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Basic theory behind dynamic back-action 
• Light wave in an optical apparatus interacts with a 

mechanical probe (test mass) via radiation pressure. 

• Imposes measurement back-action on the probe. 

• Back-action noise due to quantum fluctuations of 
electromagnetic field. Causes SQL together with 
measurement shot noise. 

• Dynamic back-action due to motion of the probe: test 
mass moves → redistribution of energy → 
ponderomotive force alters dynamics of the test mass.  

– V.B. Braginsky, A.B. Manukin, Sov. Phys. JETP 25, 653 (1967); 

– V.B. Braginsky et al., Sov. Phys. JETP 31, 829 (1970). 

 
• Effective Fabry-Perot cavity in optomechanics with 

micro-and nano-oscillators (topologies of ‘movable 
mirror’, ‘membrane-in-the-middle’, etc.). 

• Scaling law for gravitational-wave detectors: noise and 
dynamics of interferometers operated on dark port are 
equivalent to those of a Fabry-Perot cavity.  

– A. Buonanno, Y. Chen, Phys. Rev. D 67, 062002 (2003). 

 

T. J. Kippenberg et al., 
Science 321, 1172 (2008); 
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Ponderomotive force: 𝛿𝐹 Ω ~𝐴0𝛿𝐴 = −𝒦 Ω 𝛿𝑥 = −𝛿𝑥 𝐾 Ω − 2𝑖ΩΓ Ω  

Interaction Hamiltonian: 
ℋ𝑖𝑛𝑡 = 𝑔𝜔𝑥 𝑎 +𝑎  

Describes modulation of the 
resonance frequency – dispersive 
coupling , 𝑔𝜔 = 𝜕𝜔 𝜕𝑥 . 
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Canonical dynamic back-action 
• Complex optical spring: 

𝒦 Ω =
2𝜔0ℰ

𝐿2

Δ

Δ2 + 𝛾 − 𝑖Ω 2
 

• Real optical spring (rigidity): 
𝐾 Ω = ℜ 𝒦 Ω =

=
2𝜔0ℰ

𝐿2

Δ Δ2 + 𝛾2 − Ω2

Δ2 + 𝛾 − 𝑖Ω 2 2
 

– Crosses zero once, if Ω < 𝛾 (GWD) 

– Crosses zero thrice, if Ω > 𝛾 (OM) 

• Optical damping: 
Γ Ω = −ℑ 𝒦 Ω /2Ω

= −
2𝜔0ℰ

𝐿2

Δ𝛾

Δ2 + 𝛾 − 𝑖Ω 2 2
 

– Crosses zero only once 

Both vanish on resonance, ∆ = 0. 
V.B. Braginsky et al., Phys. Lett. A 232, 340 (1997); 

F.Ya. Khalili, Phys. Lett. A 288, 251 (2001); 

A. Buonanno, Y. Chen, Phys. Rev. D 65, 042001 (2002). 

 



Canonical dynamic back-action in GWDs 

• A single-carrier optical spring, as a set of 𝐾 
and Γ, is unstable for any detuning. 
Feedback/control needed for stabilization. 

• Two laser drives can create stable spring.  

– H. Rehbein et al., PRD 78, 062003 (2008); 

– T. Corbitt et al., PRL 98, 150802 (2007). 

• Broadband reduction of quantum noise 
via dual-carrier negative optical inertia. 
– F. Khalili et al., PRD 83, 062003 (2011). 

H. Mueller-Ebhardt, PhD thesis, 2009. 

 

 

• Optical spring 𝐾 allows reduction of 
quantum noise in certain freq. band via 
modifying dynamics of the test masses. 

           Free mass: 𝒮𝐹
𝑆𝑄𝐿

= 2ℏ𝑚Ω2, 

           Oscillator: 𝒮𝐹
𝑆𝑄𝐿

= 2ℏ𝑚 Ω2 − 𝜔𝑚
2 . 

• Optical spring makes signal amplification 
rather than back-action noise cancelation – 
much more tolerant to optical losses. 
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• Optical spring 𝐾 allows reduction of 
quantum noise in certain freq. band via 
modifying dynamics of the test masses. 

           Free mass: 𝒮𝐹
𝑆𝑄𝐿

= 2ℏ𝑚Ω2, 

           Oscillator: 𝒮𝐹
𝑆𝑄𝐿

= 2ℏ𝑚 Ω2 − 𝜔𝑚
2 . 

• Optical spring makes signal amplification 
rather than back-action noise cancelation – 
much more tolerant to optical losses. 

• So far, optical spring has been studied exclusively 
in interferometers operated on dark port. 

• Although already 2nd-gen detectors will utilize DC-
readout, where offset from dark fringe is created 
on purpose. 

• Nobody has considered if new effects rise in an 
interferometer operated off dark fringe. 

• Quite unexpectedly, a micromechanical model 
shed light upon physics in large-scale 
interferometers operated off dark port. 



Canonical dynamic back-action in OM 
Optomechanics with micro-/nano-oscillators: 

• Shift of mechanical frequency caused by 
optical spring 𝐾 is mostly negligible 
compared to intrinsic resonance freq. 𝜔𝑚. 

• Cooling by optical damping Γ, preferably at 
deeply resolved sideband, Ω = 𝜔𝑚 ≫ 𝛾. 

– I. Wilson-Rae et al., PRL 99, 093901 (2007);  
– F. Marquardt et al., PRL 99, 093902 (2007). 

• Experiments on resolved-sideband ground-
state cooling of micro-oscillators: 
– J.D. Teufel et al., Nature 475, 359 (2011); 

– J. Chan et al., Nature 478, 89 (2011); 



Dissipative coupling in optomechanics 

F. Elste, S. Girvin, A. Clerk, PRL 102, 207209, 2009 

• Interaction Hamiltonian: 
ℋ𝑖𝑛𝑡 = 𝑔𝜔𝑥 𝑎 +𝑎 

+
𝑔𝛾

2𝛾
𝑥  

𝑑𝜔

2𝜋
𝑎 + 𝜔 𝑎 − h. c. . 

 Modulation of the resonance 
frequency – dispersive coupling 
(𝑔𝜔 = 𝜕𝜔 𝜕𝑥 ), and of linewidth – 
dissipative coupling (𝑔𝛾 = 𝜕𝛾 𝜕𝑥 ). 

• Unsymmetrized back-action noise 
spectral density: 

𝑆𝐹 Ω ~𝑔𝛾

Ω + 2Δ − 𝐴 𝑔𝜔 𝑔𝛾 𝛾
2

𝛾2 + Δ + Ω 2  

Fano resonance! Interference of 
white (input) noise and Lorentz-
filtered (intracavity) noise. 

 

 

• Optical damping: 

Γ = 𝑥ZPF
2 𝑆𝐹 𝜔𝑚 − 𝑆𝐹 −𝜔𝑚 /ℏ2. 

• Absorption rate 𝑆𝐹 −𝜔𝑚  vanishes 
at  Δ = 𝜔𝑚 2 + 𝐴 𝑔𝜔 𝑔𝛾 𝛾/2. 

• Ground-state cooling is possible for 
arbitrary ratio 𝜔𝑚 𝛾 . For pure 
dispersive coupling only if 𝜔𝑚 ≫ 𝛾. 



Michelson-Sagnac interferometer 

Michelson-Sagnac interferometer as an effective mirror. 

• Reflectance:   

𝜌 = 𝑅𝑚 𝑇𝐵𝑆
2 𝑒𝑖𝑘𝛿𝑙 + 𝑅𝐵𝑆

2 𝑒−𝑖𝑘𝛿𝑙 + 2𝑖𝑇𝑚𝑅𝐵𝑆𝑇𝐵𝑆, 

• Transmittance:  
𝜏 = −𝑖𝑅𝑚𝑅𝐵𝑆𝑇𝐵𝑆 𝑒𝑖𝑘𝛿𝑙 − 𝑒−𝑖𝑘𝛿𝑙 + 𝑇𝑚 𝑇𝐵𝑆

2 − 𝑅𝐵𝑆
2 . 

Reflectance/transmittance of the MSI depends on the 
position of the membrane 𝑥 = 𝛿𝑙/2. 

– K. Yamamoto et al., Phys. Rev. A 81, 033849 (2010); 

– D. Friedrich et al., New J. Phys. 13, 093017 (2011). 
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𝑅𝑆𝑅 𝜌(𝛿𝑙) 

A. Xuereb, R. Schnabel, K. Hammerer, PRL 107, 213604 (2011): 

In the effective cavity approach, signal-recycled MSI 
features strong and tunable dispersive and dissipative 
couplings. Coupling strengths 𝑔𝜔 and 𝑔𝛾 can be varied 

independently via tuning of beamsplitter imbalance 

𝑅𝐵𝑆
2 − 𝑇𝐵𝑆

2 ,  and membrane position 𝑥 = 𝛿𝑙/2. 
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Michelson-Sagnac interferometer 

L D 

MSI SR 

𝑅𝑆𝑅 𝜌(𝛿𝑙) 

Signal-recycled MSI as an effective cavity. 
• Cavity resonance factor (ℒ = 𝐿 + 𝑙 + 𝑙𝑆𝑅): 

1

1 − 𝑅𝑆𝑅𝜌𝑒
2𝑖𝑘ℒ

=
1

1 − 𝑅𝑆𝑅 𝜌 𝑒2𝑖𝛿ℒ/𝑐+𝑖 arg𝜌
. 

• Detuning of carrier from cavity resonance: 

Δ = 𝛿 +
arg 𝜌 (off DP)

2ℒ/𝑐
, 

dispersive coupling via arg 𝜌 𝛿𝑙 . 

• Cavity half-linewidth: 

𝛾 =
1 − 𝑅𝑆𝑅 𝜌

2ℒ/𝑐
≈

𝑐𝑇𝑆𝑅
2

4ℒ
+

𝑐𝜏2

4ℒ
, 

dissipative coupling via 𝜏 = 𝜏 𝛿𝑙 . 

• Using transfer matrix approach in freq. domain, 
calculate fields on the membrane as linear functions 
of input fields → radiation pressure force → 
ponderomotive force 𝛿𝐹 Ω = −𝒦 Ω 𝑥(Ω). 
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Anomalous dynamic back-action in MSI 

Notations: 

• Offset from dark fringe:   𝜉 = 𝛿𝑙 − 𝛿𝑙𝐷𝑃,   𝛿𝑙𝐷𝑃 = 𝑛𝜆0/2, 

• Linewidth due to SRM transmittance:   𝛾𝑆𝑅 = 𝑐𝑇𝑆𝑅
2 /4ℒ, 

• Linewidth due to offset from dark port:  𝛾𝑚 = 𝑐𝑅𝑚
2 𝑘0𝜉

2/4ℒ, 

• Total half-linewidth:    𝛾 = 𝛾𝑆𝑅 + 𝛾𝑚, 

• Detuning due to SRM position at dark port:  𝛿𝑆𝑅 = 𝜔0 − 𝜔𝑐 , 

• Detuning due to offset from dark port:  𝛿𝑚 = ±𝑐𝑅𝑚𝑇𝑚 𝑘0𝜉
2/4ℒ, 

• Total detuning:    Δ = 𝛿𝑆𝑅 + 𝛿𝑚. 

 

• Complex optical spring (single mode, narrow band, small dark-fringe offset): 

𝒦 Ω =
4𝜔0𝑅𝑚

2 𝑃𝑖𝑛

𝑐ℒ

1

𝛾2 + Δ2

×
𝛿𝑆𝑅 𝛾2 + Δ2 − 4 𝛾𝛾𝑚 + Δ𝛿𝑚 + 2𝑖 𝛾𝑆𝑅𝛿𝑚 + 𝛾𝑚𝛿𝑆𝑅 Ω + 𝛿𝑚Ω2

Δ2 + 𝛾 − 𝑖Ω 2
. 



Michelson-Sagnac → Michelson 
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𝑅𝑚 = 1 
x 

x 

x 

• MSI with the 100% reflecting 
membrane is equivalent to a 
Michelson interferometer.  

• Motion of the membrane 
corresponds to the differential 
motion of the end-mirrors. 

 
• Complex optical spring (𝑇𝑚 = 0, hence 𝛿𝑚~𝑇𝑚 = 0 and Δ ≡ 𝛿𝑆𝑅): 

𝒦 Ω =
4𝜔0𝑃𝑖𝑛

𝑐ℒ

1

𝛾2 + Δ2

Δ 𝛾2 + Δ2 − 4𝛾𝛾𝑚 + 2𝑖𝛾𝑚ΔΩ

Δ2 + 𝛾 − 𝑖Ω 2
 

• Optical spring, Ω → 0: 𝐾 = ℜ 𝒦 =
4𝜔0𝑃𝑖𝑛

𝑐ℒ

Δ

𝛾2+Δ2 1 −
4𝛾𝛾𝑚

𝛾2+Δ2  

      crosses zero thrice, if 𝛾𝑚 > 𝛾/4, or equivalently, 𝛾𝑚 > 𝛾𝑆𝑅/3. 

• Optical damping, Ω → 0: Γ = −ℑ 𝒦 /2Ω = −
4𝜔0𝑃𝑖𝑛

𝑐ℒ

𝛾Δ

𝛾2+Δ2 2 1 −
𝛾𝑚

𝛾

3𝛾2−Δ2

𝛾2+Δ2  

      crosses zero thrice, if 𝛾𝑚 > 𝛾/3, or equivalently, 𝛾𝑚 > 𝛾𝑆𝑅/2. 

Both vanish at Δ = 0. Intersections of positive/negative regions. 
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Anomalous dynamic back-action  in GWDs 
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• Problem: regimes with 𝛾𝑚~𝛾𝑆𝑅, or 
equivalently, 𝛿𝑙~𝜆0/ℱ (large offset from 
dark fringe) correspond to large values of 
transmitted power!  

• DC readout operates at much lower offsets. 

For anomalous optical spring to be manifest, 
some changes in the topology will be required. 
Possible solutions: 

• Large dark fringe offset → common mode 
leaks into detector port, differential mode 
leaks into laser port. Perform detection in 
laser port. 

• Use intracavity topologies – optical 
bars/levers, local readout. 
– V.B. Braginsky et al., PLA 232, 340 (1997); 

– F.Ya. Khalili, PLA 298, 308 (2002); 

– H. Rehbein et al., PRD 76, 062002 (2007). 
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• Problem: regimes with 𝛾𝑚~𝛾𝑆𝑅, or 
equivalently, 𝛿𝑙~𝜆0/ℱ (large offset from 
dark fringe) correspond to large values of 
transmitted power!  

• DC readout operates at much lower offsets. 

For anomalous optical spring to be manifest, 
some changes in the topology will be required. 
Possible solutions: 

• Large dark fringe offset → common mode 
leaks into detector port, differential mode 
leaks into laser port. Perform detection in 
laser port. 

• Use intracavity topologies – optical 
bars/levers, local readout. 
– V.B. Braginsky et al., PLA 232, 340 (1997); 
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Anomalous dynamic back-action in MSI 

Notations: 

• Offset from dark fringe:   𝜉 = 𝛿𝑙 − 𝛿𝑙𝐷𝑃,   𝛿𝑙𝐷𝑃 = 𝑛𝜆0/2, 

• Linewidth due to SRM transmittance:   𝛾𝑆𝑅 = 𝑐𝑇𝑆𝑅
2 /4ℒ, 

• Linewidth due to offset from dark port:  𝛾𝑚 = 𝑐𝑅𝑚
2 𝑘0𝜉

2/4ℒ, 

• Total half-linewidth:    𝛾 = 𝛾𝑆𝑅 + 𝛾𝑚, 

• Detuning due to SRM position at dark port:  𝛿𝑆𝑅 = 𝜔0 − 𝜔𝑐 , 

• Detuning due to offset from dark port:  𝛿𝑚 = ±𝑐𝑅𝑚𝑇𝑚 𝑘0𝜉
2/4ℒ, 

• Total detuning:    Δ = 𝛿𝑆𝑅 + 𝛿𝑚. 

 

• Complex optical spring (single mode, narrow band, small dark-fringe offset): 

𝒦 Ω =
4𝜔0𝑅𝑚

2 𝑃𝑖𝑛

𝑐ℒ

1

𝛾2 + Δ2

×
𝛿𝑆𝑅 𝛾2 + Δ2 − 4 𝛾𝛾𝑚 + Δ𝛿𝑚 + 2𝑖 𝛾𝑆𝑅𝛿𝑚 + 𝛾𝑚𝛿𝑆𝑅 Ω + 𝛿𝑚Ω2

Δ2 + 𝛾 − 𝑖Ω 2
. 



Anomalous dynamic back-action in MSI 
• Optical spring (usually small): 

– Non-zero on resonance – shift of 
mechanical freq. on resonance, 

– Two positive and negative regions. 

• Optical damping: 

– Non-zero on resonance – 
cooling/heating of the membrane on 
resonance, 

– Two stable and unstable regions – 
new regimes of cooling/heating. 

• Line shapes of spring and damping can 
be tuned via several parameters: 

– Offset from dark fringe, 

– SR transmittance, 

– Membrane transmittance, 

– Beamsplitter imbalance. 

stable 

unstable 

stable 

unstable 



Membrane experiment @ AEI 



Membrane experiment @ AEI 

Parameters: 

• Cavity length ℒ = 8.7 cm 

• Carrier wavelength 𝜆0 = 1064 nm 

• Input power 𝑃𝑖𝑛 = 1 ÷ 500 mW 

• Membrane power reflect. 𝑅𝑚
2 = 0.17 

• SRM power transmit. 𝑇𝑆𝑅
2 = 3 × 10−4 

• Optical losses 3 ÷ 5 × 10−3 

• Membrane mass 𝑚 = 80 ng 

• Fundamental freq. 𝑓𝑚 = 130 kHz 

• Intrinsic Q-factor 𝑄 = 5 × 105 

• Anomalous instability region 
confirmed. 

• Limit cycle observed. 

• Cooling on resonance?  

 

 
 

anomalous 
instability 

cooling on 
resonance 



Summary and conclusions 
• Interferometers operated off dark port feature: 

– Anomalous dynamic back-action and violation of scaling law, 

– Strong dissipative coupling in the sense of cavity optomechanics. 

• For optomechanics with micro- and nano-mechanical oscillators: 
– Optical damping acquires non-zero value on resonance – cooling/heating of 

the oscillator on resonance, 

– Additional stability/instability region – another regime of cooling/heating, 

– Shift of the mechanical frequency on resonance. 

• For gravitational-wave detectors: 
– Intersecting regions of positive/negative values of optical spring and damping. 

Problem of control in DC-readout schemes? 

– Stable optical spring for a single carrier (some changes in topology needed),  

– Optical inertia with a single carrier? (to be explored), 

• Power recycling and arm cavities? (under investigation), 

• QND games? (to be explored), 

• Emergence of anomalous instability confirmed experimentally, 

• Available at: arXiv:1212.6242 [quant-ph]. 
 




