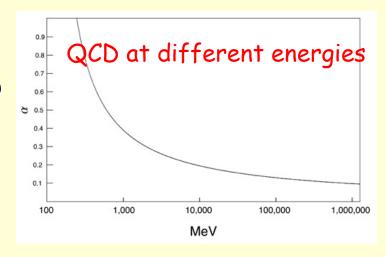
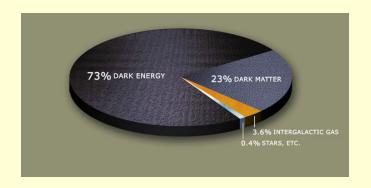
Probes for Fundamental Symmetries and a Dark Gauge Boson via Light Meson Decays


Liping Gan University of North Carolina Wilmington

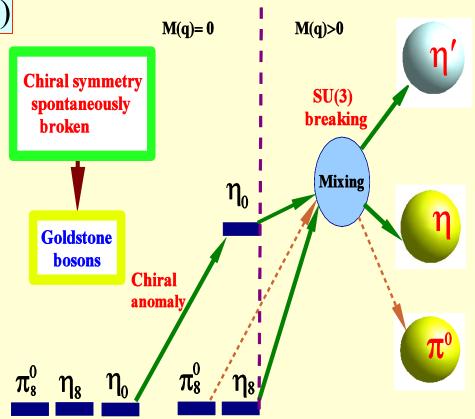
Outline


- 1. Introduction
 - challenges in physics
- 2. PrimEx experiments on π^0 , η , η'
 - ---- test confinement QCD symmetries
- 3. Jlab Eta Factory (JEF) Program on $\eta \rightarrow 3\pi$ and rare decays
 - ---- determine light quark mass ratio and search for new physics
- 4. Summary

Challenges in Physics

- > Confinement QCD
 - QCD confinement and its relationship to the dynamical chiral symmetry breaking

- New physics beyond the Standard Model (SM)
 - Dark matter and dark energy
 - New sources of CP violation


"As far as I see, all priori statements in physics have their origin in symmetry". By H. Weyl

QCD Symmetries and light mesons

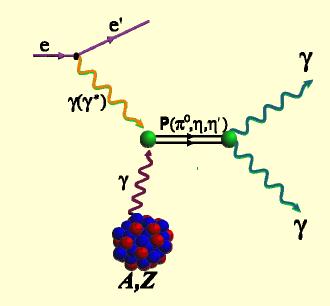
ullet QCD Lagrangian in Chiral limit ($m_a \rightarrow 0$) is invariant under:

$$SU_L(3) \times SU_R(3) \times U_A(1) \times U_B(1)$$

- Chiral symmetry SU_L(3)xSU_R(3) spontaneously breaks to SU(3)
 - > 8 Goldstone Bosons (GB)
- $\bigcup U_A(1)$ is explicitly broken: (Chiral anomalies)
 - $ightharpoonup \Gamma(\pi^0 \rightarrow \gamma\gamma), \Gamma(\eta \rightarrow \gamma\gamma), \Gamma(\eta' \rightarrow \gamma\gamma)$
 - \triangleright Mass of η_0
- \square SU_L(3)xSU_R(3) and SU(3) are explicitly broken:
 - > GB are massive
 - \blacktriangleright Mixing of π^0 , η , η'

The π^0 , η , η' system provides a rich laboratory to study the symmetry structure of QCD at low energies.

Primakoff Program at Jlab 6 & 12 GeV


Precision measurements of electromagnetic properties of π^0 , η , η' via Primakoff effect.

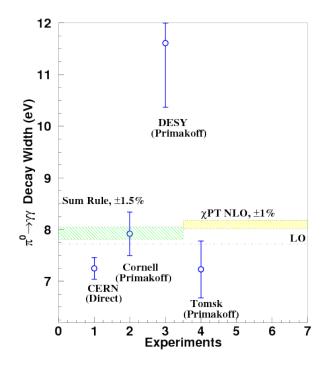
a) Two-Photon Decay Widths:

- Γ(π⁰→γγ) @ 6 GeV
- 2) $\Gamma(\eta \rightarrow \gamma \gamma)$
- 3) $\Gamma(\eta' \rightarrow \gamma\gamma)$

Input to Physics:

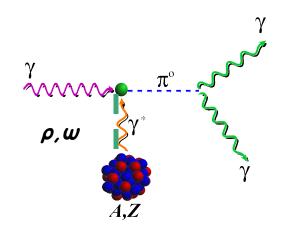
- precision tests of Chiral symmetry and anomalies
- determination of light quark mass ratio
- $> \eta \eta'$ mixing angle

b) Transition Form Factors at low Q² (0.001-0.5 GeV²/c²):

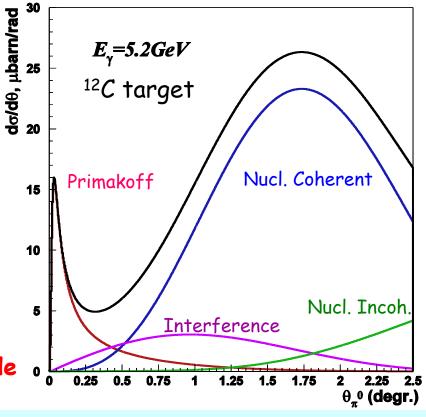

$$F(\gamma\gamma^* \rightarrow \pi^0)$$
, $F(\gamma\gamma^* \rightarrow \eta)$, $F(\gamma\gamma^* \rightarrow \eta')$

Input to Physics:

- $\succ \pi^0$, η and η' electromagnetic interaction radii
- \triangleright is the η' an approximate Goldstone boson?


Axial Anomaly Determines π^0 Lifetime

- lacktriangle $\pi^0 \rightarrow \gamma \gamma$ decay proceeds primarily via the chiral anomaly in QCD.
- The chiral anomaly prediction is exact for massless quarks: $\Gamma(\pi^0 \to \gamma \gamma) = \frac{\alpha^2 N_c^2 m_\pi^3}{576 \pi^3 F_\pi^2} = 7.725 \ eV$ κ_1
- $\Gamma(\pi^0 \rightarrow \gamma \gamma)$ is one of the few quantities in confinement region that QCD can calculate precisely at ~1% level to higher orders!
 - Corrections to the chiral anomaly prediction: Calculations in NLO ChPT: $\Box \Gamma(\pi^0 \rightarrow \gamma \gamma) = 8.10 \text{eV} \pm 1.0\%$ (J. Goity, et al. Phys. Rev. D66:076014, 2002) $\Box \Gamma(\pi^0 \rightarrow \gamma \gamma) = 8.06 \text{eV} \pm 1.0\%$ (B. Ananthanarayan et al. JHEP 05:052, 2002) Calculations in NNLO SU(2) ChPT: $\Box \Gamma(\pi^0 \rightarrow \gamma \gamma) = 8.09 \text{eV} \pm 1.3\%$ (K. Kampf et al. Phys. Rev. D79:076005, 2009)
 - Calculations in QCD sum rule:
 Γ(π⁰→γγ) = 7.93eV ± 1.5%
 (B.L. Ioffe, et al. Phys. Lett. B647, p. 389, 2007)


• Precision measurement of $\Gamma(\pi^0 \rightarrow \gamma \gamma)$ at the percent level will provide a stringent test of low energy QCD.

Primakoff Method

$$\frac{d\sigma_{\text{Pr}}}{d\Omega} = \Gamma_{\gamma\gamma} \frac{8\alpha Z^2}{m_{\pi}^3} \frac{\beta^3 E^4}{Q^4} |F_{e.m.}(Q)|^2 \sin^2 \theta_{\pi}$$

Challenge: Extract the Primakoff amplitude •

Requirement:

- > Photon flux
- Beam energy
- $\succ \pi^0$ production angle resolution
- > Compact nuclear target

Features of Primakoff cross section:

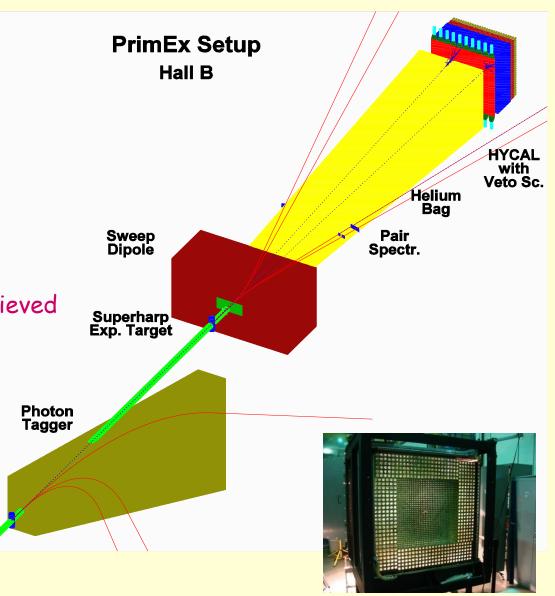
Peaked at very small forward angle:

$$\left\langle \theta_{\rm Pr} \right\rangle_{peak} \propto \frac{m^2}{2E^2}$$

· Beam energy sensitive:

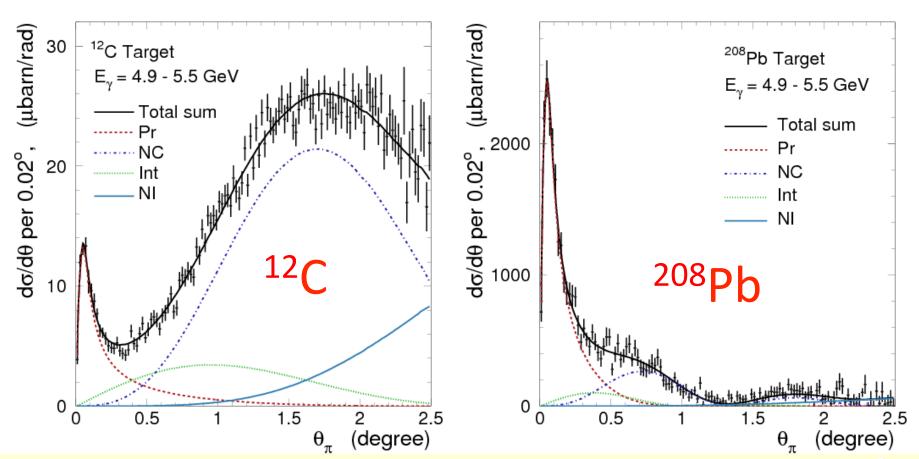
$$\left\langle \frac{d\sigma_{\rm Pr}}{d\Omega} \right\rangle_{\rm neak} \propto E^4, \int d\sigma_{\rm Pr} \propto Z^2 \log(E)$$

· Coherent process

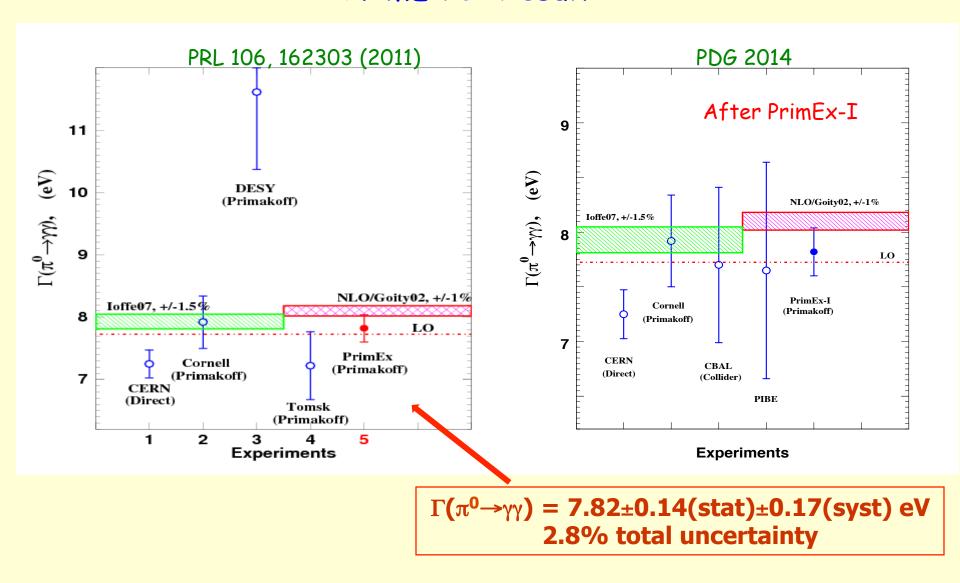

PrimEx Experimental Setup

JLab Hall B high resolution, high intensity photon tagging facility

■ New pair spectrometer for photon flux control at high beam intensities

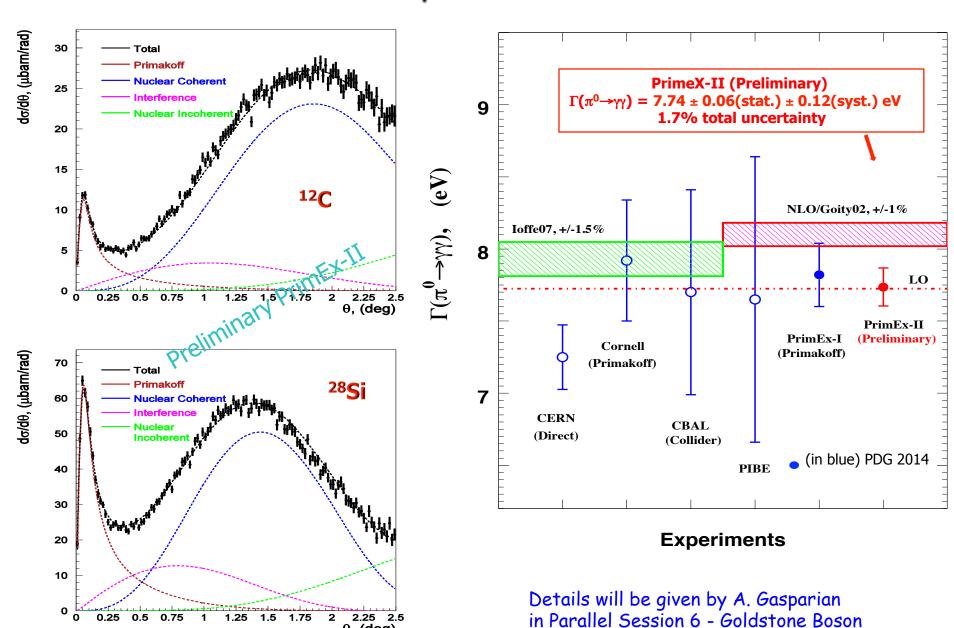

1% accuracy has been achieved

 New high resolution hybrid multi-channel calorimeter (HyCal)



The first experiment: PrimEx-I (2004)

Theoretical angular distributions smeared with experimental resolutions are fit to the data on two nuclear targets to extract $\Gamma(\pi^0 \rightarrow \gamma\gamma)$

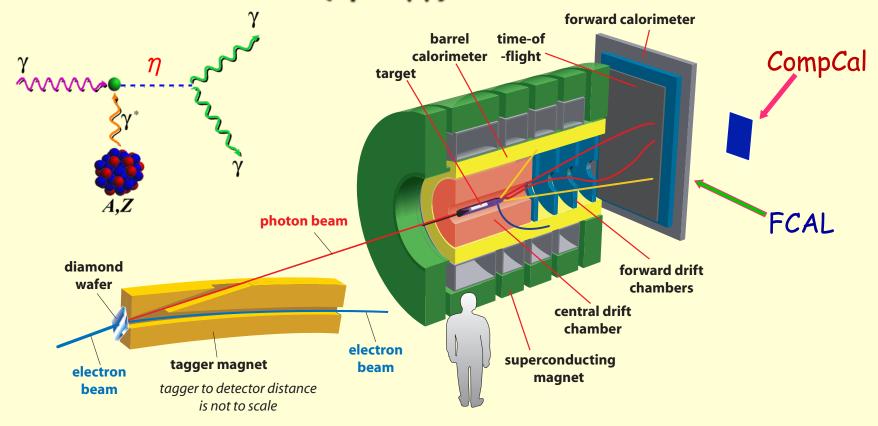


PrimEx-I Result

PrimEx-I improved the precision of PDG average by more than a factor of 2

The second experiment: PrimEx-II

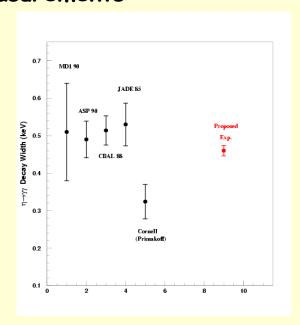
1.25 1.5 1.75

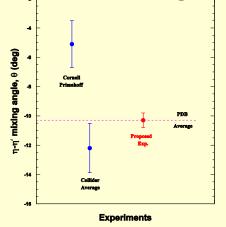

θ, (deg)

0.25

0.5

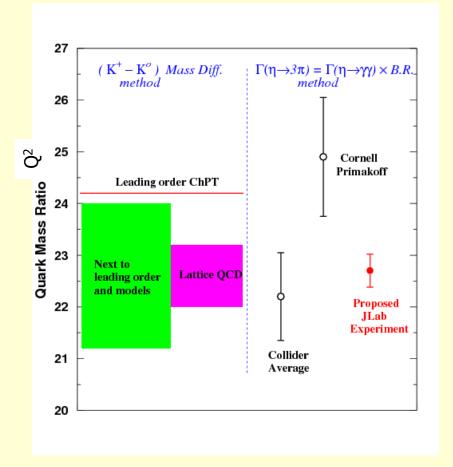
0.75


Measurement of $\Gamma(\eta \rightarrow \gamma\gamma)$ in Hall D at 12 GeV


- ➤ Incoherent tagged photon beam (~10.5-11.5 GeV)
- Pair spectrometer and a TAC detector for the photon flux control
- > 30 cm liquid Hydrogen and ⁴He targets (~3.6% r.l.)
- > Forward Calorimeter (FCAL) for $\eta \rightarrow \gamma \gamma$ decay photons
- CompCal and FCAL to measure well-known Compton scattering for control of overall systematic uncertainties.
- > Solenoid detectors and forward tracking detectors (for background rejection)

$\Gamma(\eta \rightarrow \gamma \gamma)$ Experiment @ 12 GeV

1. Resolve long standing discrepancy between collider and Primakoff measurements:



2. Extract $\eta - \eta'$ mixing angle:

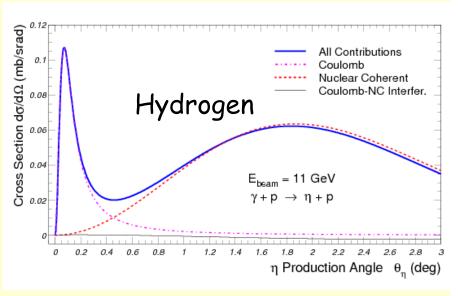
3. Determine Light quark mass ratio:

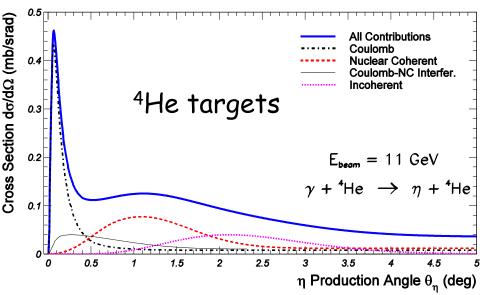
$$Q^2 = \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}$$
, where $\hat{m} = \frac{1}{2}(m_u + m_d)$

H. Leutwyler Phys. Lett., B378, 313 (1996)

Challenges in the $\eta \rightarrow \gamma\gamma$ Primakoff experiment

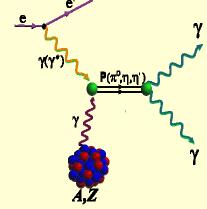
Compared to π^0 :

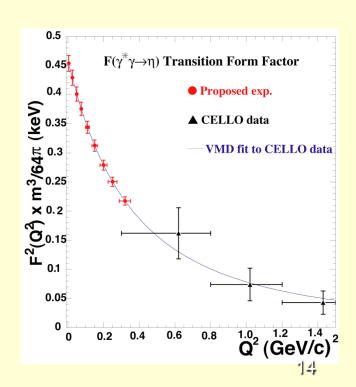

 \blacktriangleright η mass is a factor of 4 larger than π^0 and has a smaller cross section


$$\left(\frac{d\sigma_{\rm Pr}}{d\Omega}\right)_{\rm peak} \propto \frac{E^4}{m^3}$$

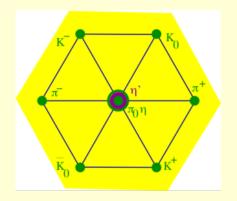
> larger overlap between Primakoff and hadronic processes;

$$\left\langle \theta_{\rm Pr} \right\rangle_{peak} \propto \frac{m^2}{2E^2} \qquad \theta_{NC} \propto \frac{2}{E \cdot A^{1/3}}$$


> larger momentum transfer (coherency, form factors, FSI,...)



Transition Form Factors $F(\gamma\gamma^* \rightarrow p)$ (at Low Q²)

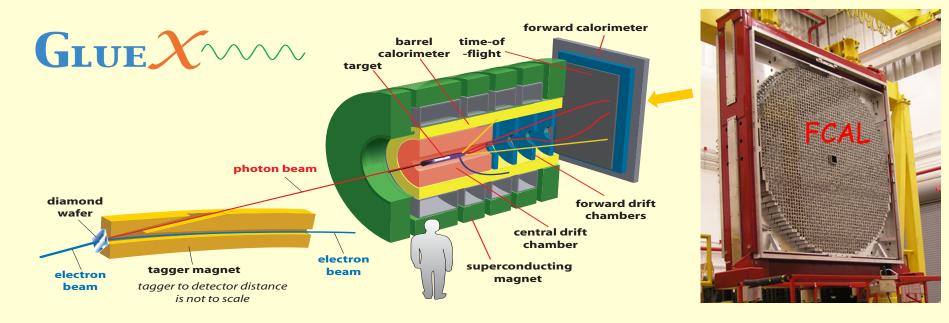

- Direct measurement of slopes
 - Interaction radii: $F_{yy*p}(Q^2)\approx 1-1/6 \cdot \langle r^2 \rangle_p Q^2$
 - ChPT for large N_c predicts relation between the three slopes. Extraction of $O(p^6)$ low-energy constant in the chiral Lagrangian
- Input for light-by-light scattering for muon (g-2) calculation
- Test of future lattice calculations

n is a unique probe for fundamental symmetries

- ◆ The most massive member in the octet of pseudoscalar Goldstone mesons (547.9 MeV/c2)
 - Many open decay channels
 - Sensitive to symmetry breakings

- \bullet n decay width $\Gamma_n = 1.3 \text{KeV}$ is narrow (relative to $\Gamma_{\omega} = 8.5 \text{ MeV}$)
 - The lowest orders of η decays are filtered out, enhancing the contributions from higher orders (by a factor of ~7000 compared to ω decays).
- lacktriangle Eigenstate of P, C, CP, and G: $I^GJ^{PC}=0^+0^{-+}$
 - Study violations of discrete symmetries
- The η decays are flavor-conserving reactions effectively free of SM backgrounds for new physics search.

Overview of the JEF project

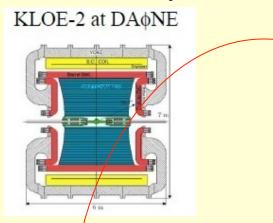

Mode	Branching Ratio	Physics Highlight	Photons
priority:			
$\pi^0 2\gamma$	$(2.7 \pm 0.5) \times 10^{-4}$	χ PTh at $\mathcal{O}(p^6)$	4
$\gamma + B$	beyond SM	leptophobic dark boson	4
$3\pi^0$	$(32.6 \pm 0.2)\%$	$m_u - m_d$	6
$\pi^+\pi^-\pi^0$	$(22.7 \pm 0.3)\%$	$m_u - m_d$, CV	2
3γ	$<1.6\times10^{-5}$	CV, CPV	3
ancillary:			
4γ	$<2.8 imes10^{-4}$	$< 10^{-11}[112]$	4
$2\pi^0$	$<3.5\times10^{-4}$	CPV, PV	4
$2\pi^0\gamma$	$< 5 \times 10^{-4}$	CV, CPV	5
$3\pi^0\gamma$	$< 6 \times 10^{-5}$	CV, CPV	6
$4\pi^0$	$< 6.9 \times 10^{-7}$	CPV, PV	8
$\pi^0\gamma$	$< 9 \times 10^{-5}$	CV,	3
		Ang. Mom. viol.	
normalization:			
2γ	$(39.3 \pm 0.2)\%$	anomaly, η - η' mixing	
		PR12-10-011	2

Main physics goals:

- 1. Determine the light quark mass ratio
- 2. Probe interplay of VMD & scalar resonances in ChPT to calculate $O(p^6)$ LEC's in the chiral Lagrangian.
- 3. Search for a leptophobic dark boson (B).
- 4. Directly constrain CVPC new physics

FCAL-II is required for the rare decays

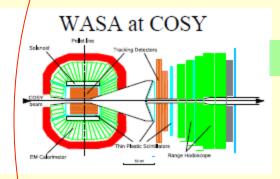
Jlab Eta Factory (JEF) experiment



Simultaneously measure η decays: $\eta \rightarrow \pi^0 \gamma \gamma$, $\eta \rightarrow 3\gamma$, and ...

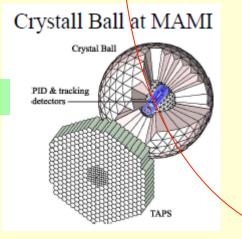
- \spadesuit n produced on LH2 target with 9-11.7 GeV tagged photon beam: $\gamma + p \to \eta + p$
- igoplus Reduce non-coplanar backgrounds by **detecting recoil p's** with GlueX detector (ϵ ~75%)
- Upgraded Forward Calorimeter with High resolution, high granularity
 PbWO₄ insertion (FCAL-II) to detect multi-photons from rare η decays

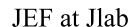
World competition in n decays

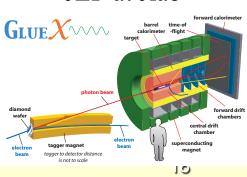

e⁺e⁻ Collider

BESIII at BEPCII

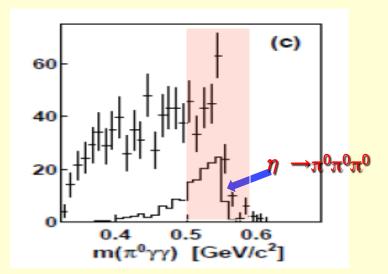
Low energy η -facilities

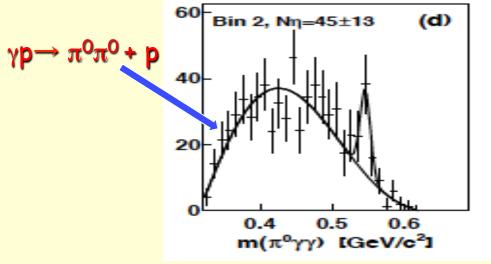

Fixed-target

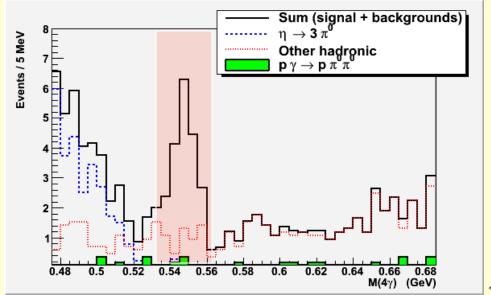

hadroproduction


High energy η -facility

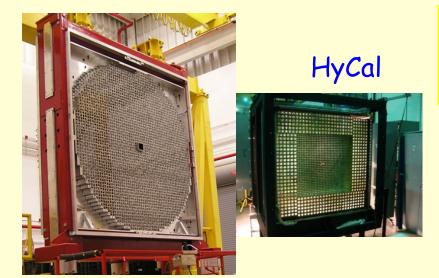
photoproduction


CBELSA/TAPS at ELSA




Filter Background with η Energy Boost ($\eta \rightarrow \pi^0 \gamma \gamma$)

A2 at MAMI (Phys.Rev. C90 (2014) 025206): $\gamma p \rightarrow \eta p$ ($E_{\nu} = 1.5 \text{ GeV}$)

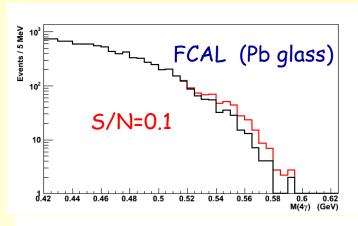


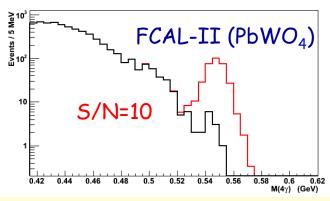
Jlab: $\gamma p \rightarrow np (E_{\gamma} = 9-11.7 \text{ GeV})$

New Equipment: FCAL-II

FCAL

FCAL-II (PbWO₄) vs. FCAL (Pb glass)

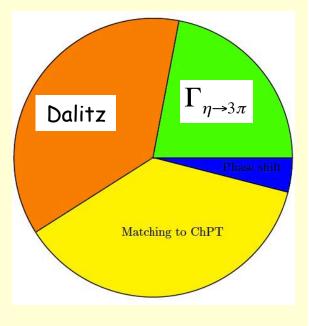

Property	Improvement factor
Energy σ	2
Position σ	2
Granularity	4
Radiation- resistance	10

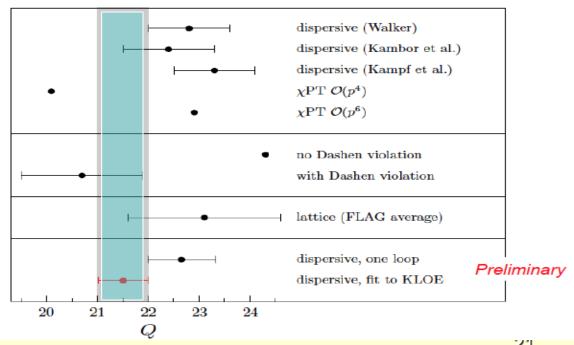

FCAL with PWO insertion:

- 118x118 cm² in Size (3445 PbWO₄)
- 2cm × 2cm × 18cm per module

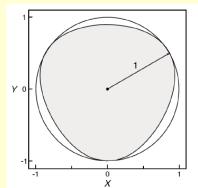
5/N Ratio vs. Calorimeter Types

signal: $\eta \rightarrow \pi^0 \gamma \gamma$, background: $\eta \rightarrow 3\pi^0$

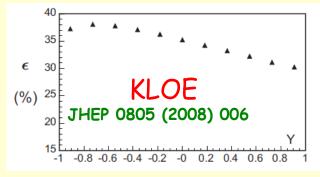


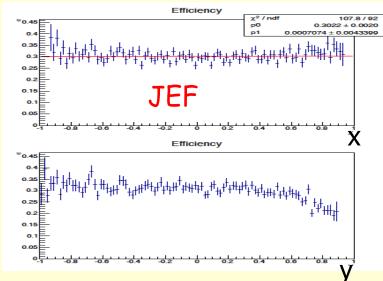


Determine Light Quark Mass Ratio via $\eta \rightarrow 3\pi$


- A clean probe for quark mass ratio: $Q^2 = \frac{m_s^2 \hat{m}^2}{m_d^2 m_u^2}$ $\hat{m} = \frac{m_u + m_d}{2}$
 - \rightarrow decays through isospin violation: $A = (m_u m_d)A_1 + \alpha_{em}A_2$
 - $> \alpha_{em}$ is small

 - > Amplitude: $A(s,t,u) = \frac{1}{Q^2} \frac{m_K^2}{m_{\pi}^2} (m_{\pi}^2 m_K^2) \frac{\mathcal{M}(s,t,u)}{3\sqrt{3}F^2},$
- ◆ Uncertainties in quark mass ratio (E. Passemar, talk at AFCI workshop)




Experimental Measurements of $\eta \rightarrow 3\pi$

$$X = \frac{\sqrt{3}}{2M_{\eta}Q_{c}}(u-t)$$

$$Q_c \equiv M_{\eta} - 2M_{\pi^+} - M_{\pi^0}$$

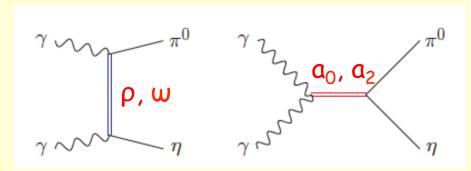
$Y = \frac{3}{2M_nQ_n}$	$\left(\left(M_{\eta}-M_{\pi^0}\right)\right)$	$\left(\frac{s}{s}\right)-1$	$Z = X^2 + Y^2$
$2111\eta \mathcal{Q}_c$	`	,	

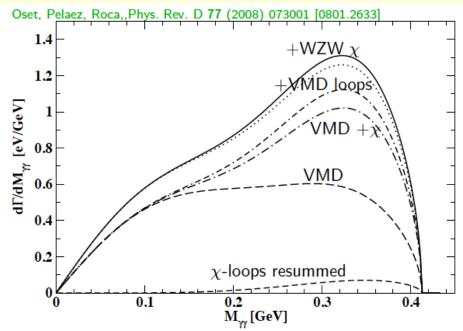
Exp.	3π ⁰ Events (10 ⁶)	п ⁺ п ⁻ п ⁰ Events (10 ⁶)
Total world data (include prel. WASA and prel. KLOE)	6.5	6.0
GlueX+PrimEx-η +JEF	20	19.6

- ◆ Existing data from the low energy facilities are sensitive to the detection threshold effects
- ◆ JEF at high energy has uniform detection efficiency over Dalitz phase space
- JEF will offer large statistics and improved systematics

SM allowed $\eta \rightarrow \pi^0 \gamma \gamma$

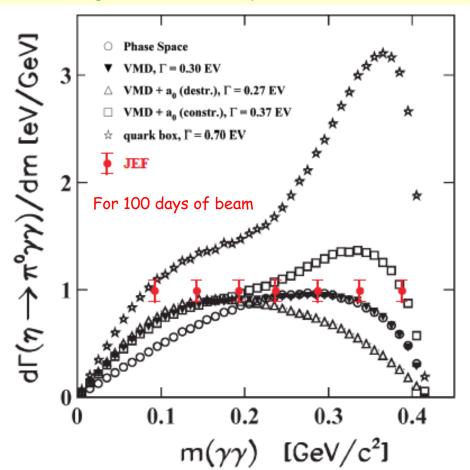
A rare window to probe interplay of VMD & scalar resonances in ChPT to calculate $O(p^6)$ LEC's in the chiral Lagrangian (J. Bijnens, talk at AFCI workshop)

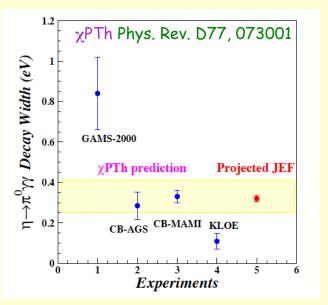

♦ The major contributions to $η → π^0 γγ$ are two $O(p^6)$ counter-terms in the chiral Lagrangian \longrightarrow an unique probe for the high order ChPT. L. Ametller, J, Bijnens, and F. Cornet, Phys. Lett., B276, 185 (1992)

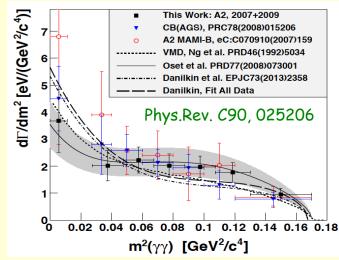

2. America, 0, Digheris, and 1. corner, 1 hys. 2011., D270, 103 (1992)

 Shape of Dalitz distribution is sensitive to the role of scalar resonances.

LEC's are dominated by meson resonances

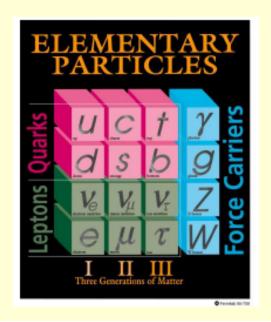

Gasser, Leutwyler 84; Ecler, Gasser, Pich, de Rafael 1989; Donoghue, Ramirez, Valencia 1989





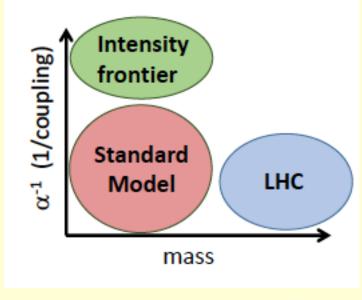
Projected JEF results on $\eta \rightarrow \pi^0 \gamma \gamma$

J.N. Ng and D.J. Peters, Phys. Rev. D47, 4939

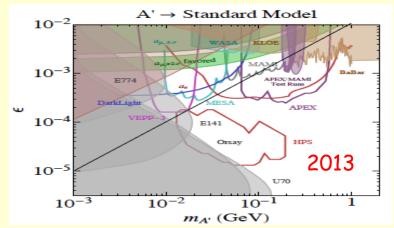


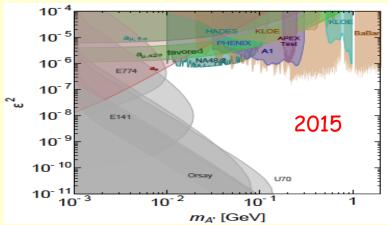
We measure both BR and Dalitz distribution

- igoplus model-independent determination of two LEC's of the $O(p^6)$ counter-terms
- probe the role of scalar resonances to calculate other unknown O(p⁶) LEC's
 J. Bijnens, talk at AFCI workshop
 24


Search for Dark Forces

SM based on $SU(3)_C \times SU(2)_L \times U(1)_\gamma$ gauge symmetry. Are there any additional gauge symmetries? Look for new gauge bosons.


Motivations:


- Grand unified theories: Generically have additional gauge bosons, but typically very heavy (10¹⁶ GeV).
- 2. Dark matter: Stability of dark matter related to new gauge symmetry?
 Can also give the right relic density.

"Vector Portal" to Dark Sector

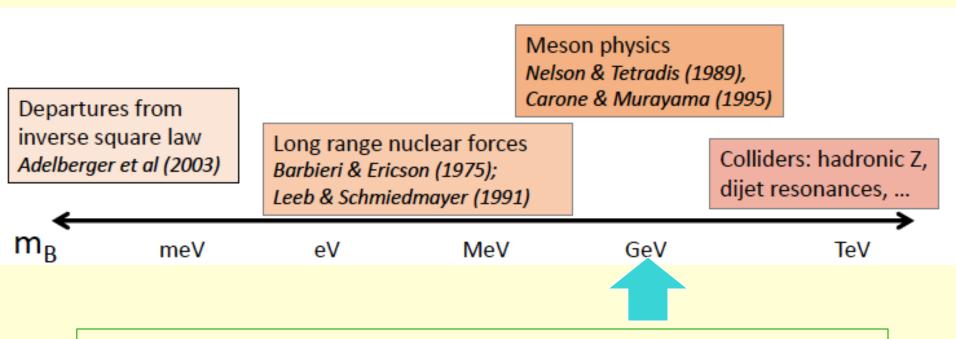
1. Dark photon A' $-\frac{1}{2}\varepsilon F^{\mu\nu}F^{\prime}_{\mu\nu}$ Kinetic mixing and U(1)'

Most A' searches look A' for $A' \rightarrow l'l'$, relying on the leptonic coupling of new force

Dark leptophobic B-boson (dark ω , γ_R , or Z'):

$$\frac{1}{3}g_{B}\overline{q}\gamma^{\mu}qB_{\mu}$$

Gauged baryon symmetry U(1)_B


T.D. Lee and C.N. Yang, Phys.Rev., 98, 1501 (1955)

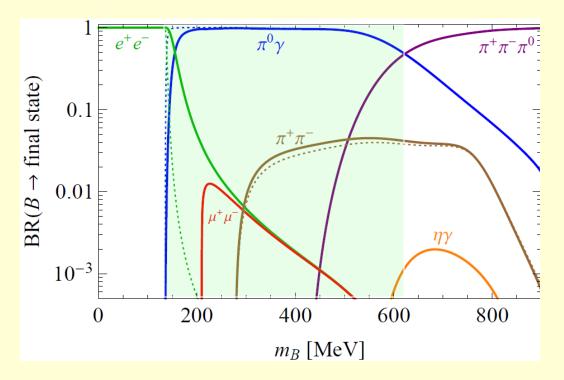
- the stability of baryonic and dark matter
- a unified genesis of baryonic and dark matter M.Graesser, I. Shoemaker and L. Vecchi, arXiv:1107.2666
- a natural framework for resolving "Strong CP problem" in QCD

Experimental probes for B-boson

Discovery signals depend on the B mass:

- lacktriangle the $m_{\scriptscriptstyle B} < m_{\scriptscriptstyle \pi}$ region is strongly constrained by long-range forces search and nuclear scattering experiments.
- lacklost the $m_B > 50 GeV$ region has been investigated by the collider experiments.
- ◆ GeV-scale domain is nearly untouched.

a discovery opportunity hiding in nonperturbative QCD regime!

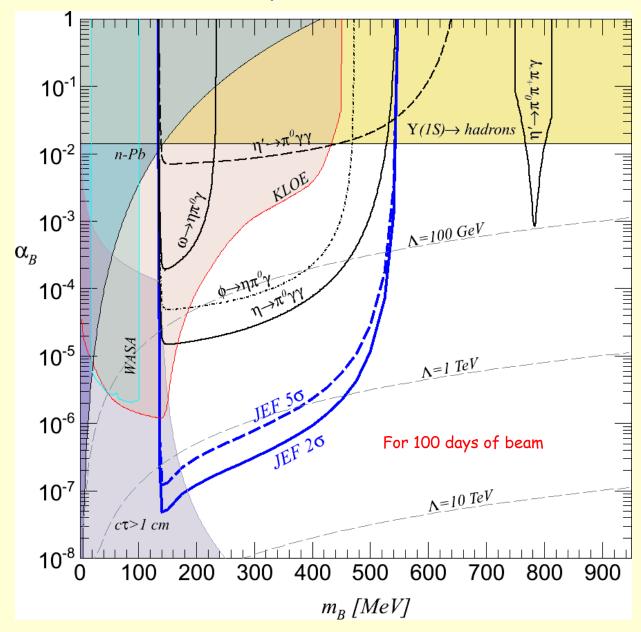

Striking signature for B-boson in $\eta \rightarrow \pi^0 \gamma \gamma$

◆ B production: A.E. Nelson, N. Tetradis, Phys. Lett., B221, 80 (1989)

$$\eta \rightarrow B\gamma \ \text{decay} \ (m_{\text{B}} < m_{\eta})$$
 $\frac{\eta}{1 - 1 - 1} \frac{B}{u_{\text{u,d,s}}} \gamma$

Triangle diagram

♦ B decays: $B \rightarrow \pi^0 \gamma$ in 140-620 MeV mass range


$$\eta \rightarrow \gamma B \rightarrow \gamma + \pi^0 \gamma$$

Search for a resonance peak of $\pi^0\gamma$ for $m_B \sim 140-550$ MeV

5. Tulin, Phys.Rev., D89, 14008 (2014)

 $\bullet \Gamma(\eta \to \pi^0 \gamma \gamma) \sim 0.3 eV \longrightarrow \text{highly suppressed SM background}$

JEF Experimental Reach $(\eta \rightarrow B\gamma \rightarrow \pi^0\gamma\gamma)$

- A stringent constraint on the leptophobic B-boson in 140-550 MeV range.
- A positive signal of B in JEF will imply a new fermion with a mass up to a few TeV due to electro-weak anomaly cancellation.
- Future η' experiment will extend the experimental reach up to 1 GeV

Constraints from A' search (KLOE and WASA) assumed: $\varepsilon \sim 0.1 \times eg_{\rm R}/(4\pi)^2$

The Four Classes of C, P, and T Violations Assuming CPT Invariance

B. Nefkens and J. Price, Phys. Scrip., T99, 114 (2002)

Exper	imental	tests
Cripu.		

Class	Violated	Valid
1	C, P, CT, PT	T, CP
2	C, P, T, CP, CT, PT	
3	P, T, CP, CT	C, PT
4	C, T, CP, PT	P, CT

P-violating exp., β-decays, K-, B-, D-meson decays EDM, η→even π's

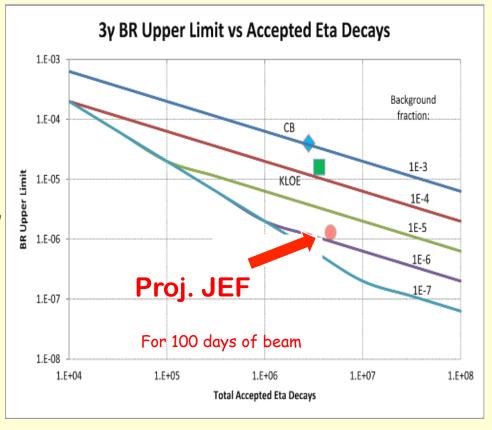
17 C-tests involving η , η' , π , ω , J/ψ decays

For class 4:

- a few tests available
- not well tested experimentally in EM and strong interactions
- less constrained by nEDM and parity-violating experiments.
- offer a golden opportunity for new physics search.

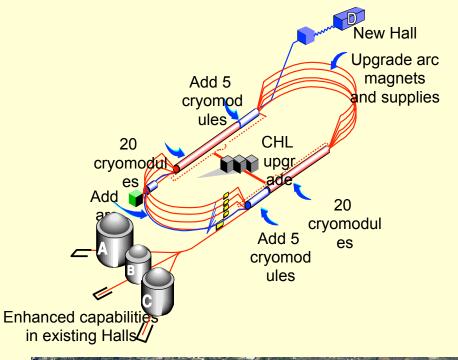
C Invariance

- Maximally violated in the weak force and is well tested.
- ◆ Assumed in SM for electromagnetic and strong forces, but it is not experimentally well tested (The current constraint: Λ≥ 1 GeV)
- ◆ EDMs place no constraint on CVPC in the presence of a conspiracy or new symmetry; only the direct searches are unambiguous.


(M. Ramsey-Musolf, phys. Rev., D63, 076007 (2001); talk at the AFCI workshop)

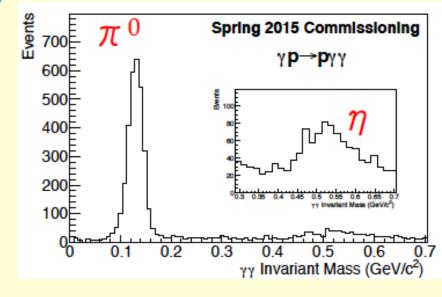
C Violating n neutral decays

Final State	Branching Ratio (upper limit)	Gammas in Final State
3γ	< 1.6·10 ⁻⁵	2
$\pi^0\gamma$	< 9·10 ⁻⁵	3
2π ⁰ γ	< 5·10 ⁻⁴	5
3γπ ⁰	Nothing published	
3π ⁰ γ	< 6·10 ⁻⁵	7
3γ2π ⁰	Nothing published	,


Experimental Improvementon in $\eta \rightarrow 3\gamma$

- ♦ SM contribution: BR(η→3γ) <10⁻¹⁹ via P-violating weak interaction.
- ◆ A new C- and T-violating, and P-conserving interaction was proposed by Bernstein, Feinberg and Lee Phys. Rev.,139, B1965 (1965)
- A calculation due to such new physics by Tarasov suggests: $BR(\eta \rightarrow 3\gamma) < 10^{-2}$ Sov.J.Nucl.Phys.,5,445 (1967)
- ◆ A new investigation by M. Ramsey-Musolf and two Ph.D. students is in progress

Improve BR upper limit by one order of magnitude to directly tighten the constraint on CVPC new physics


Jlab and GlueX

Summary

- \square A comprehensive Primakoff program has been developed at Jlab to measure $\Gamma(p \to \gamma \gamma)$ and $F(\gamma \gamma^* \to p)$ of π^0 , η and η' . These results will provide rich data sets to test the fundamental symmetries of QCD at low energy.
 - tests of chiral symmetry and anomalies
 - > light quark mass ratio
 - $\rightarrow \eta \eta'$ mixing angle
 - $> \pi^0, \eta$ and η' electromagnetic interaction radii
- $\hfill \square$ 12 GeV tagged photon beam with GlueX setup offers a unique η facility with two orders of magnitude in background reduction in the neutral rare η decays compared to other facilities in the world.
 - ightharpoonup A clean determination of the light quark mass ratio via $\eta \rightarrow 3\pi$
 - > Test the role of scalar dynamics in ChPT through $\eta \rightarrow \pi^0 \gamma \gamma$
 - Probe a leptophobic dark B-boson in 140-550 MeV range via $\eta \rightarrow B\gamma \rightarrow \pi^0\gamma\gamma$ (complementary to ongoing A' search)
 - \triangleright Directly constrain CVPC new physics via η→3γ and other C-violating channels

Special thanks to our theory colleagues:

- G. Colangelo, B. Kubis, E. Passemar, J. Bijnens,
- B. Holstein, M. Ramsey-Musolf, A. Aleksejevs,
- S. Tulin, J. Goity, S. Barkanova, B. Martemyanov

η Production Rate Estimation

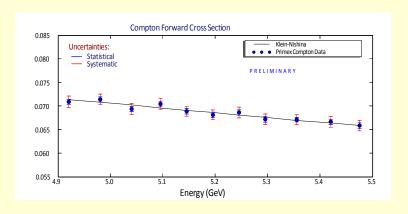
LH2 target length L=30cm, ρ =0.0708 g/cm³

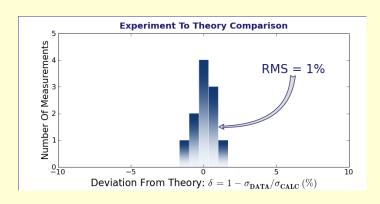
$$N_p = \frac{\rho L}{A} N_A = \frac{0.0708 \times 30}{1} \times 6.022 \times 10^{23} = 1.28 \times 10^{24} \text{ p/cm}^2$$

The $\gamma+p\to\eta/\eta'+p$ cross section: ~70 nb for η ; ~57 nb for η' J.M. Laget , Phys.Rev. , C72, 022202 (2005) and A. Sibirtsev et al. Eur.Phys.J., A44, 169 (2010)

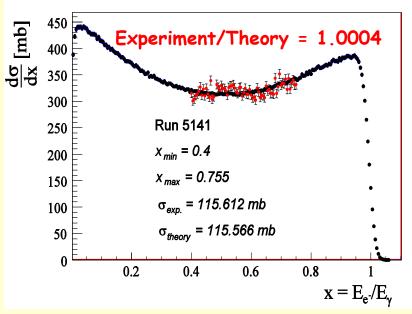
Photon beam intensity $N_{\gamma} \sim 5 \times 10^7$ Hz (for $E_{\gamma} \sim 9-11.7$ GeV)

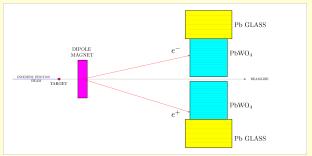
$$N_{\eta} = N_{\gamma} N_{p} \sigma = 5 \times 10^{7} \times 1.28 \times 10^{24} \times 70 \times 10^{-33}$$


$$= 4.5 \text{ Hz}$$

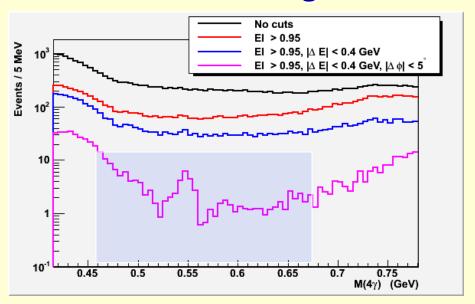

$$\approx 3.9 \times 10^{5} \ (\eta' \text{s/day}) \qquad \text{Jlab Eta Factory (JEF)}$$

$$N_{\eta'} \approx 3.2 \times 10^{5} \quad (\eta' \text{/day})$$


Verification of Overall Systematical Uncertainties


 \square γ + e \rightarrow γ +e Compton cross section measurement

□ e⁺e⁻ pair-production cross section measurement:



Estimated Systematic Uncertainties PrimEx-II (Preliminary)

Contributions	Uncertainty (%)	
Photon flux	0.7	
Beam parameters	0.4	
Accidentals	0.1	
Target parameters	0.2 ¹² C; 0.4 ²⁸ Si	
Yield extraction	1.0	
Acceptance	0.3	
Trigger efficiency	0.3	
Detector resolution	0.28	
Model errors (theory)	0.5	
Physics background	0.3	
Branching ratio (PDG)	0.03	
Total	1.6	

L. Gan

Hadronic Backgrounds Reduction in 47 States

Event Selection

$$\triangleright$$
 Elasticity is EL= $\Sigma E_{\gamma}/E_{tagged-\gamma}$

Finergy conservation for $\gamma+p \to \eta+p$ reaction: $\Delta E=E(\eta)+E(p)-E(beam)-M(p)$

 \triangleright Co-planarity $\triangle \phi = \phi(\eta) - \phi(p)$

Note:

- >Statistics is normalized to 1 beam day.
- \triangleright BG will be further reduced by requiring that only one pair of γ's have the π^0 invariant mass.

Anatomy of CP Violation in $\Gamma(M_{C=+} \to \pi^+\pi^-\pi^0)$

C-odd, P-even

This can be generated by s-p interference of $\left|\left[\pi^{+}(\boldsymbol{p})\,\pi^{-}(-\boldsymbol{p})\right]_{I}\pi^{0}(\boldsymbol{p'})_{I}\right\rangle$ final states of 0⁻ meson decay. It is linear in a CP-violating parameter.

This contribution **cannot** be generated by $\bar{\theta}_{QCD}$!

"C violation" [Lee and Wolfenstein, 1965; Lee, 1965, Nauenberg, 1965; Bernstein, Feinberg, and Lee, 1965]

C-even, P-odd

This can be generated by the interference of amplitudes which distinguish $\left|\left[\pi^{-}(\boldsymbol{p})\,\pi^{0}(-\boldsymbol{p})\right]_{I}\pi^{+}(\boldsymbol{p}')_{I}\right\rangle$ from $\left|\left[\pi^{+}(\boldsymbol{p})\,\pi^{0}(-\boldsymbol{p})\right]_{I}\pi^{-}(\boldsymbol{p}')_{I}\right\rangle$ as in, e.g., $B\to\rho^{+}\pi^{-}$ vs. $B\to\rho^{-}\pi^{+}$. "CP-enantiomers" [sq. 2003] This possibility is not accessible in $\eta\to\pi^{+}\pi^{-}\pi^{0}$ decay (but in η' decay, yes). Thus a "left-right" asymmetry in $\eta\to\pi^{+}\pi^{-}\pi^{0}$ decay tests C-invariance, too.