SuperKEKB Vacuum System

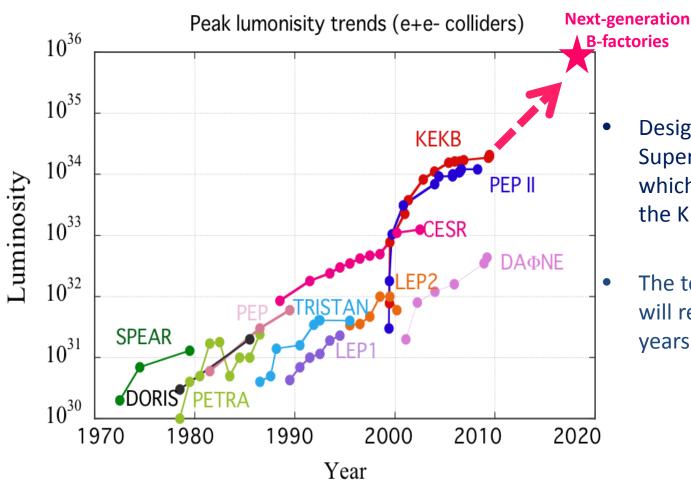
ECLOUD'12 (the 5th electron-cloud workshop) 2012.6.6

Kyo Shibata (on behalf of KEKB Vacuum Group)

KEKB was shut down on Jun 30th 2010, and upgrade of KEKB has started.

- KEKB B-factory :
 - Electorn-positron collider with asymmetric energies of 8 GeV (e-) and 3.5 GeV (e+).
 - Made a great contribution to confirmation of CP violation in the neutral B meson system.
 - Operation period : 1998 to 2010
 - Peak luminosity: 2.1×10^{34} cm⁻²s⁻¹
 - Total integrated luminosity: 1040 /fb
- To pursue research on flavor physics, much more luminosity is required and the SuperKEKB project was begun in 2010.
 - Commissioning of SuperKEKB will start in the second half of FY2014.

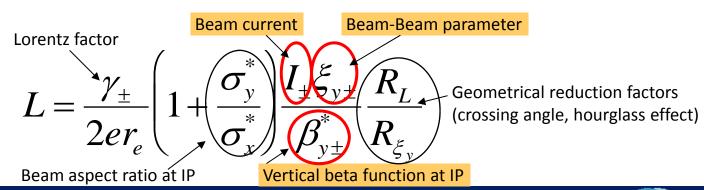
Shut down ceremony (Jun 30th 2010, AM9:00 @ KEKB control room)


Prof. Suzuki (Director General of KEK) pressed the beam abort switch of KEKB.

2012/6/6

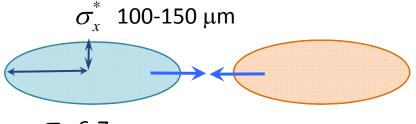
Mission of SuperKEKB

Design Luminosity of SuperKEKB is 8×10³⁵ /cm²/s, which is about 40 times than the KEKB's record.


The total integrated luminosity will reach 50 /ab just over ten years after inauguration.

Design Concept of SuperKEKB 1 How to Increase Luminosity by 40 Times

- β_v^* at IP : 5.9 -> 0.27/0.30 mm (e+/e-)
 - > Nano-beam scheme (first proposed for SuperB by P. Raimondi)
 - ➤ Luminosity gain: ×20
- Beam current: 1.7/1.4 A -> 3.6/2.6 A (e+/e-)
 - ➤ Luminosity gain : ×2
- Beam-beam parameter: 0.09 -> 0.09
 - ➤ Luminosity gain : ×1
- Total Luminosity Gain : 20 × 2 × 1 = 40


Collision Scheme Nano Beam Scheme

KEKB

Head-on (crab crossing)

SuperKEKB

Nano Beam scheme

 $\sigma_{_{\scriptscriptstyle 7}}$ 6-7 mm

overlap region = bunch length

 2ϕ = 83 mrad Half crossing angle : ϕ

 $d = \sigma_x^*/\phi$

overlap region << bunch length

Hourglass requirement -

$$\beta_{\rm v}^* \geq \sigma_{\rm z} \approx 6 \, \rm mm$$

$$\beta_{v}^{*} \geq \sigma_{x}^{*}/\phi \approx 300 \ \mu \text{m}$$

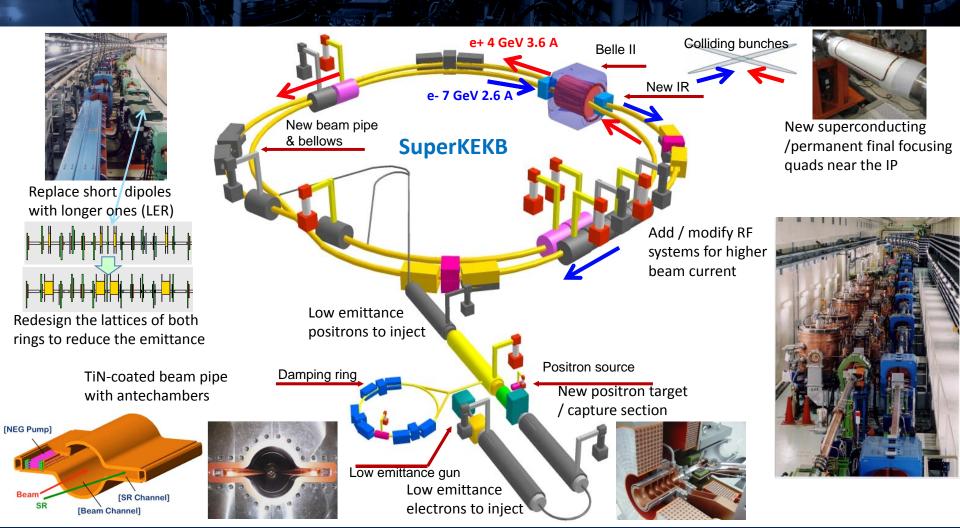
In nano-beam scheme:

Vertical beta function at IP can be squeezed to ${\sim}300~\mu m$. Small horizontal beam size at IP is necessary.

Low emittance, small horizontal beta function at IP

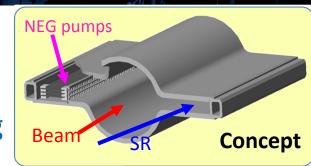
Design Concept of SuperKEKB 2

- To reduce the construction costs
 - Use the KEKB tunnel
 - Use the components of KEKB as much as possible.
 - ✓ Preserve the present cells in HER.
 - ✓ Replace dipole magnets keeping other main magnets in LER arcs.
- Other features
 - No option for polarization at present.
 - Changing beam energy: 3.5/8.0 -> 4.0/7.0 GeV (e+/e-)
 - ✓ LER: Longer Touschek lifetime and mitigation of emittance growth due to the intra-beam scattering
 - ✓ HER: Lower emittance and lower SR power


Comparison of Parameters between KEKB and SuperKEKB

	KEKB Design	KEKB Achieved : with crab	SuperKEKB Nano-Beam
Energy (GeV) (LER/HER)	3.5/8.0	3.5/8.0	4.0/7.0
$\beta_{\!\scriptscriptstyle y}^{*}$ (mm)	10/10	5.9/5.9	0.27/0.30
$\beta_{\!\scriptscriptstyle X}^{*}$ (mm)	330/330	1200/1200	32/25
$\varepsilon_{\!_{X}}(nm)$	18/18	18/24	3.2/5.3
$\varepsilon_{\rm y}/\varepsilon_{\rm x}$ (%)	1	0.85/0.64	0.27/0.24
$σ_{ m y}$ (μm)	1.9	0.94	0.048/0.062
ξ _y	0.052	0.129/0.090	0.09/0.081
$\sigma_{\!\scriptscriptstyle m Z}$ (mm)	4	6 - 7	6/5
I _{beam} (A)	2.6/1.1	1.64/1.19	3.6/2.6
N _{bunches}	5000	1584	2500
Luminosity (10 ³⁴ cm ⁻² s ⁻¹)	1	2.11	80

Outline of Upgrade to SuperKEKB

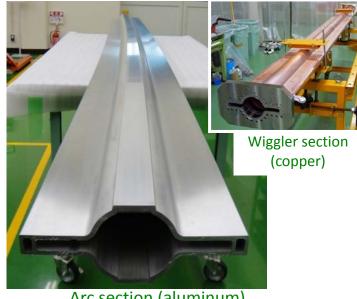


New Beam Pipes for SuperKEKB

To cope with the electron cloud issues and heating problems, antechamber type beam pipes are adopted with a combination of TiN coatings, grooved shape surfaces and clearing electrodes.

by courtesy of Y. Suetsugu

> LER arc section:


✓ Beam pipes are replaced with new aluminum-alloy pipes with antechambers. (~2000 m)

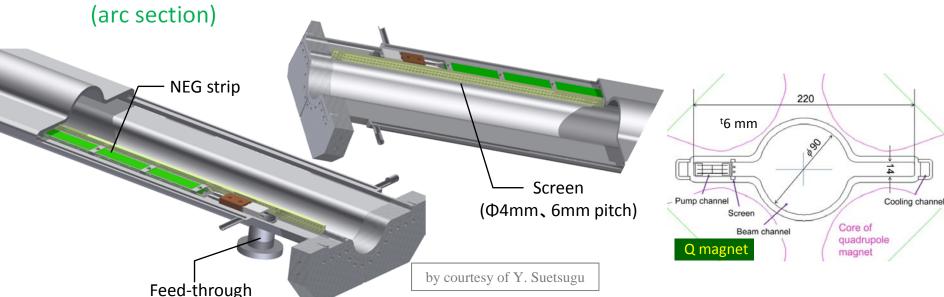
> HFR arc section:

- ✓ Present copper beam pipes are reused.
- ✓ Since the HER energy is reduced from 8.0 to 7.0 GeV, SR power at normal arc section is more or less the same as KEKB.

➤ Wiggler section (both ring):

✓ Copper beam pipes with antechambers are used.

Arc section (aluminum)



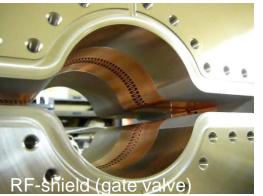
Beam pipe with antechamber

- Features of new beam pipes with antechamber
 - > Small effect of photoelectrons, low beam impedance, low SR power density
 - > The cross section should fit to the existing magnets.
 - Aluminum alloy is available for LER arc section due to low SR power. Copper is required for wiggler section and HER.

➤ NEG strips are installed in one antechamber isolated by the screen for RF shield.

Flange, Bellows and Gate Valve

• Flange, bellows and gate valve applicable to antechamber scheme were also developed.

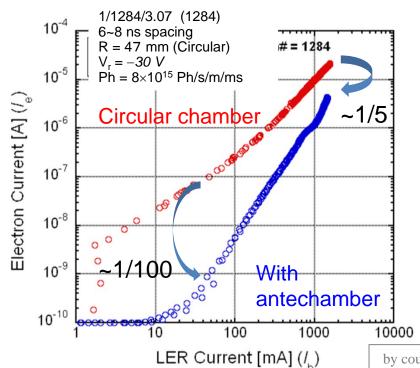

by courtesy of Y. Suetsugu

Countermeasures against Electron Cloud Effect

- Electron cloud instability can be a serious problem for LER (e+)
 - The threshold of electron density to excite the head-tail instability is $\sim 1.6 \times 10^{11} \, \text{e}^{-}/\text{m}^{3}$.
 - By using these countermeasures, the average electron density on the order of 10¹⁰ e⁻/m³ will be obtained.
 - Various mitigation techniques were evaluated at KEKB LER.

by courtesy of Y. Suetsugu

Sections	L [m]	L [%]	Countermeasure	Material
Total	3016	100		
Drift space (arc)	1629 m	54	TiN coating + Solenoid	Al (arc)
Steering mag.	316 m	10	TiN coating + Solenoid	Al
Bending mag.	519 m	17	TiN coating + Grooved surface	Al
Wiggler mag.	154 m	5	Clearing Electrode	Cu
Q & SX mag.	254 m	9	TiN coating	Al (arc)
RF section	124 m	4	(TiN coating +) Solenoid	Cu
IR section	20 m	0.7	(TiN coating +) Solenoid	Cu or ?

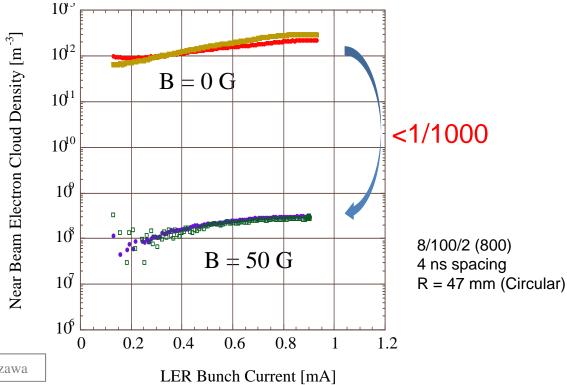


Electron cloud mitigation 1 Antechamber

 Antechamber is effective to mitigation of photoelectrons which can be source of the electron cloud.

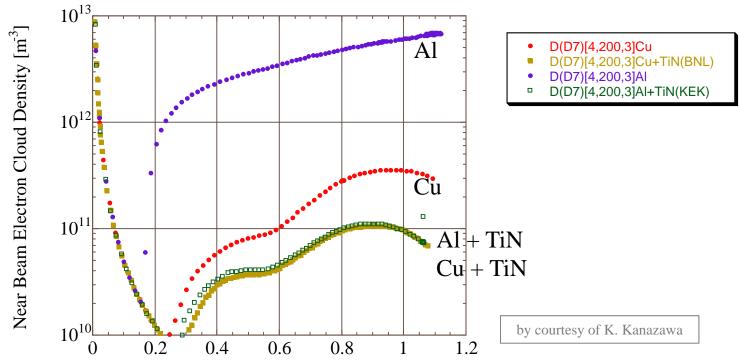
Effect of antechamber

Rough surface at the side wall (Ra \sim 20) reduces the photon reflection.


by courtesy of Y. Suetsugu

Electron Cloud Mitigation 2 Solenoid Field

• It was confirmed that the solenoid field at drift section (50 G) is effective to both photoelectrons and secondary electrons.



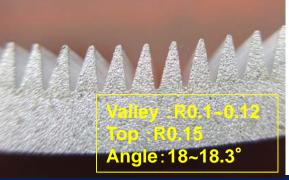
by courtesy of K. Kanazawa

Electron Cloud Mitigation 3 TiN Coating

- TiN coating is effective to reduction of the secondary electrons.
- It was confirmed that TiN coated surface has a same property irrespective of base material.

Electron Cloud Mitigation 4 Grooved Surface (in Bending Magnet)

• Grooved surface in the bending magnet can reduce effective SEY structurally.


R_t (Roundness) B

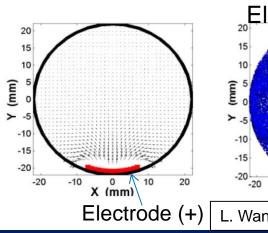
- It was tested in KEKB and CesrTA.
- It is expected to reduce the electron density by factors.
- > It can be formed by extrusion method.
- ➤ In SuperKEKB LER, it will be used with TiN coating.
- ➤ Grooved surface with TiN coating will be also adopted for positron damping ring.

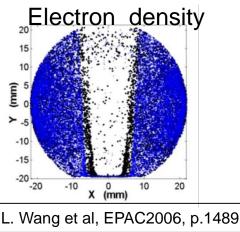
by courtesy of Y. Suetsugu

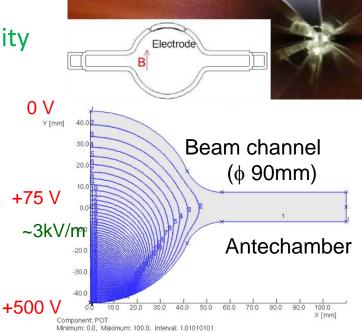
2012/6/6

by L. Wang et al.

Beam pipe (Damping ring)

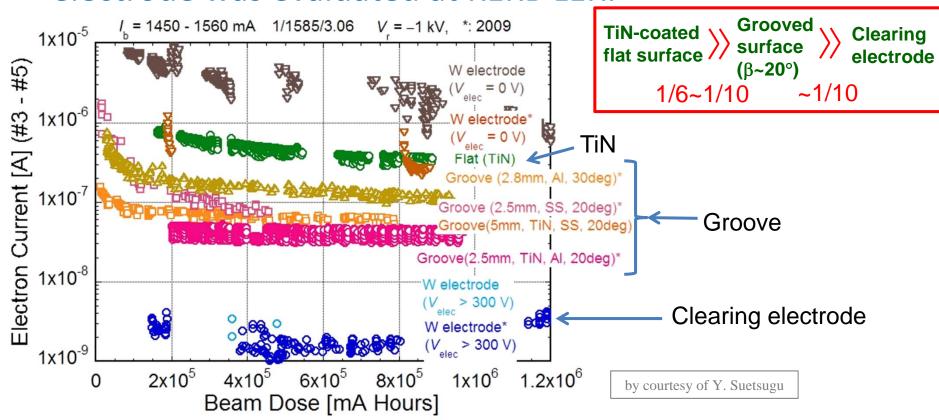

d (Depth)


Electron Cloud Mitigation 5 Clearing Electrode (in Wiggler Magnet)


 Clearing electrode attracts the electrons by electrostatic field.

➤ Very thin electrode was developed. (0.1 mm tungsten on 0.2 mm Al₂O₃)

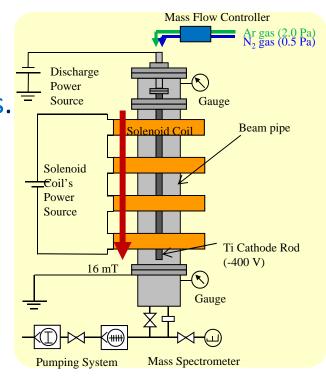
- > It was tested in KEKB and CserTA.
- It is expected to reduce the electron density around beam up to $\sim 1/100$.



by courtesy of Y. Suetsugu

Electron Cloud Mitigation 5 Evaluation on Groove and Electrode

 Effectiveness of the grooved surface and the clearing electrode was evaluated at KEKB LER.


2012/6/6

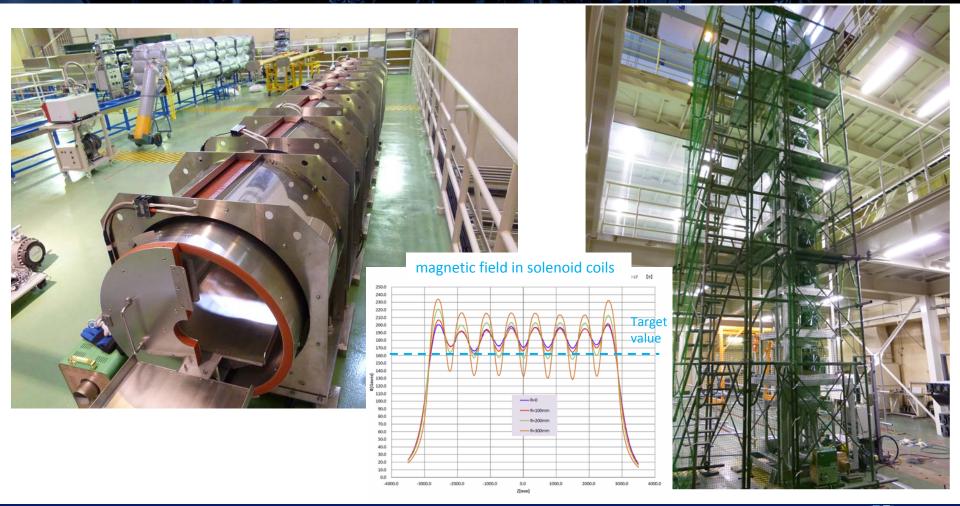
TiN Coating Facility 1

We have to coat ~1100 beam pipes within 2 years.

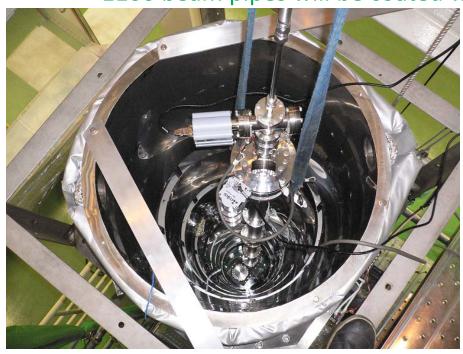
TiN coating tests had been performed and the coating method was established.

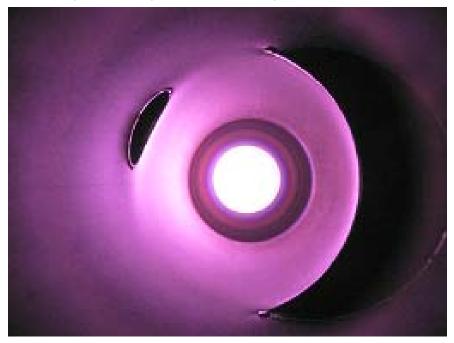
- TiN coating is done by a DC magnetron sputtering of Ti in Ar and N2 atmospheres.
 - A Ti cathode rod (-400 V) is hung from the top on the center axis.
 - ➤ Gases are supplied into the beam pipes uniformly though the Ti rod.
 - Magnetic field (16 mT) is supplied by a solenoid coil.

TiN Coating facility 2


- TiN coating facility for large-scale production are under construction now.
 - 5 vertical equipments for straight beam pipes.
 - ➤ 3 transverse equipments for bent pipes (of which one is test station).
 - Two line of the beam pipes can be mounted side-by-side in one equipment.
 - Beam pipe with a length up to 5 m can be coated.
 - Combination of hot-air oven and circulators are adopted to avoid the trouble of having to cover and uncover the aluminum foils and insulators.

TiN Coating facility 3


Tin Coating facility 3



Tin Coating facility 4

- Coating test is about done.
 - Coating on the beam pipes will be started in this month.
 - > 1100 beam pipes will be coated within 2 years by this facility.

Now coating (view from the bottom)

Construction works are undergoing now.

- Fabrication of beam pipes:
 - LER beam pipes are being made on mass production lines.
- Baking of beam pipes (after coating):
 - ➤ All beam pipes will be baked with a temperature up to 150 °C at the laboratory before installation.
 - ➤ To cope with the large number of beam pipes (~1200), hot-air oven is used.
 - Baking works started in April. (Output: 6-8 pipes/week at present)
- Installation of beam pipes:
 - Installation works will start in the second half of this year.

by courtesy of Y. Suetsugu

Summary

- Construction works of SuperKEKB are going on now.
 - ➤ Commissioning of SuperKEKB will start in the second half of FY2014.
- Almost all LER and part of HER beam pipes become new.
 - ➤ To cope with the electron cloud issues and heating problems, antechamber type beam pipes are adopted.
- As the countermeasures against the electron cloud, various mitigation techniques are adopted.
 - Solenoid field
 - > TiN coating
 - Grooved surface
 - Clearing electrode
- TiN coating are done in KEK Tsukuba site.
 - > Coating facility are under construction now.
 - > Coating test is about done and coating on the beam pipe will start this month.

Thank you very much for your attention.

Backup

