLAS-CONF-2016-077</u>, <u>2016-050</u>, <u>2016-076</u>

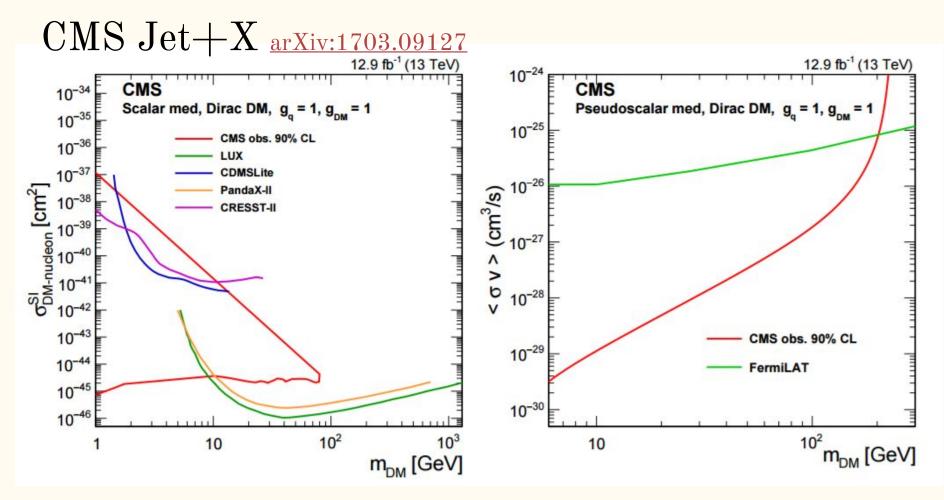

- In searches for stops with 0, 1 or 2 charged leptons, produced limits also on DM via scalar/pseudoscalar med.
- Many SRs, based on kinematics/topological discriminating variables, and have regions dedicated to DM searches


- Slight excess in one SR in 1-lepton analysis (3.3 σ)
 Not unexpected.
- Not unexpected, when considering the huge number of regions explored


<u>DM+tt</u> 13.2/fb @ 13 TeV, <u>ATLAS-CONF-2016-077</u>, <u>2016-050</u>, <u>2016-076</u>




CMS Jet+X



24

Jet+X

Jet+X selection

PRD 94 (2016) 032005

Selection criteria							
Primary vertex							
$E_{\rm T}^{\rm miss} > 250 {\rm GeV}$							
Leading jet with $p_T > 2$	50 GeV and n	< 2.4					
At most four jets with p	T > 30 GeV and	$ \eta < 2.8$					
$\Delta \phi(\text{jet}, \vec{p}_{T}^{\text{miss}}) > 0.4$							
Jet quality requirements							
No identified muons with	th $p_{\rm T} > 10 {\rm GeV}$	or electrons wi	ith $p_{\rm T} > 20$ GeV	/			
Inclusive signal region	IM1	IM2	IM3	IM4	IM5	IM6	IM7
E ^{miss} (GeV)	> 250	> 300	> 350	> 400	> 500	> 600	> 700
Exclusive signal region	EM1	EM2	EM3	EM4	EM5	EM6	
E_{T}^{miss} (GeV)	[250-300]	[300-350]	[350-400]	[400-500]	[500-600]	[600-700]	

- Inclusive regions used for model-independent limits
- Exclusive regions for benchmark models

Jet+X background estimation PRD 94 (2016) 032005

Background process	Method	Control sample	
$Z(\rightarrow \nu\bar{\nu})$ +jets	MC and control samples in data	$W(\rightarrow \mu \nu)$	
$W(\rightarrow ev)$ +jets	MC and control samples in data	$W(\rightarrow ev)$	
$W(\rightarrow \tau \nu)$ +jets	MC and control samples in data	$W(\rightarrow ev)$	
$W(\rightarrow \mu \nu)$ +jets	MC and control samples in data	$W(\rightarrow \mu \nu)$	
$Z/\gamma^* (\rightarrow \mu^+ \mu^-) + jets$	MC and control samples in data	$Z/\gamma^*(\rightarrow \mu^+\mu^-)$	
$Z/\gamma^* (\rightarrow \tau^+ \tau^-) + jets$	MC and control samples in data	$W(\rightarrow ev)$	
$Z/\gamma^*(\rightarrow e^+e^-)$ +jets	MC only		
tī, single top	MC only		
Diboson	MC only		
Multijets	data-driven		
Non-collision	data-driven		

- Multijet (very small, 0.5% in first region, negligible in other) with jet smearing method, which uses well measured low-MET multijet events convoluted with a MC-based data-constained response function to generate a sample of pseudodata events
- Non-collision background is important at online level, and significantly reduced by jet quality. Main remaining bkg due to beam-induced events, estimated in data identifing calorimeter clusters associated with muons parallel to beam pipe. The efficiency of the method is evaluated in a CR with inverted jet quality. The final bkg is very small, similar to MJ

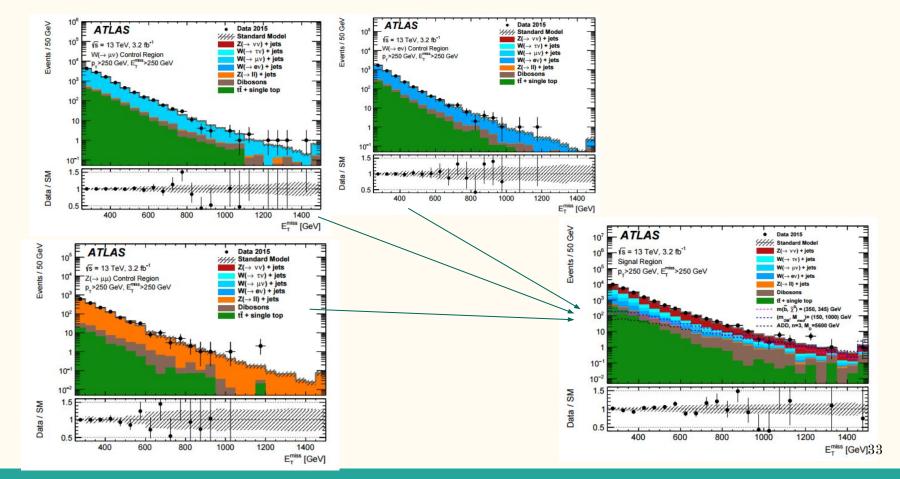

Jet+X background estimation PRD 94 (2016) 032005

Table 5: Data and SM background prediction, before and after the fit, in the $W(\rightarrow \mu\nu)$ control region for the different selections. For the SM predictions both the statistical and systematic uncertainties are included.

Inclusive Selection	IM1	IM2	IM3	IM4	IM5	IM6	IM7
Observed events (3.2 fb ⁻¹)	10481	6279	3538	1939	677	261	95
SM prediction (post-fit)	10480 ± 100	6279 ± 79	3538 ± 60	1939 ± 44	677 ± 26	261 ± 16	95 ± 10
SM prediction (pre-fit)	10500 ± 710	6350 ± 460	3560 ± 280	2010 ± 160	700 ± 57	256 ± 23	106 ± 9
Exclusive Selection	EM1	EM2	EM3	EM4	EM5	EM6	
Observed events (3.2 fb^{-1})	4202	2741	1599	1262	416	166	
SM prediction (post-fit)	4202 ± 65	2741 ± 52	1599 ± 40	1262 ± 36	416 ± 20	166 ± 13	
SM prediction (pre-fit)	4140 ± 260	2800 ± 190	1540 ± 120	1310 ± 100	444 ± 35	150 ± 14	

$$N_{\text{signal}}^{Z(\to\nu\bar{\nu})} = (N_{W(\to\mu\nu),\text{control}}^{\text{data}} - N_{W(\to\mu\nu),\text{control}}^{\text{non}-W}) \times \frac{N_{\text{signal}}^{\text{MC}(Z(\to\nu\bar{\nu}))}}{N_{W(\to\mu\nu),\text{control}}^{\text{MC}}}$$

Jet + X 3.2/fb @ 13 TeV, PRD 94 (2016) 032005

Jet+X background uncertainties PRD 94 (2016) 032005

Impact on total background:

- JES, MET scale: 0.5% (IM1) 1.6% (IM7)
- Jet quality, pileup, correction to jet-pt and MET: 0.2% 0.9%
- Lepton id/reco/scale: (in the relevant CR) 1.4%-2.6%
- Scale, PDF, matching: 1.1% 1.3%
- Modelling and theoretical unc on W->Z: 2.0% 3.9%
- Theoretical unc on top bkg: 2.7%-3.3%
- Other bkg: very small impact
- Stat: 2.5% 10%
- Luminosity: negligible

Jet+X results

PRD 94 (2016) 032005

Signal Region	IM1	IM2	IM3	IM4	IM5	IM6	IM7
Observed events (3.2 fb ⁻¹)	21447	11975	6433	3494	1170	423	185
SM prediction	21730 ± 940	12340 ± 570	6570 ± 340	3390 ± 200	1125 ± 77	441 ± 39	167 ± 20
Signal Region	EM1	EM2	EM3	EM4	EM5	EM6	
Observed events (3.2 fb ⁻¹)	9472	5542	2939	2324	747	238	
SM prediction	9400 ± 410	5770 ± 260	3210 ± 170	2260 ± 140	686 ± 50	271 ± 28	

Table 9: Observed and expected 95% CL upper limits on the number of signal events, S_{obs}^{95} and S_{exp}^{95} , and on the visible cross section, defined as the product of cross section, acceptance and efficiency, $\langle \sigma \rangle_{obs}^{95}$, for the IM1–IM7 selections.

Signal channel	$\langle \sigma \rangle_{\rm obs}^{95}$ [fb]	S ⁹⁵ _{obs}	S ⁹⁵ _{exp}	
IM1	553	1773	1864^{+829}_{-548}	
IM2	308	988	1178-541	
IM3	196	630	1178^{+541}_{-348} 694^{+308}_{-204} 401^{+168}_{-113}	
IM4	153	491	401+168	
IM5	61	196	164 ⁺⁶³ -45	
IM6	23	75	84+32	
IM7	19	61	84 ⁺³² 48 ⁺¹⁸ 48 ⁺¹⁸	

Jet+X results PRD 94 (2016) 032005

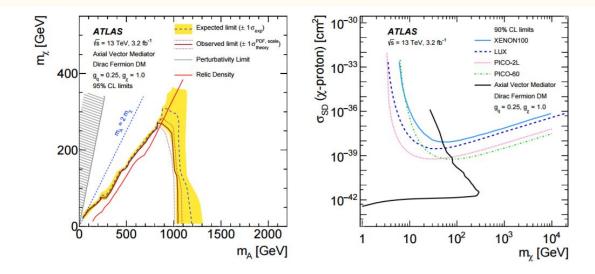
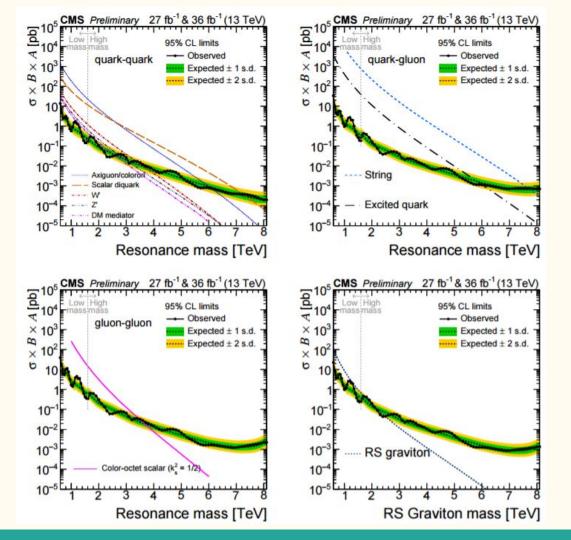
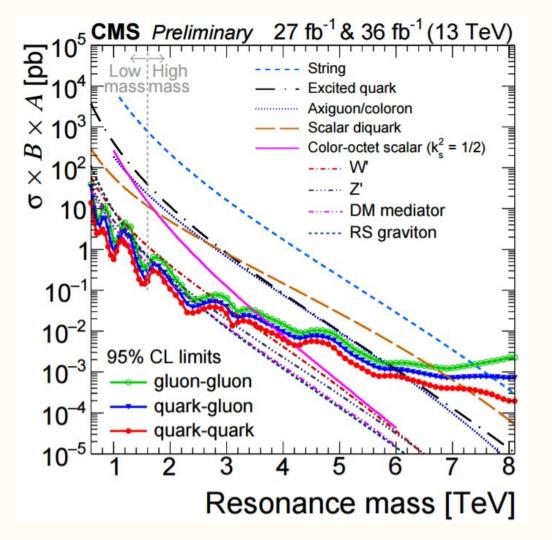
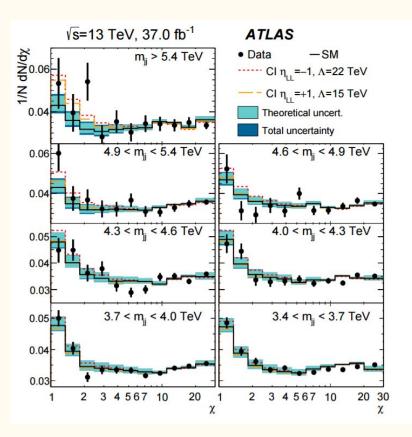




Figure 7: Left: 95% CL exclusion contours in the $m_{\chi}-m_A$ parameter plane. The solid (dashed) curve shows the median of the observed (expected) limit, while the bands indicate the $\pm 1\sigma$ theory uncertainties in the observed limit and $\pm 1\sigma$ range of the expected limit in the absence of a signal. The red curve corresponds to the expected relic density. The region excluded due to perturbativity, defined by $m_{\chi} > \sqrt{\pi/2} m_A$, is indicated by the hatched area. Right: A comparison of the inferred limits to the constraints from direct detection experiments on the spin-dependent WIMP-proton scattering cross section in the context of the Z'-like simplified model with axial-vector couplings. Unlike in the $m_{\chi}-m_A$ parameter plane, the limits are shown at 90% CL. The results from this analysis, excluding the region to the left of the contour, are compared with limits from the XENON100 [96], LUX [97], and PICO [98, 99] experiments. The comparison is model-dependent and solely valid in the context of this model, assuming minimal mediator width and the coupling values $g_q = 1/4$ and $g_{\chi} = 1$.

CMS di-jet

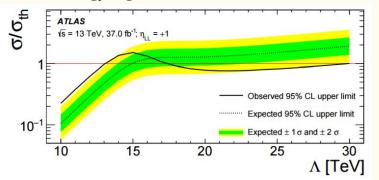
CMS di-jet EXO-16-056

CMS di-jet EXO-16-056


Table 1: Observed and expected mass limits at 95% CL from this analysis with 36 fb⁻¹ at \sqrt{s} = 13 TeV compared to previously published limits on narrow resonances from CMS with 12.9 fb⁻¹ and 2.4 fb⁻¹ at \sqrt{s} = 13 TeV [3, 6] and with 20 fb⁻¹ at \sqrt{s} = 8 TeV [8]. The listed models are excluded between 0.6 TeV and the indicated mass limit by this analysis. In addition to the observed mass limits listed below, this analysis also excludes the RS Graviton model within the mass interval between 2.1 and 2.5 TeV and the Z' model within roughly a 50 GeV window around 3.1 TeV.

	Observed (expected) mass limit [TeV]					
Model	Final	$36{\rm fb}^{-1}$	$12.9{\rm fb}^{-1}$	2.4fb^{-1}	$20 {\rm fb}^{-1}$	
	State	13 TeV	13 TeV	13 TeV	8 TeV	
String	qg	7.7 (7.7)	7.4 (7.4)	7.0 (6.9)	5.0 (4.9)	
Scalar diquark	99	7.2 (7.4)	6.9 (6.8)	6.0 (6.1)	4.7 (4.4)	
Axigluon/coloron	qq	6.1 (6.0)	5.5 (5.6)	5.1 (5.1)	3.7 (3.9)	
Excited quark	qg	6.0 (5.8)	5.4 (5.4)	5.0 (4.8)	3.5 (3.7)	
Color-octet scalar ($k_s^2 = 1/2$)	gg	3.4 (3.6)	3.0 (3.3)	—	_	
W'	qq	3.3 (3.6)	2.7 (3.1)	2.6 (2.3)	2.2 (2.2)	
Z'	qq	2.7 (2.9)	2.1 (2.3)	—	1.7 (1.8)	
RS Graviton $(k/M_{\rm PL} = 0.1)$	qq, gg	1.7 (2.1)	1.9 (1.8)		1.6 (1.3)	
DM Mediator ($m_{\rm DM} = 1 {\rm GeV}$)	qq	2.6 (2.5)	2.0 (2.0)	_	_	

CMS di-jet <u>EXO-16-056</u>


Di-jet

Di-jet analysis NEW, 37/fb arXiv:1703.09127

Simultaneous fit in 7 m_{jj} regions

- Non-resonant signals: look at angular distribution of jets $\chi = e^{2|y^*|} \sim \frac{1 + \cos \theta^*}{1 - \cos \theta^*}$
- QCD dominated by t-channel -> flat χ
- s-channel, NLO QCD, LO EW corrections
 -> χ dependence
- BSM more at low χ than QCD
- QCD from Pythia LO + corrections
- $\mu_{\rm R}/\mu_{\rm F}$ scale, jet energy scale: dominant unc.

Limits on contact interaction with destructive interrference with SM

Di-jet analysis NEW, 37/fb arXiv:1703.09127

Table 2: The 95% CL lower limits on the masses of ADD quantum black holes (BLACKMAX event generator), W' and W^* bosons, excited quarks, and Z' bosons for selected coupling values from the resonance search, as well as on the scale of contact interactions for constructive ($\eta_{LL} = -1$) and destructive ($\eta_{LL} = +1$) interference from the angular analysis. Where an additional range is listed, masses within the range are also excluded. Full limits on the Z' model are provided in Figure 4.

Model	95% CL exclusion limit		
	Observed	Expected	
Quantum black hole	8.9 TeV	8.9 TeV	
W'	3.6 TeV	3.7 TeV	
<i>W</i> *	3.4 TeV 3.77 TeV – 3.85 TeV	3.6 TeV	
Excited quark	6.0 TeV	5.8 TeV	
$Z'(g_q = 0.1)$	2.1 TeV	2.1 TeV	
$Z'(g_q = 0.2)$	2.9 TeV	3.3 TeV	
Contact interaction $(\eta_{LL} = -1)$	21.8 TeV	28.3 TeV	
Contact interaction ($\eta_{LL} = +1$)	13.1 TeV 17.4 TeV – 29.5 TeV	15.0 TeV	

Photon+x

Photon+X simulations

arXiv:1704.03848

Process	Generators used	PDF sets	Order	Requirements
DMsimp model	MG5_aMC@NLO v2.4.3 + Рутніа 8.212	NNPDF30_nlo_as_0118	NLO	$E_{\rm T}^{\gamma} > 130 { m GeV}$
EFT model	MG5_aMC@NLO v2.2.3 + Рутніа 8.186	NNPDF30_lo_as_0130	LO	$E_{\rm T}^{\gamma} > 130 { m GeV}$
BSM resonance	Powheg-Box + Pythia 8.210	CT10	NLO	
$W/Z\gamma$	Sherpa 2.1.1	CT10	LO	for $\gamma^*/Z: m_{\ell\ell} > 10 \text{ GeV}$
γ-jets	Sherpa 2.1.1	CT10	LO	
W/Z+jets	Sherpa 2.2.0	NNPDF3.0 at NNLO	LO/NLO	

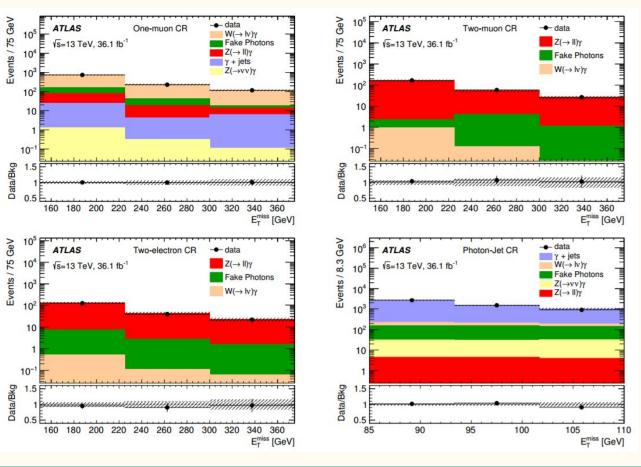
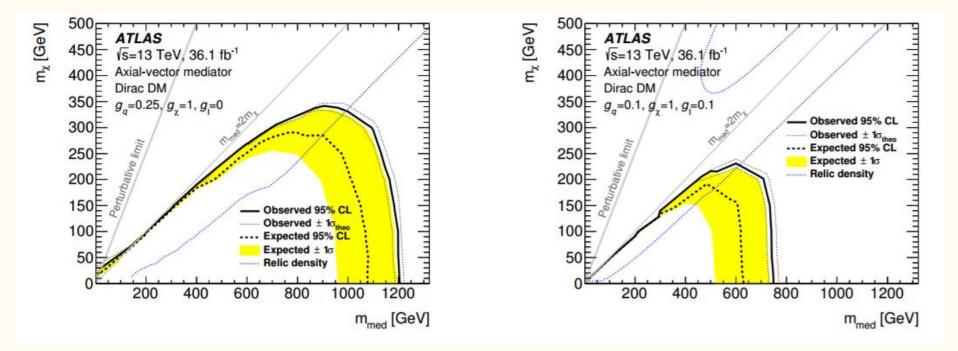
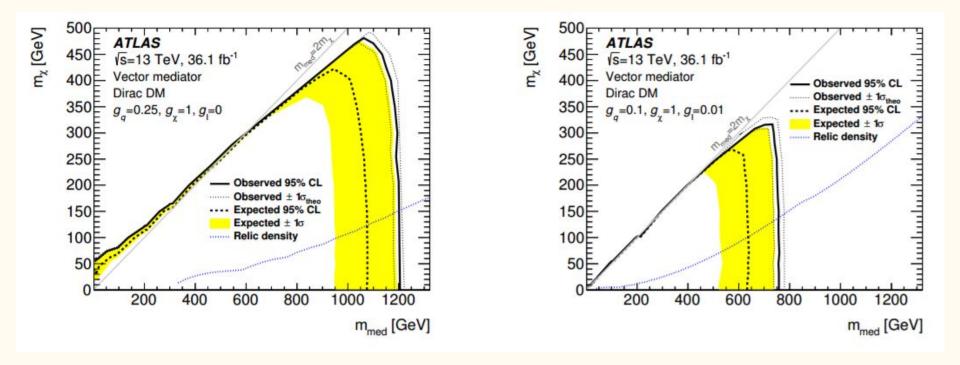

Photon+X selection

Table 2: Criteria for selecting events in the SRs and the numbers of events selected in data.

Event cleaning	Quality and Primary vertex					
Leading γ	$E_{\rm T}^{\gamma} > 150 \text{ GeV}, \eta < 1.37 \text{ or } 1.52 < \eta < 2.37,$ tight, isolated, $ z < 0.25 \text{ m},$ $\Delta \phi(\gamma, E_{\rm T}^{\rm miss}) > 0.4$					
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{\Sigma E_{T}}$	$> 8.5 \text{ GeV}^{1/2}$					
Jets	0 or 1 with $p_{\rm T} > 30$ GeV, $ \eta < 4.5$ and $\Delta \phi$ (jet, $E_{\rm T}^{\rm miss}$) > 0.4					
Lepton			veto on e and	μ		
$E_{\rm T}^{\rm miss}$ [GeV]	SRI1 > 150	SRI2 > 225	SRI3 > 300	SRE1 150–225	SRE2 225–300	
Selected events in data Events with 0 jets	2400 1559	729 379	236 116	1671 1180	493 263	


Photon+X CRs

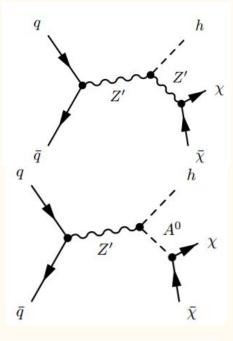
arXiv:1704.03848

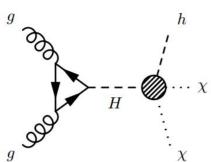


47

Photon+X results: AV mediator arXiv:1704.03848

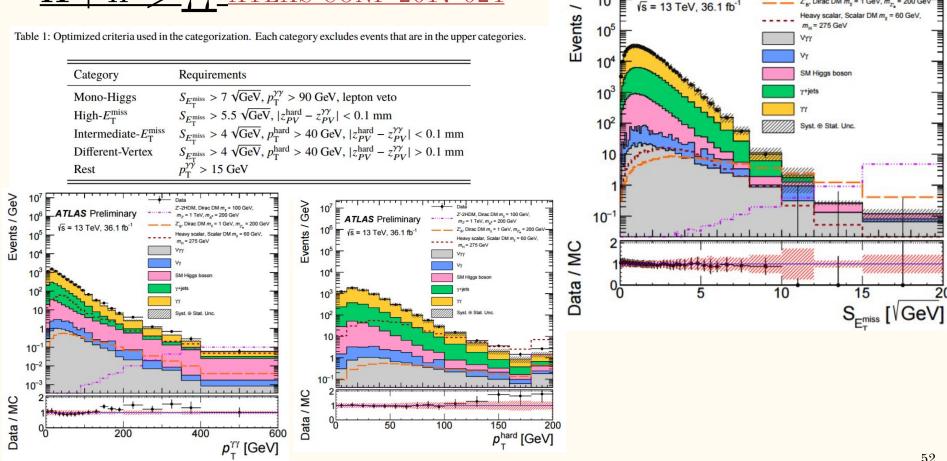
Photon+X results: V mediator <u>arXiv:1704.03848</u>




 $X+h->\gamma\gamma$

$\underline{X+h-\geq\gamma\gamma}$ signal models

- Z'_B model, vector mediator for a U(1)_B symmetry, with mass given by an additional scalar Higgs (mixing with the SM higgs with a given angle)
 - $\circ \quad \mbox{Parameters: } g_q, \, g_{DM}, \, g_{hZ'Z'} \, (dimensional \\ parameter, \, dimension \, of \, a \, mass), \, mixing \, angle, \label{eq:parameter}$
 - m_Z, m_{DM}
- Z'-2HDM model
 - different kinematics, due to on-shell Z' production -> harder MET spectrum
- Heavy scalar model
 - $\circ 2m_{h} < m_{H} < 2m_{t}$
 - DM is with spin-0 here



<u>X+h-> $\gamma\gamma$ _ATLAS-CONF-2017-024</u>

Table 1: Optimized criteria used in the categorization. Each category excludes events that are in the upper categories.

VGeV

10

10⁶

10

ATLAS Preliminary

Vs = 13 TeV, 36.1 fb⁻¹

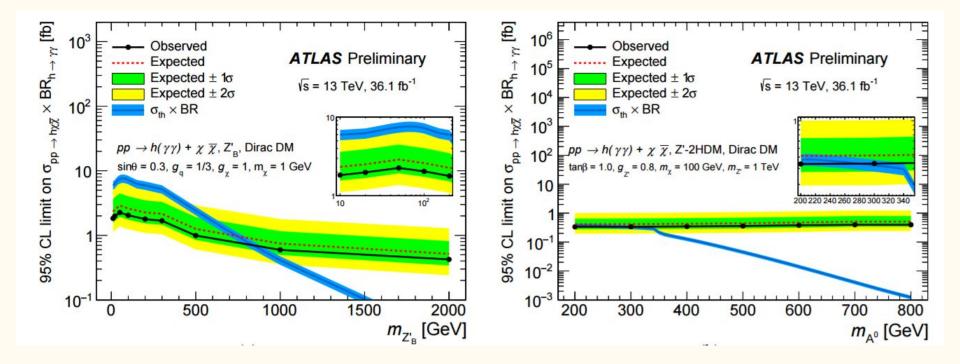
20

Z'-2HDM, Dirac DM m, = 100 GeV,

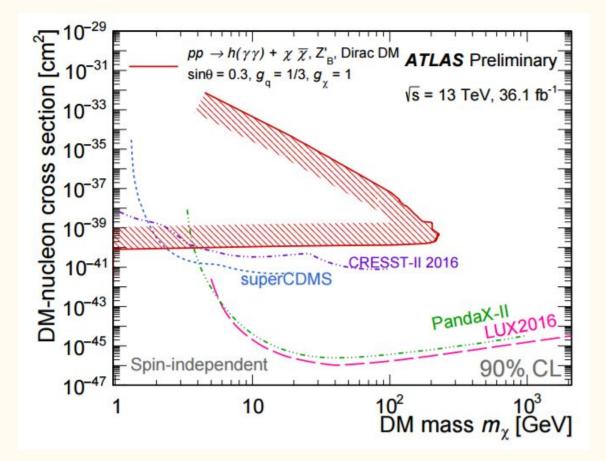
Z'_B, Dirac DM m_z = 1 GeV, m_z = 200 GeV*

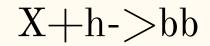
Heavy scalar, Scalar DM m, = 60 GeV,

m2 = 1 TeV, m4 = 200 GeV


m_H = 275 GeV

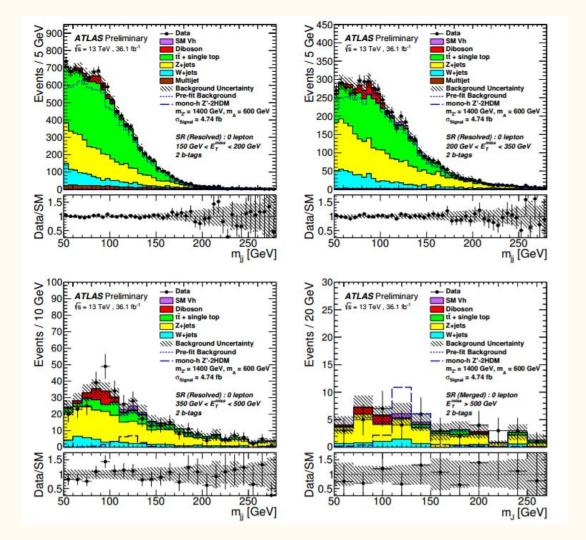
<u>X+h-> $\gamma\gamma$ _ATLAS-CONF-2017-024</u>


		Backgrou	nds (%)
Source	Signals (%)	SM Higgs boson	Non-resonant background
Experimental			
Luminosity		3.2	5-1
Trigger efficiency		0.4	1.00
Vertex selection		< 0.01	-
Photon energy scale	0.1 - 2	0.1 – 1.4	1.73
Photon energy resolution	0.1 - 0.2	0.1 – 1.1	
Photon identification efficiency	2.9 - 4.3	1.9 - 3.8	7
Photon isolation efficiency	1.2	0.8 - 1.6	-
$E_{\rm T}^{\rm miss}$ reconstruction (diphoton vertex)	< 0.01	0.5 - 1.9	a-3
$E_{\rm T}^{\rm miss}$ reconstruction (jets, soft term)	1.0 - 1.4	0.8 - 22.5	(-)
Diphoton vertex = hardest vertex	0.0 - 1.9	0.0 - 6.0	-
Pileup reweighting	0.2 - 5.6	0.7 - 11.0	-
Non-resonant background modeling	-	-	0.01 – 9.8
Theoretical			
Factorisation and renormalisation scale	0.6 - 11	2.5 - 6.0	-
$PDF + \alpha_S$	10.5 - 25	1.2 - 2.9	(=)
Multi-parton interactions	< 1	0.4 - 5.8	-
$BR(H \rightarrow \gamma \gamma)$		1.73	


Category	Mono-Higgs	High- $E_{\rm T}^{\rm miss}$	Intermediate- $E_{\rm T}^{\rm miss}$	Different-Vertex	Rest
Data	9	72	464	1511	46804
		Bac	kgrounds		
SM Higgs boson	2.43 ± 0.22	4.2 ± 0.6	11.9 ± 2.7	44 ± 10	1360 ± 110
Non-resonant	9.9 ± 1.9	62 ± 5	418 ± 10	1490 ± 18	45570 ± 110
Total background	12.3 ± 1.9	67 ± 5	430 ± 10	1535 ± 21	46930 ± 170
	Hear	vy scalar, $m_{\rm H}$ =	$= 275 \text{ GeV}, m_{\chi} = 60 \text{ GeV}$	GeV	
Expected yields	10.9 ± 1.4	23.8 ± 3.2	43 ± 5	33 ± 5	222 ± 20
$A \times \epsilon$ (%)	1.22 ± 0.07	2.67 ± 0.10	4.82 ± 0.14	3.65 ± 0.13	24.9 ± 0.4
	Z'_B	model, $m_{Z'_B}$ =	= 200 GeV, $m_{\chi} = 1$ Ge	eV	
Expected yields	20.0 ± 4.5	-	-	-	-
$A \times \epsilon$ (%)	17.4 ± 0.2	-	-	-	-
Z'-	2HDM model,	$m_{Z'} = 1000 \text{Ge}$	$eV, m_{A^0} = 200 \text{ GeV}, a$	nd $m_{\chi} = 100 \text{ GeV}$	
Expected yields	28.0 ± 5.3	_	-	-	-
$A \times \epsilon$ (%)	70.7 ± 0.2	-	-	-	-

$X + h - > \gamma \gamma$ Atlas-conf-2017-024

$X + h - > \gamma \gamma$ Atlas-Conf-2017-024



X+h->bb ATLAS-CONF-2017-028

Table 1: Dominant sources of uncertainty for three representative scenarios: (a) with $(m_{Z'}, m_A) = (0.6 \text{ TeV}, 0.3 \text{ TeV})$ described by low E_T^{miss} , (b) with $(m_{Z'}, m_A) = (1.4 \text{ TeV}, 0.6 \text{ TeV})$ characterized by medium E_T^{miss} , and (c) with $(m_{Z'}, m_A) = (2.6 \text{ TeV}, 0.3 \text{ TeV})$ featuring high E_T^{miss} . The effect is expressed as the fractional uncertainty on the signal yield, assuming total cross-sections of (a) 425 fb, (b) 4.74 fb, and (c) 1.91 fb. Total is the quadrature sum of statistical and total systematic uncertainties.

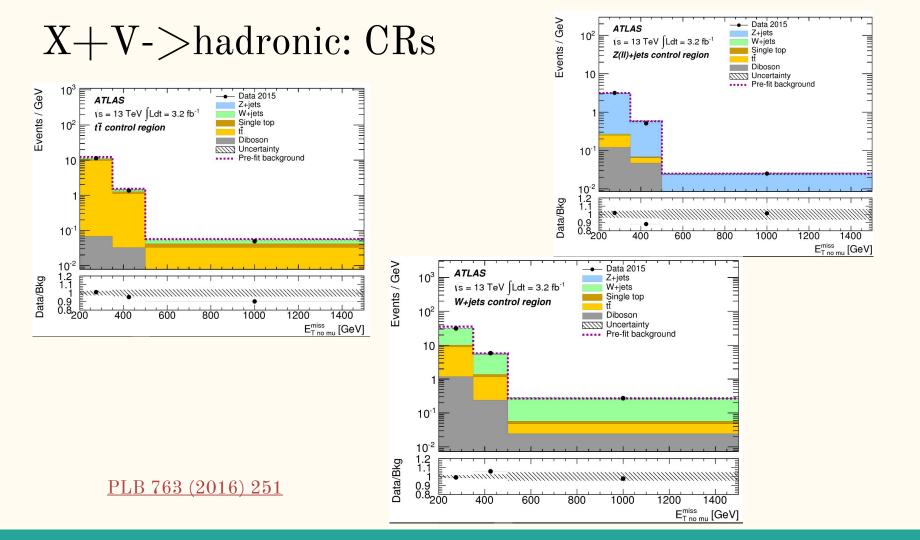
Source of uncert.	In	npact [9	6]
Source of uncert.	(a)	(b)	(c)
V+jets modeling	5.0	5.7	8.2
tī, single-t modeling	3.2	3.0	3.9
SM Vh(bb) norm.	2.2	6.9	6.9
Signal modeling	3.9	2.9	2.1
MC statistics	4.9	11	22
Luminosity	3.2	4.5	5.4
b-tagging, track jets	1.4	11	17
b-tagging, calo jets	5.0	3.4	4.7
Jets with $R = 0.4$	1.7	3.8	2.1
Jets with $R = 1.0$	< 0.1	1.2	4.7
Total systematic	10	21	36
Statistical	6	38	62
Total	12	43	71

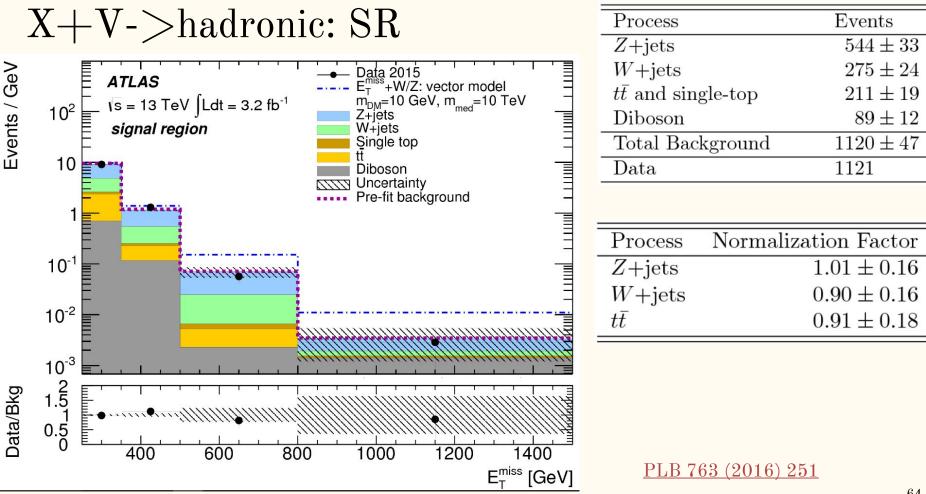
X+h->bb ATLAS-CONF-2017-028

X+h->bb ATLAS-CONF-2017-028

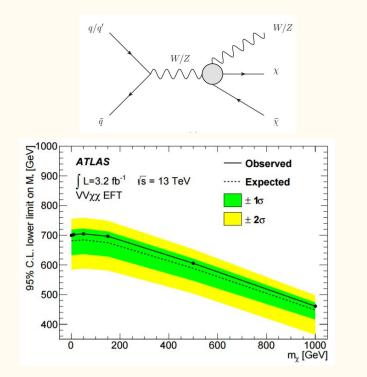
Table 2: Upper limits at 95% confidence level on the visible cross-section $\sigma_{\text{vis},h+\text{DM}}$ of h+DM events. The observed $\sigma_{\text{vis},h+\text{DM}}^{\text{obs}}$ is consistent with the expectation $\sigma_{\text{vis},h+\text{DM}}^{\exp}$ within uncertainties. Also shown are the $\mathcal{A} \times \varepsilon$ values to reconstruct and select an event in the same $E_{\text{T}}^{\text{miss}}$ bin as generated.

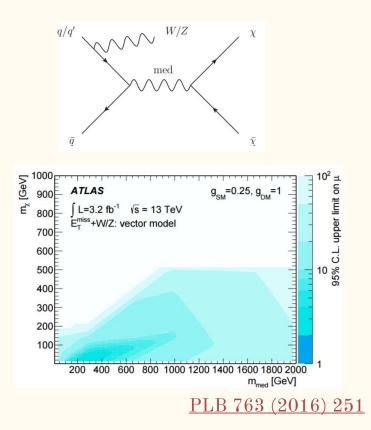
Range in	$\sigma_{{\rm vis},h+{\rm DM}}^{\rm obs}$	$\sigma_{{\rm vis},h+{ m DM}}^{ m exp}$	AXE
$E_{\rm T}^{\rm miss}/{\rm GeV}$	[fb]	[fb]	%
[150, 200)	19.1	$18.3^{+7.2}_{-5.1}$	15
[200, 350)	13.1	$10.5^{+4.1}_{-2.9}$	35
[350, 500)	2.4	$1.7^{+0.7}_{-0.5}$	40
[500,∞)	1.7	$1.8^{+0.7}_{-0.5}$	55


X+V->hadronic


X+V->hadronic: selection and background

- Trigger MET>70 GeV
- MET>250 GeV, $p_T^{miss}>30$ GeV
- >=1 large-R jet with p_T >200 GeV, m_J consistent with W/Z, D_2 cut
- $\Delta \Phi(\text{MET,jets}) > 0.6 \text{ rad}$
- $\Delta \Phi(\text{MET}, p_T^{\text{miss}}) < 90^{\circ}$


Bkg CRs all require one large-R jet with D_2 cut, MET>200 GeV, $p_T^{miss}>30$ GeV


- Z+jets in 2mu CR, mass compatible with Z
- W boson in 1mu CR, no-btag
- top in 1mu CR, >=1 b-tagged track jet

V+X with V->hadron limits on VVXX EFT model and on a simplified model

X+ll

X+ll: signal models

ATLAS-CONF-2016-056

- High mass analysis
 - $\circ~$ heavy H -> ZZ -> llnunu in 300-1000 GeV region, narrow width
 - \blacksquare particularly relevant above 500 GeV in the ZZ combination
 - Ilnunu final state used also for spin-2 KK graviton in the Randall-Sundrum framework with warped extra dimension (RS1)
- Low mass analysis
 - \circ Mono-Z(->ll), vector interaction
 - \circ Zh with Z->ll, h->invisible (prediction, 0.1% due to ZZ->nunununu)

X+ll: event selection

Event Selection

Exactly one ee or $\mu\mu$ pair

 $p_{\rm T}(e/\mu) > 30(20)$ GeV for leading (sub-leading) lepton

Selection	High Mass	Low Mass	
$ m_{ll}-m_Z $	< 15	GeV	
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 120 GeV	> 90 GeV	
$\Delta R_{\ell\ell}$	< 1	.8	
$ \Delta \phi(\vec{p}_{\mathrm{T}}^{\ell\ell},\vec{E}_{\mathrm{T}}^{\mathrm{miss}}) $	> 2.7		
$ p_{\mathrm{T}}^{\mathrm{miss, jet}} - p_{\mathrm{T}}^{\ell\ell} /p_{\mathrm{T}}^{\ell\ell}$	< 0.2		
$ \Delta\phi(\vec{E}_{\rm T}^{\rm miss}, {\rm jets}) $	> 0.4	> 0.7	
$ \Delta \phi(E_{\rm T}^{-}) $	$p_{\rm T}({\rm jet}) > 100 { m GeV}$	$p_{\rm T}({\rm jet}) > 25 {\rm ~GeV}$	
$p_{\mathrm{T}}^{\ell\ell}/m_{\mathrm{T}}$	< 0.7	< 0.9	
Number of <i>b</i> -jets	=	0	

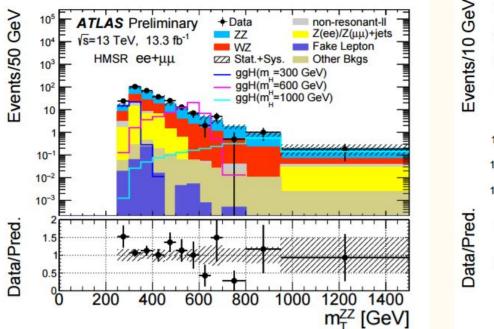
ATLAS-CONF-2016-056

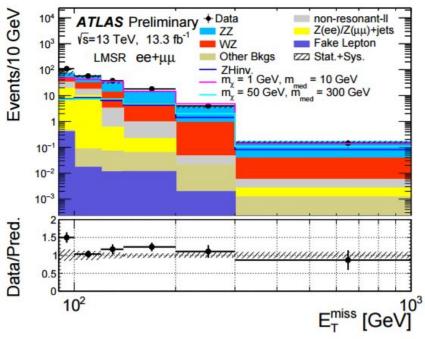
High Mass SR	ggF			
m _H [GeV]	600	1000		
Acc. \times Eff.	47% (ee) 47% (μμ)	54% (ee) 48% (μμ)		

Low Mass SR	ZH	Mono-Z			
Signal Model	qqZH	$(m_{\chi}, m_{\rm med}) = (1, 10) {\rm GeV}$	$(m_{\chi}, m_{\rm med}) = (50, 300) {\rm GeV}$		
Acc. \times Eff.	18% (ee) 19% (µµ)	2% (ee) 2% (µµ)	13% (ee) 14% (μμ)		

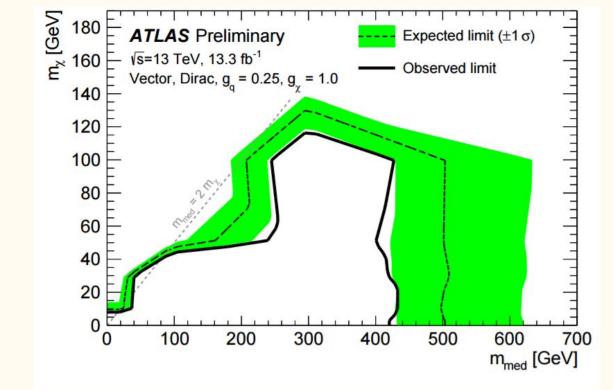
X+ll: background estimation

<u>ATLAS-CONF-2016-056</u>

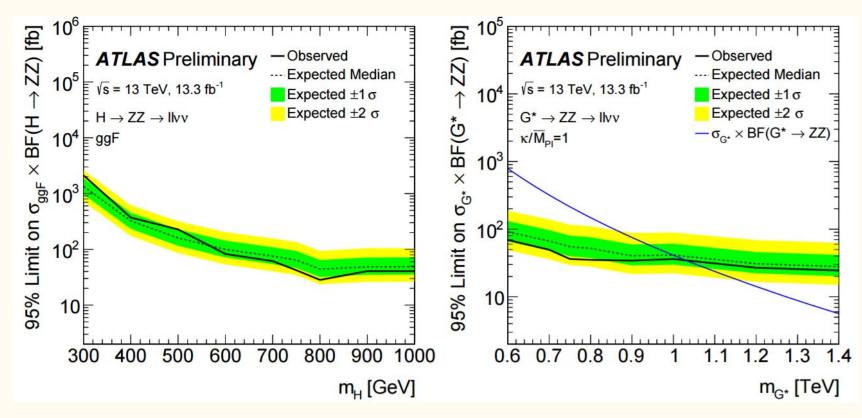

- ZZ from MC
- WZ in the 3l CR, ll pair compatible with Z + 1 e/mu
 - $\circ ~m_{_{\rm T}}{}^{\rm W}\!\!>\!\!60~{\rm GeV}$ to reduce contamination from Z+jets and tt
 - no b-jets $N_{WZ}^{SR} = N_{WZ, MC}^{SR} \times \frac{N_{data}^{3\ell} - N_{non-WZ, MC}^{3\ell}}{N_{WZ, MC}^{3\ell}} = N_{WZ, MC}^{SR} \times f_{WZ, MC}$
 - \circ ~ the corection factor $\rm f_{WZ}$ results = 1.25+-0.04+-0.05
- Z+jets from ABCD method, cuts on fractional $p_T < 0.2$ and $\Delta \Phi(MET, p_T^{ll}) > 2.7$, then $N_{Z+jets}^{SR} = N_{data-nonZ}^C \times \frac{N_{data-nonZ}^B}{N_{data-nonZ}^D}$


$$N_{\text{non-resonant-}\ell\ell}^{\text{SR}} = \frac{1}{2} \times \epsilon_{\text{corr}} \times N_{\text{data-other}}^{e\mu}$$

- Non-resonant (WW, tt, Wt, Z->tautau) in emu CR
- Fake-lepton (small) from data CR with one loose but non tight lepton, multiplied by a fake factor measured in Z+jets events as #jets passing quality/#jets passing loose quality ⁶⁹



X+ll results

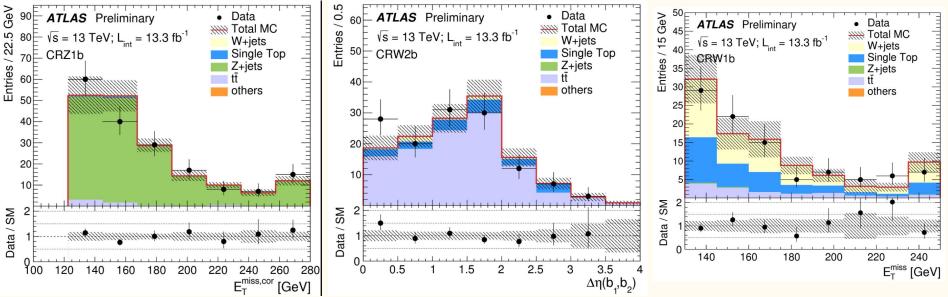

ATLAS-CONF-2016-056

	Limits on $\sigma(Z(\cdot$	$\rightarrow \ell \ell H (\rightarrow \text{ invisible})) [fb]$	Limits on BF(H	\rightarrow invisible)
	Expected	Observed	Expected	Observed
Central Value	58	88	65%	98%
$(-1\sigma, +1\sigma)$	(41, 83)		(46%, 93%)	
$(-2\sigma, +2\sigma)$	(30, 115)		(34%, 100%)	

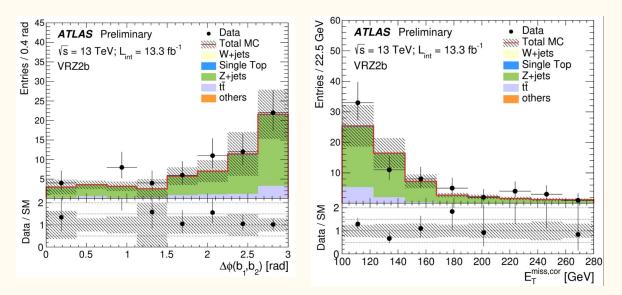
X+ll results

ATLAS-CONF-2016-056

DM+bb


DM+bb selection ATLAS-CONF-2016-086

⁸ vereeeee	
$\sum_{\alpha} \frac{\phi/a}{\chi} \begin{pmatrix} \bar{\chi} \\ \chi \end{pmatrix}$	
8 00000000 b	


Quantity	SR	CRZ1b	VRZ2b	CRW1b	VRW1b	CRW2b	VRLR
\mathcal{N}_{lepton} (baseline)	0	2 (SFOS)	2 (SFOS)	1	1	1	0
\mathcal{N}_{lepton} (high-purity)	0	2 (SFOS)	2 (SFOS)	1	1	1	0
$\Delta \phi^j_{ m min}$	> 0.4	> 0.4	> 0.4	> 0.4	> 0.4	> 0.4	> 0.4
$\mathcal{N}_{\mathrm jets}$	2 - 3	2 - 3	2 - 3	2 - 3	2 - 3	2 - 3	2 - 3
$\mathcal{N}_{\mathrm bjets}$	= 2	= 1	=2	=1	=1	=2	=2
jet 1 $p_{\rm T}$ [GeV]	> 100	> 100	> 85	> 100	> 100	> 100	> 100
jet 2 $p_{\rm T}$ [GeV]	> 20	> 20	> 20	> 30	> 30	> 20	> 20
jet 3 $p_{\rm T}$ [GeV]	< 60	< 60	< 60	< 60	< 60	< 60	< 60
$p_{\rm T}^{\rm b\text{-}jet1}$ [GeV]	> 50	> 50	> 50	> 50	> 50	> 50	> 50
$E_{\rm T}^{\rm miss}$ [GeV]	> 150	< 100	< 80	> 130	> 150	> 120	> 150
$E_{\rm T}^{\rm miss, cor}$ [GeV]	-	> 120	> 100	-	-	-	-
ΔR_{min}	> 2.8	> 2.8	> 2.8	> 2.5	> 2.8	> 2.8	< 2.5
$\Delta\eta(b_1,b_2)$	> 0.5	-	-	-	> 0.5	-	> 0.5
$Imb(b_1,b_2)$	> 0.5	-	-	-	-	-	> 0.5
$m_{ m T}^{lep}$	-	-	-	[30, 100]	[30, 100]	> 30	-
$m_{\ell\ell}$	-	[75, 105]	[80, 100]	-	-	-	-
lepton 1 $p_{\rm T}$ [GeV]	-	> 30	> 30	> 30	> 30	> 30	-
lepton 2 $p_{\rm T}$ [GeV]	-	> 25	> 25	-	-	-	-
$\Delta \phi(b_1,b_2)$	> 2.2	> 2.2	-	[1, 2.2]	> 2.2	> 2.2	> 2.2

DM+bb background ATLAS-CONF-2016-086

- Same flavour, opposite sign 2l CR for Z+jets
- 1 lepton, 2 b-jets: CRW2b for tt
- 1 lepton, 1 b-jet: CRW1b for W+jets and single-top

DM+bb validation regions

Entries / 22.5 GeV others 30 20 10 Data / SM 100 180 240 260 280 120 140 160 200 220 $E_{\tau}^{miss,cor}$ [GeV] Entries / 0.08 00 09 09 Data ATLAS Preliminary HI Total MC $50 - \sqrt{s} = 13 \text{ TeV}; L_{int} = 13.3 \text{ fb}^{-1}$ W+jets Single Top VRW1b Z+jets tī others 30 20 10 SM Data / 0 ^L 0.1 0.2 0.3 0.5 0.6 0.7 0.8 0.9 0.4 Imb(b₁,b₂)

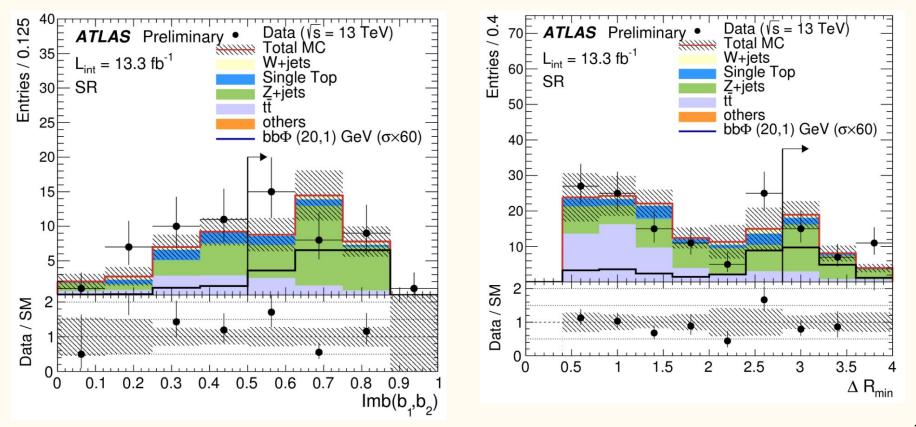
ATLAS Preliminary

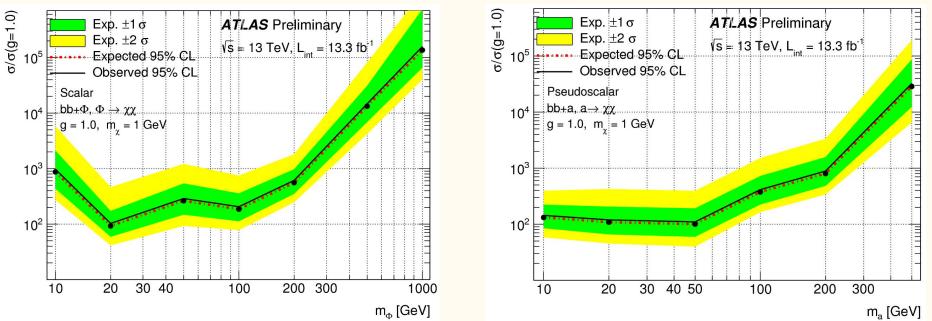
 $50 - \sqrt{s} = 13 \text{ TeV}; \text{ L}_{int} = 13.3 \text{ fb}^{-1}$

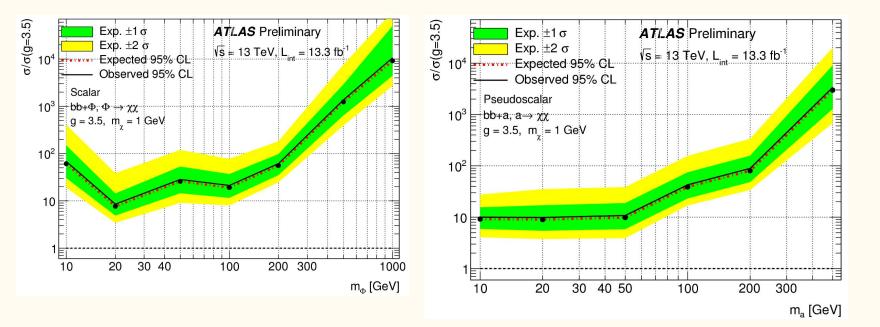
VRZ2b

40

 Data HIN Total MC


W+jets Single Top


Z+jets


tī

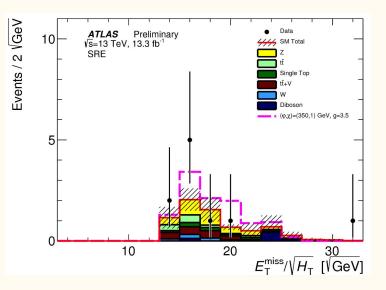
	SR
Observed	33
Total background	31.0 ± 6.2
W+jets	1.2 ± 0.8
Z+jets	22.6 ± 5.7
$t\bar{t}$	4.7 ± 1.4
single top	2.6 ± 1.1
others	-
pre-fit W+jets	1.2 ± 0.8
pre-fit Z+jets	20.1 ± 6.0
pre-fit $t\bar{t}$	5.8 ± 1.5
pre-fit single top	2.7 ± 1.1
pre-fit others	-

Signal channel	$\langle\epsilon\sigma angle_{ m obs}^{95}[{ m fb}]$	$S_{\rm obs}^{95}$	S_{exp}^{95}	CL_B	p(s=0)
SR	1.38	18.3	$16.8^{+5.7}_{-4.3}$	0.62	0.37

Stop searches

Selections

1

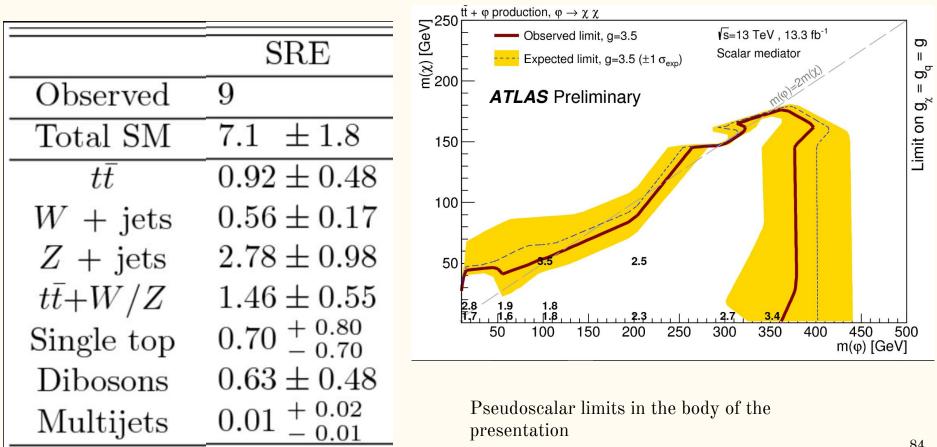

-
£
?
GeV
GeV
GeV
5
GeV
\overline{GeV}

Common event selection							
Trigger	$E_{\rm T}^{\rm miss}$ trigger						
Lepton	exactly one signal l	epton (e, μ) , no add	litional baseline leptons				
Jets	at least two signal j	ets, and $ \Delta \phi(\text{jet}_i, \vec{p}_i^T) $	$ a_{\Gamma}^{\text{miss}}) > 0.4 \text{ for } i \in \{1, 2\}$				
Hadronic τ veto*	veto events with a l	hadronic $ au$ decay an	d $m_{\rm T2}^{\tau} < 80 {\rm GeV}$				
Variable	DM_low	DM_high					
Number of (jets, <i>b</i> -tags)	$(\geq 4, \geq 1)$	$(\geq 4, \geq 1)$					
Jet $p_{\rm T} > [{\rm GeV}]$	(60 60 40 25)	(50 50 50 25)					
$E_{\rm T}^{\rm miss}$ [GeV]	> 300	> 330					
$H_{\mathrm{T,sig}}^{\mathrm{miss}}$	> 14	> 9.5					
$m_{\rm T}$ [GeV]	> 120 > 220						
am_{T2} [GeV]	> 140	> 170					
$\min(\Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jet}_i))(i \in \{1-4\})$	> 1.4 > 0.8						
$\Delta \phi(ec{p}_{\mathrm{T}}^{\mathrm{miss}},\ell)$	> 0.8	_					

2L: dilepton trigger, $\rm m_{ll}{>}~20~GeV$

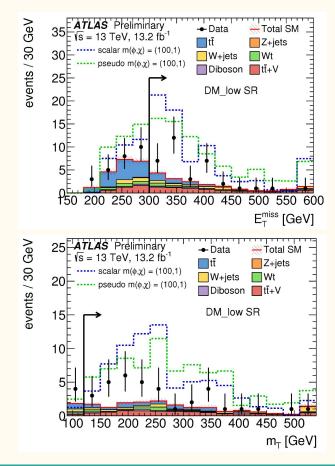
Variable	DM-SRL	DM-SRH	ATLAS-CONF
$ m_{\ell\ell} - m_Z $ [GeV] (SF only)	>20	>20	<u>-2016-077</u> ,
<i>b</i> -jet multiplicity	> 0	> 0	2016-050,
$\Delta \phi_{ m boost}$	< 1.0	< 1.0	2016-076
m_{T2}^{ll} [GeV]	>120	>120	
$E_{\rm T}^{\rm miss}$ [GeV]	> 180	> 260	82

DM+tt OL SR distribution



• CRs with reconstructed leptons are defined

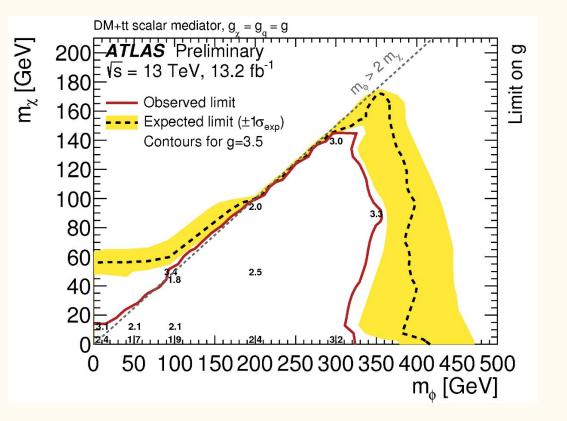
-		Z + jets	$t\bar{t}$		W + jets	single top
		CRZ	CRT	CRT-ISR	CRW	CRST
	\mathbf{SF}	$1.20{\pm}0.26$	$0.91 {\pm} 0.18$	$0.78 {\pm} 0.19$	1.21 ± 0.21	$0.86 {\pm} 0.33$
	SRA	34%-58%	9%- $14%$	-	10%- $11%$	6%- $9%$
	SRB	22%- $42%$	22%-25%	-	9%- $13%$	10%
	SRC	37%- $39%$	6% - 17%	-	18%-25%	20%- $26%$
	SRD1-4	0%	-	91%-92%	2%	1%-4%
	SRD5-8	2%- $10%$	-	70%-84%	5%- $9%$	4%- $8%$
	SRE	38%	12%	-	8%	10%
	\mathbf{SRF}	32%	10%	-	12%	17%


DM+tt 0L results

ATLAS-CONF-2016-077

84

DM+tt 1L SR distribution



- ttbar (mostly from ll with one lost lepton) and W+jets in CR with lower m_T with/without b-jets
- single-top (from Wt) from CR with low m_T, high am_{T2}, 2 b-jets, high separation between the two b-jets
- tt+Z CR using tt+gamma (Z->ll has too low stat)
- multi-jet negligible
- Z+jets (small) from MC

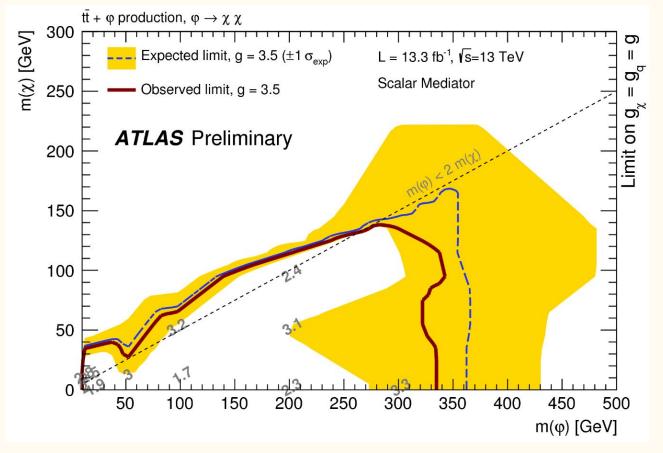
DM+tt 1L SR results

Signal region	SR1	tN_high	$bC2x_diag$	$bC2x_med$	bCbv	DM_{low}	DM_high
Observed	37	5	37	14	7	35	21
Total background	24 ± 3	3.8 ± 0.8	22 ± 3	13 ± 2	7.4 ± 1.8	17 ± 2	15 ± 2
$t\bar{t}$	8.4 ± 1.9	0.60 ± 0.27	6.5 ± 1.5	4.3 ± 1.0	0.26 ± 0.18	4.2 ± 1.3	3.3 ± 0.8
W+jets	2.5 ± 1.1	0.15 ± 0.38	1.2 ± 0.5	0.63 ± 0.29	5.4 ± 1.8	3.1 ± 1.5	3.4 ± 1.4
Single top	3.1 ± 1.5	0.57 ± 0.44	5.3 ± 1.8	5.1 ± 1.6	0.24 ± 0.23	1.9 ± 0.9	1.3 ± 0.8
$t\bar{t} + V$	7.9 ± 1.6	1.6 ± 0.4	8.3 ± 1.7	2.7 ± 0.7	0.12 ± 0.03	6.4 ± 1.4	5.5 ± 1.1
Diboson	1.2 ± 0.4	0.61 ± 0.26	0.45 ± 0.17	0.42 ± 0.20	1.1 ± 0.4	1.5 ± 0.6	1.4 ± 0.5
Z+jets	0.59 ± 0.54	0.03 ± 0.03	0.32 ± 0.29	0.08 ± 0.08	0.22 ± 0.20	0.16 ± 0.14	0.47 ± 0.44
$tar{t}$ NF	1.03 ± 0.07	1.06 ± 0.15	0.89 ± 0.10	0.95 ± 0.12	0.73 ± 0.22	0.90 ± 0.17	1.01 ± 0.13
W+jets NF	0.76 ± 0.08	0.78 ± 0.08	0.87 ± 0.07	0.85 ± 0.06	0.97 ± 0.12	0.94 ± 0.13	0.91 ± 0.07
Single top NF	1.07 ± 0.30	1.30 ± 0.45	1.26 ± 0.31	0.97 ± 0.28	_	1.36 ± 0.36	1.02 ± 0.32
$t\bar{t} + W/Z$ NF	1.43 ± 0.21	1.39 ± 0.22	1.40 ± 0.21	1.30 ± 0.23	_	1.47 ± 0.22	1.42 ± 0.21
p_0 (σ)	0.012(2.2)	0.26(0.6)	0.004(2.6)	0.40(0.3)	0.50(0)	0.0004(3.3)	0.09(1.3)
$N_{\rm non-SM}^{\rm limit}$ exp. (95% CL)	$12.9^{+5.5}_{-3.8}$	$5.5^{+2.8}_{-1.1}$	$12.4^{+5.4}_{-3.7}$	$9.0^{+4.2}_{-2.7}$	$7.3^{+3.5}_{-2.2}$	$11.5^{+5.0}_{-3.4}$	$9.9^{+4.6}_{-2.9}$
$N_{\rm non-SM}^{\rm limit}$ obs. (95% CL)	26.0	7.2	27.5	9.9	7.2	28.3	15.6

DM+tt 1L SR results

ATLAS-CONF-2016-050

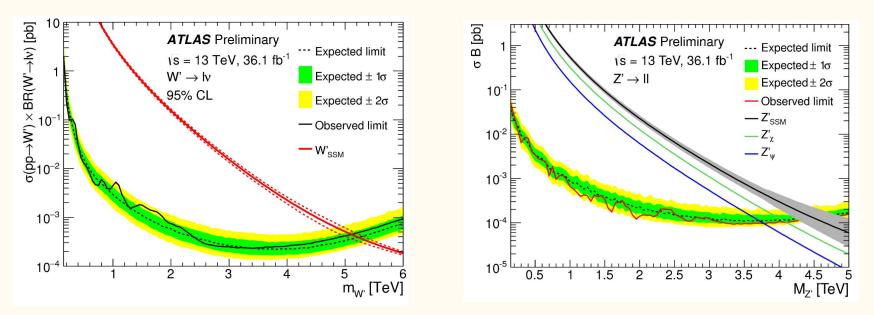
Pseudoscalar limits in the body of the presentation


DM+tt 2L background estimation ATLAS-CONF-2016-076

Selection	CRT	CRTZ	VRVV	VRMET	VRMT2	VRINC
$m_{T_2}^{ll}$ [GeV]	60-100	>90	>100	-	>120	-
<i>b</i> -jet multiplicity	> 0	> 0	0	> 0	> 0	> 0
Jet multiplicity	> 1	> 1	> 1	> 1	> 1	-
Lepton multiplicity	2	> 2	2	2	2	2
$\Delta \phi_{ m boost}$	< 1	-	-	> 1	> 1	> 1
$E_{\rm T}^{\rm miss}$ [GeV]	_	-	-	> 180	_	_

	CRT	CRTZ	VRVV	VRMET	VRMT2	VRINC
Observed events	6758	26	100	30	71	10802
Total Standard Model	6758 ± 83	26.0 ± 5.1	90 ± 20	30.3 ± 3.8	53.3 ± 9.0	10600 ± 1000
Fitted $t\bar{t}$	6460 ± 89	-	39 ± 17	21.0 ± 4.6	20 ± 6.3	9700 ± 1000
Wt	264 ± 24	_	5.8 ± 1.8	4.9 ± 2.0	3.6 ± 1.5	847 ± 12
Z/γ^* +jets	$0.05^{+0.06}_{-0.05}$	-	$0.06^{+0.08}_{-0.06}$	1.26 ± 0.29	18.8 ± 3.4	47.7 ± 9.5
VV	12.4 ± 2.3	3.65 ± 0.92	40.9 ± 3.4	0.77 ± 0.31	6.2 ± 1.4	40.2 ± 5.6
Fitted $t\bar{t} Z$	6.9 ± 2.9	14.5 ± 5.8	0.46 ± 0.21	0.63 ± 0.27	1.85 ± 0.79	11.0 ± 4.6
$t\bar{t}W$	8.02 ± 0.28	2.44 ± 0.17	0.28 ± 0.06	0.34 ± 0.05	0.92 ± 0.10	10.88 ± 0.59
Fake and non prompt leptons	$1.7^{+1.7}_{-1.7}$	3.5 ± 2.5	$2.5^{+2.8}_{-2.5}$	1.3 ± 1.3	$1.1^{+1.5}_{-1.1}$	-
Other processes	5.59 ± 0.18	2.05 ± 0.17	0.14 ± 0.03	0.14 ± 0.02	0.93 ± 0.44	8.09 ± 0.61
MC exp. Standard Model	6500	30	88	28	34	10100
MC exp. $t\bar{t}$	6150	-	37	20	19	9200
MC exp. $t\bar{t}$ Z	8.76	18.4	0.58	0.80	2.0	14

DM+tt 2L results


$\begin{array}{l} Pseudoscalar \mbox{ limits in the body of the} \\ presentation \mbox{ } \underline{ATLAS-CONF-2016-076} \end{array}$

Other analyses

W' and Z' in leptonic channels ATLAS-CONF-2017-027, 2017-016

- Searches performed on 36/fb @ 13 TeV
- Key is the reconstruction performance for very energetic leptons
- Search performed on $\ell\nu$ transvers mass (W') and $\ell\ell$ invariant mass (Z')

