

Anomalous dynamical back-action in interferometers

Sergey Tarabrin, Klemens Hammerer

(Max Planck Institute for Gravitational Physics, Institute for Theoretical Physics, Leibniz University Hannover)

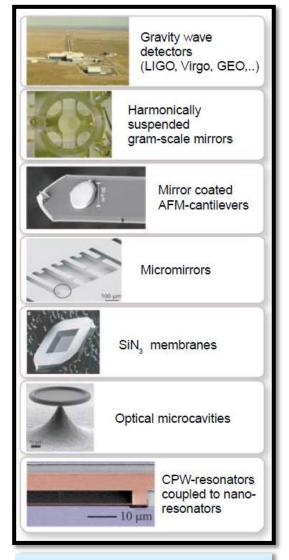
Henning Kaufer, Roman Schnabel

(Max Planck Institute for Gravitational Physics, Leibniz University Hannover)

Farid Khalili

(Moscow State University)

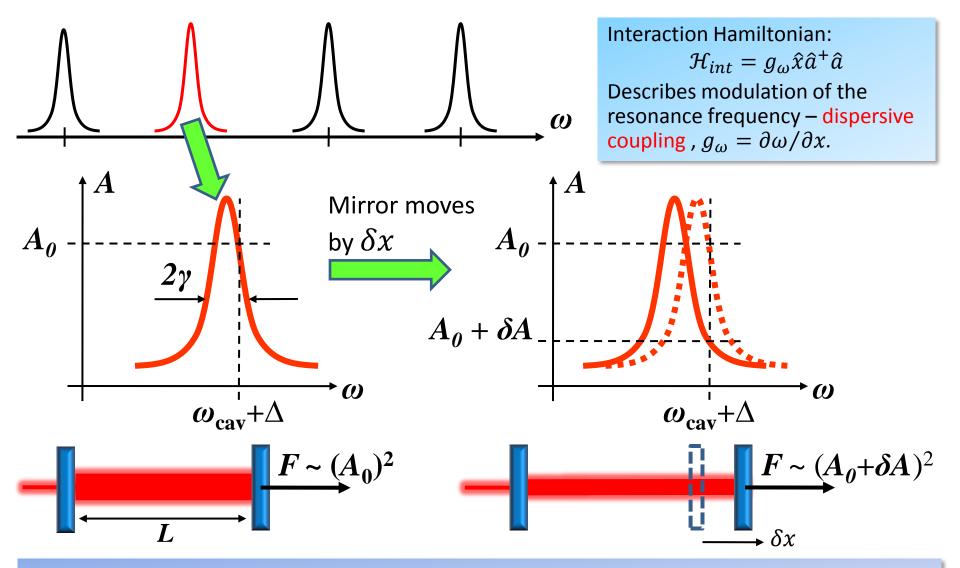
Basic theory behind dynamic back-action



T. J. Kippenberg et al., Science **321**, 1172 (2008);

- Light wave in an optical apparatus interacts with a mechanical probe (test mass) via radiation pressure.
- Imposes measurement back-action on the probe.
- Back-action noise due to quantum fluctuations of electromagnetic field. Causes SQL together with measurement shot noise.
- Dynamic back-action due to motion of the probe: test mass moves → redistribution of energy → ponderomotive force alters dynamics of the test mass.
 - V.B. Braginsky, A.B. Manukin, Sov. Phys. JETP 25, 653 (1967);
 - V.B. Braginsky et al., Sov. Phys. JETP **31**, 829 (1970).
- Effective <u>Fabry-Perot cavity</u> in optomechanics with micro-and nano-oscillators (topologies of 'movable mirror', 'membrane-in-the-middle', etc.).
- Scaling law for gravitational-wave detectors: noise and dynamics of interferometers operated on dark port are equivalent to those of a <u>Fabry-Perot cavity</u>.
 - A. Buonanno, Y. Chen, Phys. Rev. D 67, 062002 (2003).

Basic theory behind dynamic back-action

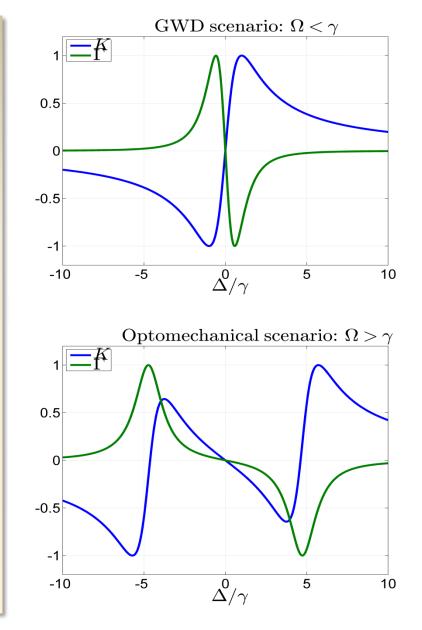


Ponderomotive force: $\delta F(\Omega) \sim A_0 \delta A = -\mathcal{K}(\Omega) \delta x = -\delta x [K(\Omega) - 2i\Omega\Gamma(\Omega)]$

Canonical dynamic back-action

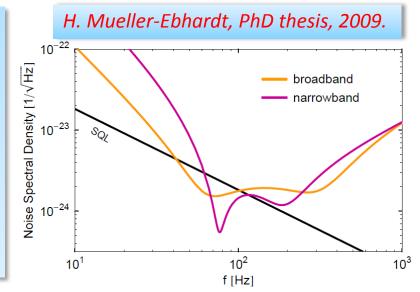
Complex optical spring: • $\mathcal{K}(\Omega) = \frac{2\omega_0 \mathcal{E}}{L^2} \frac{\Delta}{\Delta^2 + (\nu - i\Omega)^2}$ Real optical spring (rigidity): $K(\Omega) = \Re[\mathcal{K}(\Omega)] =$ $=\frac{2\omega_0\mathcal{E}}{L^2}\frac{\Delta(\Delta^2+\gamma^2-\Omega^2)}{|\Delta^2+(\gamma-i\Omega)^2|^2}$ - Crosses zero once, if $\Omega < \gamma$ (GWD) - Crosses zero thrice, if $\Omega > \gamma$ (OM) Optical damping: $\Gamma(\Omega) = -\Im[\mathcal{K}(\Omega)]/2\Omega$ $= -\frac{2\omega_0 \mathcal{E}}{L^2} \frac{\Delta \gamma}{|\Delta^2 + (\gamma - i\Omega)^2|^2}$ Crosses zero only once Both vanish on resonance, $\Delta = 0$. V.B. Braginsky et al., Phys. Lett. A 232, 340 (1997);

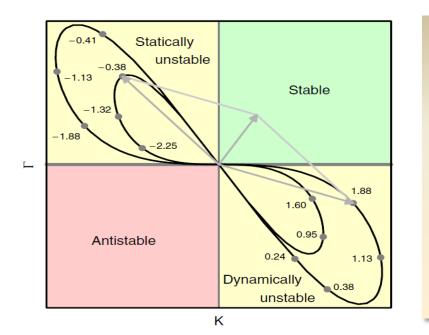
V.B. Braginsky et al., Phys. Lett. A 232, 340 (1997);
F.Ya. Khalili, Phys. Lett. A 288, 251 (2001);
A. Buonanno, Y. Chen, Phys. Rev. D 65, 042001 (2002).



Canonical dynamic back-action in GWDs

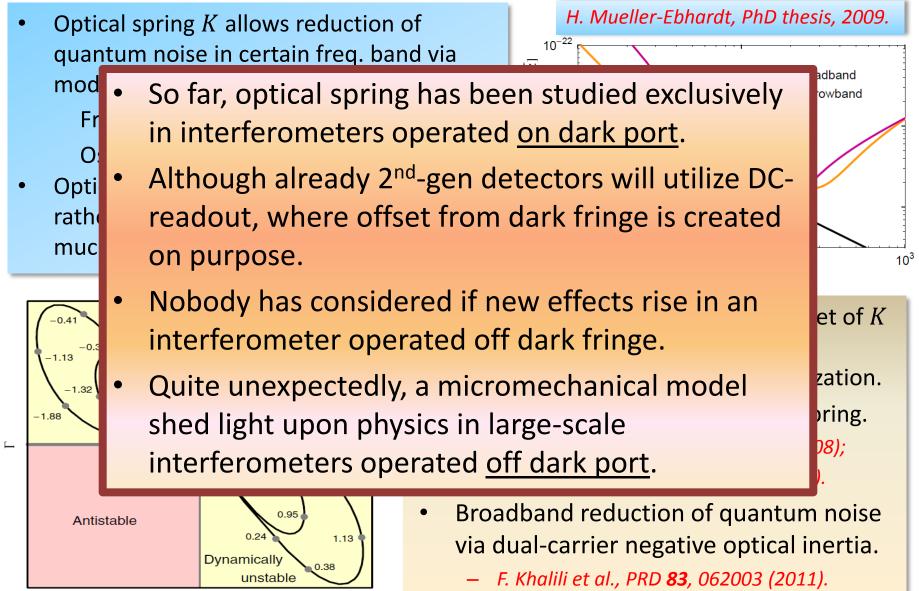
- Optical spring K allows reduction of quantum noise in certain freq. band via modifying dynamics of the test masses. Free mass: $S_F^{SQL} = 2\hbar m \Omega^2$, Oscillator: $S_F^{SQL} = 2\hbar m (\Omega^2 - \omega_m^2)$.
- Optical spring makes signal amplification rather than back-action noise cancelation – much more tolerant to optical losses.





- A single-carrier optical spring, as a set of K and Γ, is unstable for any detuning. Feedback/control needed for stabilization.
- Two laser drives can create stable spring.
 - H. Rehbein et al., PRD **78**, 062003 (2008);
 - T. Corbitt et al., PRL **98**, 150802 (2007).
- Broadband reduction of quantum noise via dual-carrier negative optical inertia.
 - F. Khalili et al., PRD **83**, 062003 (2011).

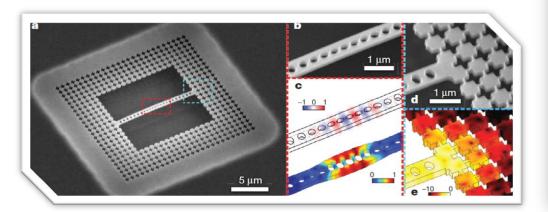
Canonical dynamic back-action in GWDs

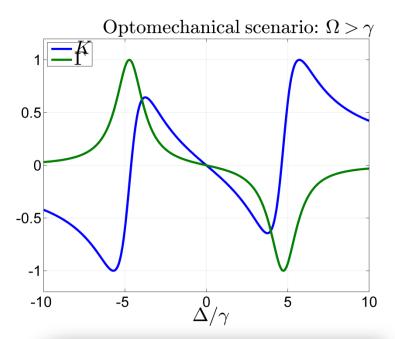


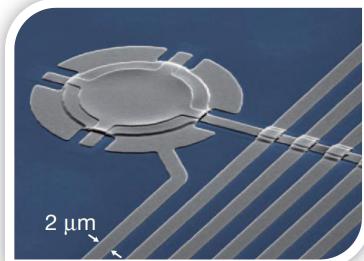
Canonical dynamic back-action in OM

Optomechanics with micro-/nano-oscillators:

- Shift of mechanical frequency caused by optical spring K is mostly negligible compared to intrinsic resonance freq. ω_m .
- Cooling by optical damping Γ , preferably at deeply resolved sideband, $\Omega = \omega_m \gg \gamma$.
 - I. Wilson-Rae et al., PRL 99, 093901 (2007);
 - F. Marquardt et al., PRL **99,** 093902 (2007).
- Experiments on resolved-sideband groundstate cooling of micro-oscillators:
 - J.D. Teufel et al., Nature **475**, 359 (2011);
 - J. Chan et al., Nature 478, 89 (2011);







Dissipative coupling in optomechanics

F. Elste, S. Girvin, A. Clerk, PRL 102, 207209, 2009

Interaction Hamiltonian:

$$\mathcal{H}_{int} = g_{\omega} \hat{x} \hat{a}^{\dagger} \hat{a} + \frac{g_{\gamma}}{\sqrt{2\gamma}} \hat{x} \int \frac{d\omega}{2\pi} [\hat{a}^{\dagger}(\omega)\hat{a} - h.c.].$$

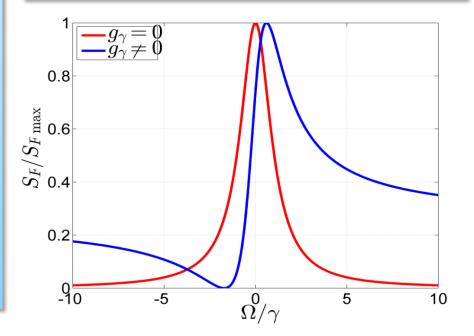
Modulation of the resonance frequency – *dispersive coupling* $(g_{\omega} = \partial \omega / \partial x)$, and of linewidth – *dissipative coupling* $(g_{\gamma} = \partial \gamma / \partial x)$.

 Unsymmetrized back-action noise spectral density:

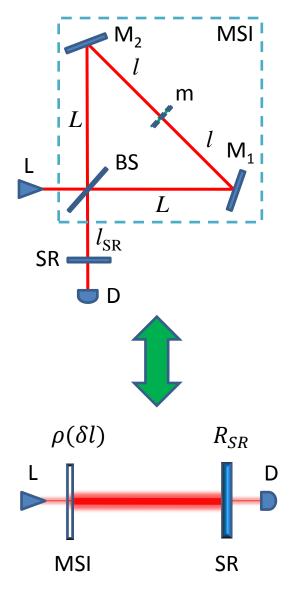
$$S_F(\Omega) \sim g_{\gamma} \frac{\left[\Omega + 2\Delta - A(g_{\omega}/g_{\gamma})\gamma\right]^2}{\gamma^2 + (\Delta + \Omega)^2}$$

Fano resonance! Interference of white (input) noise and Lorentz-filtered (intracavity) noise.

- Optical damping: $\Gamma = x_{\text{ZPF}}^2 [S_F(\omega_m) - S_F(-\omega_m)]/\hbar^2.$
- Absorption rate $S_F(-\omega_m)$ vanishes at $\Delta = \omega_m/2 + A(g_\omega/g_\gamma)\gamma/2$.
- Ground-state cooling is possible for arbitrary ratio ω_m/γ . For pure dispersive coupling only if $\omega_m \gg \gamma$.



Michelson-Sagnac interferometer



Michelson-Sagnac interferometer as an effective mirror.

• Reflectance:

$$\rho = R_m \left(T_{BS}^2 e^{ik\delta l} + R_{BS}^2 e^{-ik\delta l} \right) + 2iT_m R_{BS} T_{BS},$$

Transmittance:

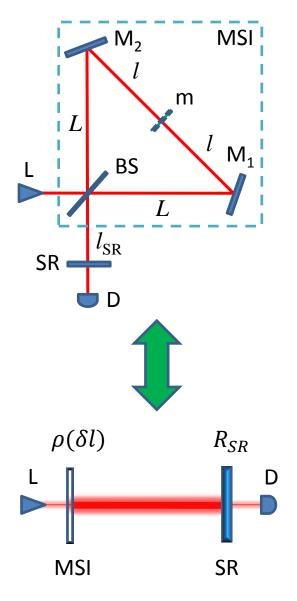
 $\tau = -iR_m R_{BS} T_{BS} (e^{ik\delta l} - e^{-ik\delta l}) + T_m (T_{BS}^2 - R_{BS}^2).$ Reflectance/transmittance of the MSI depends on the position of the membrane $x = \delta l/2$.

- K. Yamamoto et al., Phys. Rev. A **81**, 033849 (2010);
- D. Friedrich et al., New J. Phys. **13**, 093017 (2011).

A. Xuereb, R. Schnabel, K. Hammerer, PRL 107, 213604 (2011):

In the effective cavity approach, signal-recycled MSI features strong and tunable dispersive and <u>dissipative</u> couplings. Coupling strengths g_{ω} and g_{γ} can be varied independently via tuning of beamsplitter imbalance $|R_{BS}^2 - T_{BS}^2|$, and membrane position $x = \delta l/2$.

Michelson-Sagnac interferometer



Signal-recycled MSI as an effective cavity.

• Cavity resonance factor ($\mathcal{L} = L + l + l_{SR}$): $\frac{1}{1 + l_{SR}} = \frac{1}{1 + l_{SR}}$

$$1 - R_{SR}\rho e^{2ik\mathcal{L}} - 1 - R_{SR}|\rho|e^{2i\delta\mathcal{L}/c+i\arg\rho}$$

• Detuning of carrier from cavity resonance: $\Delta = \delta + \frac{\arg[\rho]^{(\text{off DP})}}{2\mathcal{L}/c},$

dispersive coupling via $\arg[\rho(\delta l)]$.

Cavity half-linewidth:

$$\gamma = \frac{1 - R_{SR} |\rho|}{2\mathcal{L}/c} \approx \frac{cT_{SR}^2}{4\mathcal{L}} + \frac{c\tau^2}{4\mathcal{L}},$$

dissipative coupling via $\tau = \tau(\delta l)$.

• Using transfer matrix approach in freq. domain, calculate fields on the membrane as linear functions of input fields \rightarrow radiation pressure force \rightarrow ponderomotive force $\delta F(\Omega) = -\mathcal{K}(\Omega)x(\Omega)$.

Anomalous dynamic back-action in MSI

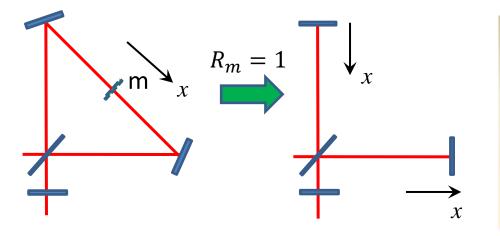
Notations:

- Offset from dark fringe:
- Linewidth due to SRM transmittance:
- Linewidth due to offset from dark port:
- Total half-linewidth:
- Detuning due to SRM position at dark port:
- Detuning due to offset from dark port:
- Total detuning:

$$\begin{split} \xi &= \delta l - \delta l_{DP}, \ \delta l_{DP} = n\lambda_0/2, \\ \gamma_{SR} &= cT_{SR}^2/4\mathcal{L}, \\ \gamma_m &= cR_m^2(k_0\xi)^2/4\mathcal{L}, \\ \gamma &= \gamma_{SR} + \gamma_m, \\ \text{ort:} \qquad \delta_{SR} &= \omega_0 - \omega_c, \\ \delta_m &= \pm cR_mT_m(k_0\xi)^2/4\mathcal{L}, \\ \Delta &= \delta_{SR} + \delta_m. \end{split}$$

• Complex optical spring (single mode, narrow band, small dark-fringe offset): $\mathcal{K}(\Omega) = \frac{4\omega_0 R_m^2 P_{in}}{c\mathcal{L}} \frac{1}{\gamma^2 + \Delta^2} \\
\times \frac{\delta_{SR}[\gamma^2 + \Delta^2 - 4(\gamma\gamma_m + \Delta\delta_m)] + 2i(\gamma_{SR}\delta_m + \gamma_m\delta_{SR})\Omega + \delta_m\Omega^2}{\Delta^2 + (\gamma - i\Omega)^2}.$

Michelson-Sagnac \rightarrow Michelson

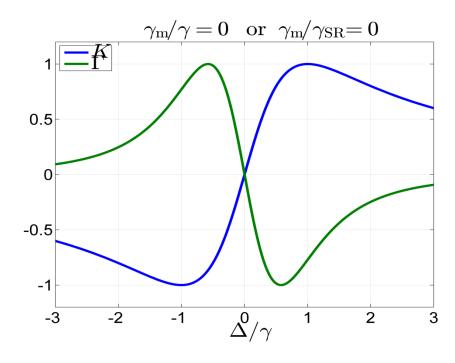


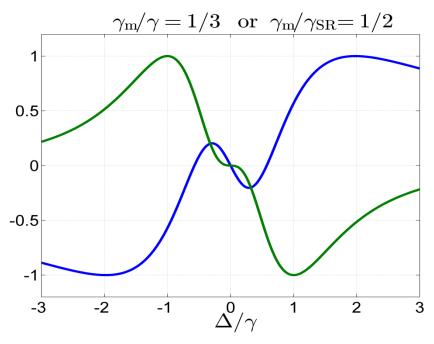
- MSI with the 100% reflecting membrane is equivalent to a Michelson interferometer.
- Motion of the membrane corresponds to the differential motion of the end-mirrors.

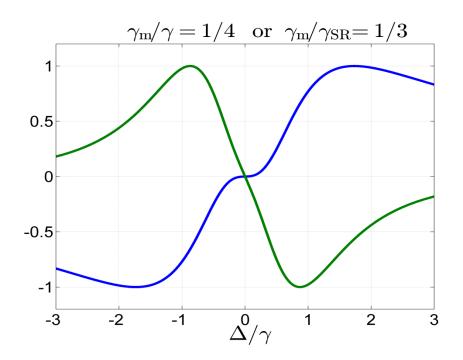
• Complex optical spring ($T_m = 0$, hence $\delta_m \sim T_m = 0$ and $\Delta \equiv \delta_{SR}$): $\mathcal{K}(\Omega) = \frac{4\omega_0 P_{in}}{c\mathcal{L}} \frac{1}{\gamma^2 + \Delta^2} \frac{\Delta(\gamma^2 + \Delta^2 - 4\gamma\gamma_m) + 2i\gamma_m\Delta\Omega}{\Delta^2 + (\gamma - i\Omega)^2}$

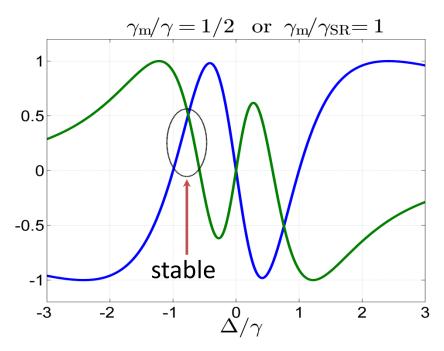
• Optical spring, $\Omega \to 0$: $K = \Re[\mathcal{K}] = \frac{4\omega_0 P_{in}}{c\mathcal{L}} \frac{\Delta}{\gamma^2 + \Delta^2} \left[1 - \frac{4\gamma\gamma_m}{\gamma^2 + \Delta^2} \right]$ crosses zero thrice, if $\gamma_m > \gamma/4$, or equivalently, $\gamma_m > \gamma_{SR}/3$.

• Optical damping, $\Omega \to 0$: $\Gamma = -\Im[\mathcal{K}]/2\Omega = -\frac{4\omega_0 P_{in}}{c\mathcal{L}} \frac{\gamma\Delta}{(\gamma^2 + \Delta^2)^2} \left[1 - \frac{\gamma_m}{\gamma} \frac{3\gamma^2 - \Delta^2}{\gamma^2 + \Delta^2}\right]$ crosses zero thrice, if $\gamma_m > \gamma/3$, or equivalently, $\gamma_m > \gamma_{SR}/2$. Both vanish at $\Delta = 0$. Intersections of positive/negative regions.







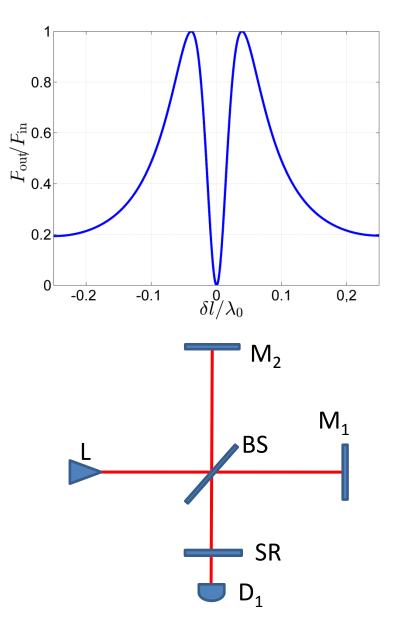


Anomalous dynamic back-action in GWDs

- Problem: regimes with $\gamma_m \sim \gamma_{SR}$, or equivalently, $\delta l \sim \lambda_0 / \mathcal{F}$ (large offset from dark fringe) correspond to large values of transmitted power!
- DC readout operates at much lower offsets.

For anomalous optical spring to be manifest, some changes in the topology will be required. Possible solutions:

- Large dark fringe offset → common mode leaks into detector port, differential mode leaks into laser port. Perform detection in laser port.
- Use intracavity topologies optical bars/levers, local readout.
 - V.B. Braginsky et al., PLA 232, 340 (1997);
 - F.Ya. Khalili, PLA **298**, 308 (2002);
 - H. Rehbein et al., PRD **76**, 062002 (2007).

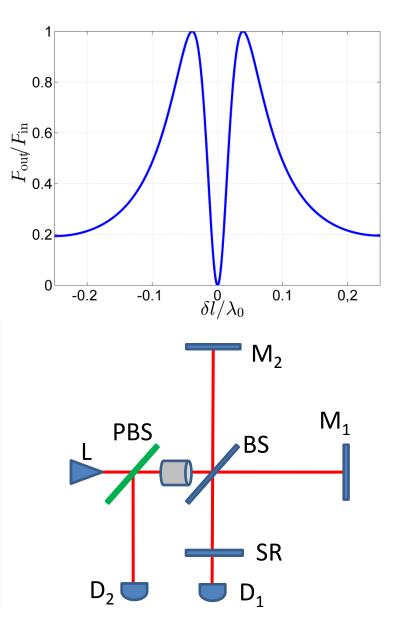


Anomalous dynamic back-action in GWDs

- Problem: regimes with $\gamma_m \sim \gamma_{SR}$, or equivalently, $\delta l \sim \lambda_0 / \mathcal{F}$ (large offset from dark fringe) correspond to large values of transmitted power!
- DC readout operates at much lower offsets.

For anomalous optical spring to be manifest, some changes in the topology will be required. Possible solutions:

- Large dark fringe offset → common mode leaks into detector port, differential mode leaks into laser port. Perform detection in laser port.
- Use intracavity topologies optical bars/levers, local readout.
 - V.B. Braginsky et al., PLA 232, 340 (1997);
 - F.Ya. Khalili, PLA **298**, 308 (2002);
 - H. Rehbein et al., PRD **76**, 062002 (2007).



Anomalous dynamic back-action in MSI

Notations:

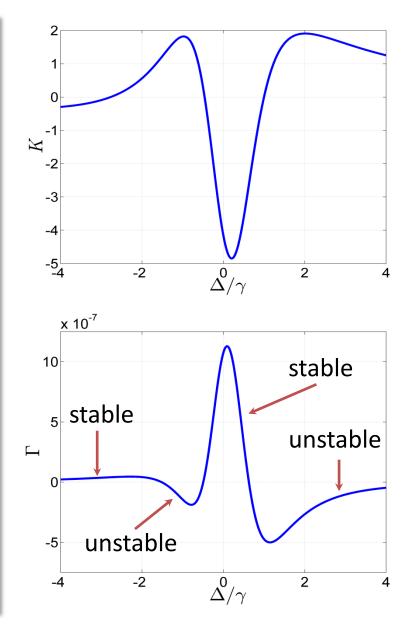
- Offset from dark fringe:
- Linewidth due to SRM transmittance:
- Linewidth due to offset from dark port:
- Total half-linewidth:
- Detuning due to SRM position at dark port:
- Detuning due to offset from dark port:
- Total detuning:

$$\begin{split} \xi &= \delta l - \delta l_{DP}, \ \delta l_{DP} = n\lambda_0/2, \\ \gamma_{SR} &= cT_{SR}^2/4\mathcal{L}, \\ \gamma_m &= cR_m^2(k_0\xi)^2/4\mathcal{L}, \\ \gamma &= \gamma_{SR} + \gamma_m, \\ \text{ort:} \qquad \delta_{SR} &= \omega_0 - \omega_c, \\ \delta_m &= \pm cR_mT_m(k_0\xi)^2/4\mathcal{L}, \\ \Delta &= \delta_{SR} + \delta_m. \end{split}$$

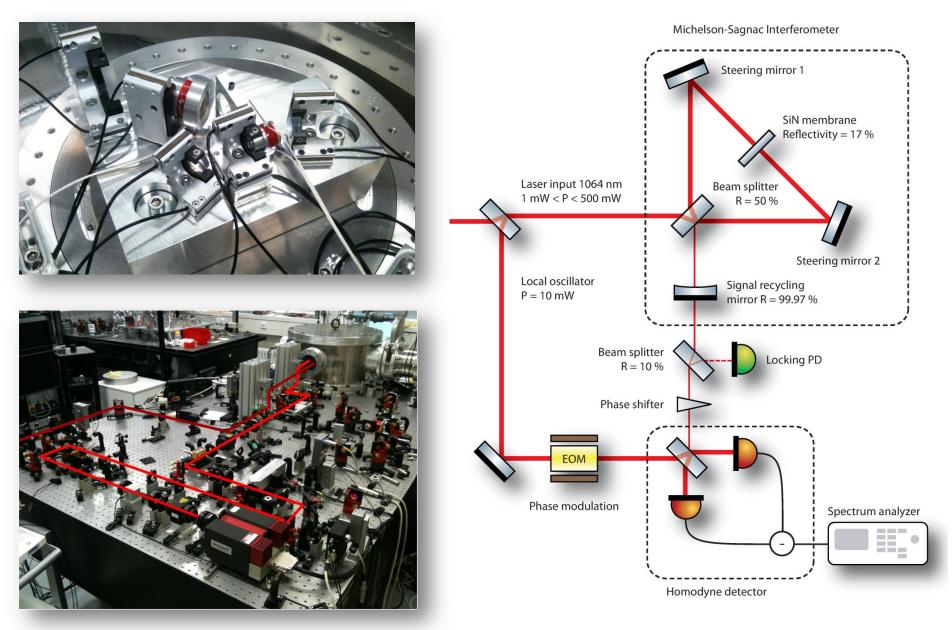
• Complex optical spring (single mode, narrow band, small dark-fringe offset): $\mathcal{K}(\Omega) = \frac{4\omega_0 R_m^2 P_{in}}{c\mathcal{L}} \frac{1}{\gamma^2 + \Delta^2} \\
\times \frac{\delta_{SR}[\gamma^2 + \Delta^2 - 4(\gamma\gamma_m + \Delta\delta_m)] + 2i(\gamma_{SR}\delta_m + \gamma_m\delta_{SR})\Omega + \delta_m\Omega^2}{\Delta^2 + (\gamma - i\Omega)^2}.$

Anomalous dynamic back-action in MSI

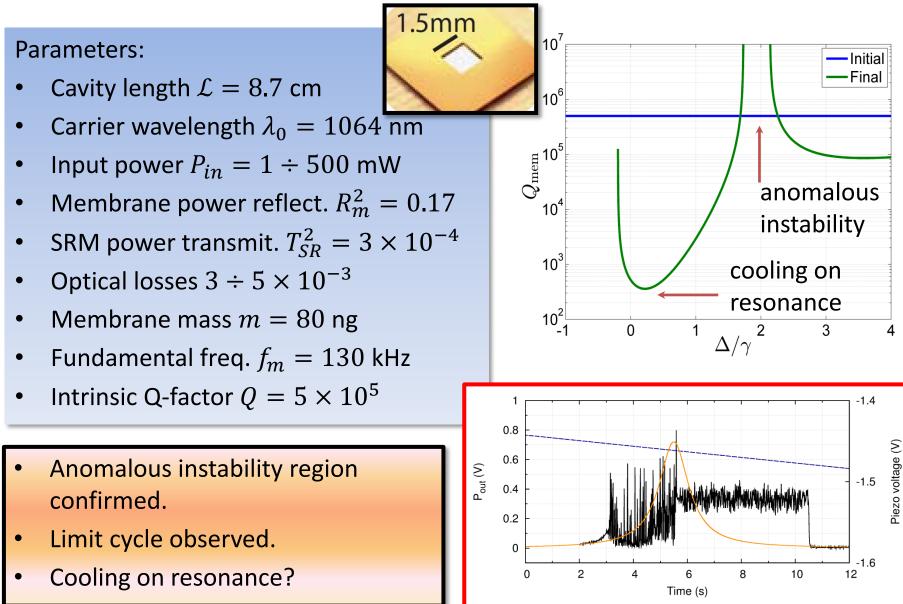
- Optical spring (usually small):
 - Non-zero on resonance shift of mechanical freq. on resonance,
 - Two positive and negative regions.
- Optical damping:
 - Non-zero on resonance cooling/heating of the membrane on resonance,
 - Two stable and unstable regions new regimes of cooling/heating.
- Line shapes of spring and damping can be tuned via several parameters:
 - Offset from dark fringe,
 - SR transmittance,
 - Membrane transmittance,
 - Beamsplitter imbalance.



Membrane experiment @ AEI



Membrane experiment @ AEI



Summary and conclusions

- Interferometers operated off dark port feature:
 - Anomalous dynamic back-action and violation of scaling law,
 - Strong dissipative coupling in the sense of cavity optomechanics.
- For optomechanics with micro- and nano-mechanical oscillators:
 - Optical damping acquires non-zero value on resonance cooling/heating of the oscillator on resonance,
 - Additional stability/instability region another regime of cooling/heating,
 - Shift of the mechanical frequency on resonance.
- For gravitational-wave detectors:
 - Intersecting regions of positive/negative values of optical spring and damping.
 Problem of control in DC-readout schemes?
 - Stable optical spring for a single carrier (some changes in topology needed),
 - Optical inertia with a single carrier? (to be explored),
- Power recycling and arm cavities? (under investigation),
- QND games? (to be explored),
- Emergence of anomalous instability confirmed experimentally,
- Available at: arXiv:1212.6242 [quant-ph].

