

Low-energy projects at SPES L. Gialanella SUN and INFN Napoli - Igialanella@na.infn.it

AAPPS Bulletin August 2006

11

Articles

Nucleosynthesis in Classical Nova Explosions: Modeling and Nuclear Uncertainties

Jordi José and Alain Coc

Fig. 4: Main CNO-cycle reactions during nova outbursts.

Fig. 5: Main nuclear activity in the Ne-P region during nova

. Gialanella

					RIBs at 40 KeV	Re-accelerated RIBs	RIBs at 40 KeV	Re-accelerated RIBs						
					1+	C.B. eff=3- 4 %	1+	C.B. eff=3-4 %			Energy Max	Surface Ion	Laser Ion Source	Plasma I Source
Element	A	z	N	T1/2 s		Linac tr.=50%		Linac tr.=50%	q+ 2014	A/Q 2014	Mev/A	SIS	LIS	FEBIA
					a 200µA	a 200µA a 5	а 5 µА	а 5 µА		▲ * (see attached Notes)	±10 %	Legend		
									Estimated Data	** "		• 1	Feasible	
									Experimental Data ** (see attached Notes)	*** "	*Based on Comunian	m	Unwada ta da	
											Formula	_ 3	opgrade to	ograde to do
										**** ''		95	5 Major Upgrades	
Be*	7	4	3	4.60E+06				2.E+07 **	1	• 7,0	9		2	•
Re*	10	4	6					3 E+07 **	2	5.0	13		2	
F*	17	0	8	6 48E±01				2.E+07 **	4	43	15		 - 4	
F*	18	9	0	6.58E+03				2.E+06 **	4	4.5	14		4	0
- Na*	21	11	10	2.25E+01					6	▲ <u>3,5</u>	18	5		
Na*	22	11	11	2.60E+00					6	<u>▲</u> 3,7	17	5		
Mg*	22	12	2 10	3.86E+00					6	△ 3,7	17		5	0
Mg*	23	12	2 11	1.13E+01					6	△ 3,8	16		95	0
Al*	24	13	3 11	2.05E+00					6	. 4,0	16	1	1	
Al*	25	13	12	7.18E+00				1E+04 **	6	4,2	15	1	1	
Al*	26	13	3 13	6.35E+00				1E+04 **	6	4,3	15	1	1	
Si*	26	14	12	2.21E+00				1E+03 **	7	▲ 3,7	17			0
Si*	27	14	13	4.16E+00				1E+03 **	7	△ 3,9	16			0
P*	29	15	5 14	4.10E+00					7	4,1	15			0
Cl*	34	17	17	1.53E+00				5E+03 **	8	4,3	15			0

RMS for Nuclear Astrophysics

. Gialanella

Next to come: SECAR at FRIB

But don't forget acceptance. An example: ${}^{12}C(\alpha,\gamma){}^{16}O$ at $E_{cm}=1$ MeV

Required acceptance:27 mrad Actual acceptance: 24 mrad

L. Gialanella

L. G. and D. Schuermann ENA VI – POS 2011

Schuermann, Gialanella, Kunz, Strieder PLB²2011

	Final state)	Branch (%)					
16	O* (MeV)	J^{π}						
	0	0^{+}		$26 \pm$	2 °]		
	6.05	0^+	$(1.2 \pm$	$\times \; 10^{-2} \; {\rm d}$				
	6.13	3^{-}		$68 \pm$	2 °			
	7.12	1-	4.9 ± 0.4 c					
	8.87	2^{-}	$1.0 \pm 0.2 \ ^{\rm c}$					
	9.63	1^{-}	$(1.20 \pm$	0.05)	$\times \; 10^{-3 \rm \ e}$			
	9.85	2^{+}	(6.5 =	± 2.0)	$ imes 10^{-7}$ f			
	Relat	ive	BR		S300	•		
					(keV·b)			
	4000	fix	ed		80			
	3650	fit	ted		85			
	3800 norm	fit	ted	+	86			
	3800 norm	fit + s	ted + elect		90	15		

1550 free 154

Outlook

Possibly one might develop the low energy section of SPES for proton and alpha captures on light isotopes using a RMS, but beam quality neeeds to be very good.

What about N16?

