Recent selected LHCb highlights

Monica Pepe Altarelli (CERN)

On behalf of LHCb collaboration

Vulcano Workshop 2016,

Frontier Objects in Astrophysics and Particle Physics

The LHCb collaboration

~700 authors from 69 institutes in 16 countries
 >300 publications, some with very high impact

11.

Why b? (I)

- The heaviest quark that binds in hadrons
- Many decay channels: a vast laboratory
- Heavy mass \rightarrow more theoretically accessible
- Lifetime long enough for experimental detection:
 - $\tau_{\text{beauty}} \sim 1.5 \ 10^{-12} \ \text{s}$
- Sizeable CP violation expected in many decays
 - Large CPV effects expected in processes which involve quarks from all three generations (quark mixing matrix cannot violate CP in a world with only two families!)
- Most TeV new physics contains new sources of CP and flavour violation
- The observed baryon asymmetry of the Universe requires CPV beyond the SM
 - Not necessarily in flavor changing processes, nor necessarily in quark sector, it could originate from lepton sector

Why b? (II)

• Some rare decays can only proceed through loop diagrams, e.g. $B_{(s)} \rightarrow \mu\mu$

- Z^0 →bs vertex does not exist! (No Flavour Changing Neutral Currents - FCNCs) \overline{b} μ^+

 B_s^0

 A new particle X, too heavy to be produced at the LHC, can give sizeable effects when exchanged in a loop (e.g. modify BRs, angular distributions,..)

B decays: a window on NP at high scales

- New particles in the 1-10 TeV LHC range (there are reasons to believe they should exist!) Would produce visible signals in rare B decays unless the NP is highly non generic (e.g. Minimal Flavour Violation, in which the flavour breaking structure of the SM also holds beyond the SM)
- In conclusion, precision studies of B decays offer a window on NP not accessible to direct production (even if the space for TeV NP is reduced after the results of the LHC at 7 and 8 TeV)

Strong limits on the scale of NP arise from flavour processes

- Assumption: generic NP effects in loop-mediated amplitudes, i.e. those from K⁰,D⁰, B_d, B_s, mixing (ΔF=2)
- Bounds on scale of NP for different additional 4fermion interactions O (with C = 1): $\frac{C}{\Lambda^2}O$

	,			
	Operator	Bound on Λ [TeV] ($C = 1$)		
	Operator	Re	Im	
	$(\bar{s}_L \gamma^\mu d_L)^2$	$9.8 imes 10^2$	$1.6 imes 10^4$	1
K_0	$(\bar{s}_R d_L)(\bar{s}_L d_R)$	$1.8 imes 10^4$	$3.2 imes 10^5$	
	$(\bar{c}_L \gamma^\mu u_L)^2$	$1.2 imes 10^3$	$2.9 imes 10^3$	_
D^0	$(\bar{c}_R u_L)(\bar{c}_L u_R)$	$6.2 imes 10^3$	$1.5 imes 10^4$	
D	$(\bar{b}_L \gamma^\mu d_L)^2$	$6.6 imes10^2$	$9.3 imes 10^2$	
Dd	$(ar{b}_R d_L)(ar{b}_L d_R)$	$2.5 imes 10^3$	$3.6 imes 10^3$	Taida
R	$(\bar{b}_L \gamma^\mu s_L)^2$	$1.4 imes 10^2$	$2.5 imes 10^2$	-15100
S	$(\bar{b}_R s_L)(\bar{b}_L s_R)$	$4.8 imes 10^2$	$8.3 imes10^2$	
		-		

 These bounds on the scale of NP (up to ~10⁵ TeV) go well beyond the direct production capabilities of new particles at the LHC (~few TeV)

Is there space left for NP in B_d and B_s mixing?

NP parameters

• Parameterize NP in B mixing as $M_{12} = M_{12}^{SM} \times (1 + \frac{h}{h} e^{2i\sigma})$

 Effects ~ 20 % (in amplitude) are still well possible from New Physics

LHCb detector:the essentials

Running conditions

- LHCb designed to run at lower luminosity than ATLAS/CMS
 - Tracking, PID sensitive to pile-up
 - Mean number of interactions/bunch crossing ~1
- pp beams displaced to reduce instantaneous luminosity $- \mathcal{L} \sim 4.0 \ 10^{32} \ \mathrm{cm}^{-2} \mathrm{s}^{-1}$ $\sim 10^{11}$ b decays/fb in acceptance
- Huge heavy quark production cross-sections
 - σ_{bb} ~ 500 μb @ \sqrt{s} =13 TeV (~1nb in e⁺e⁻@ Υ(4s))
 - σ_{cc} is ~ 20 times larger!
- Resuming now with run 2 (2015-2018) @13 TeV with several ambitious changes aimed at maximising physics output

 $\sim 10^{12}$ c decays/fb

Gearing up for 2016 - the trigger

 Evolving strategy for the High Level Trigger (HLT – software application designed to reduce the event rate from 1 M to ~10 k events/s, executed on a large computing cluster)

- 2015-2016 → Split HLT
 - All 1st stage (HLT1) output stored on disk (5PB in 2015, 10PB in 2016)
 - Enough time to perform online calibration & alignment before HLT2
 - HLT2 uses offline-quality calibration \rightarrow more discriminant trigger
 - With offline-quality reconstruction up-front, no need to reconstruct offline
 - Can perform physics analysis directly @ HLT level ("TURBO" stream)

The TURBO stream

- Online has offline quality → Use it for physics!
 - Store full information of trigger candidates
 - Remove most of detector raw data
 - Save >~90% of space
 - Very quick turn around [24 h]
 - Smaller events means \rightarrow analyse much higher rates

Turbo publications with 13 TeV data!

- For 2016 run, code sped up and made even more "offline-like"
- TURBO approach extended to analyses of higher complexity
- The higher output rates of the LHCb upgrade will make the approach increasingly necessary (→Pierluigi's talk)

2016:Turbo++ stream

- 2016 HLT is even better, allowing qualitatively new analyses
- Can now save HLT candidates + any reconstructed particles

Selected results on CP Violation

CP violation in B_s mixing

•
$$P(B_q \rightarrow \overline{B}_q) \neq P(\overline{B}_q \rightarrow B_q) \ (q = d, s)$$

• Use semileptonic final state $\overline{B}_s^0 \to D_s^+ \mu^- \overline{\nu}_\mu X$

•
$$a_{sl}^{q} = \frac{P(\bar{B}_{q} \rightarrow B_{q}) - P(B_{q} \rightarrow \bar{B}_{q})}{P(\bar{B}_{q} \rightarrow B_{q}) + P(B_{q} \rightarrow \bar{B}_{q})} \approx \frac{\Delta\Gamma}{\Delta m} \tan\phi_{12}$$

Semileptonic CPV phase Difference in mass and width of mass eigenstates

Expected to be small in SM ~ -5 $\cdot 10^{-4}$ (B_d) and 2 $\cdot 10^{-5}$ (B_s), but could be enhanced by NP in mixing

• Experimentally:
$$A_{raw} = \frac{N(D_s^- \mu^+) - N(D_s^+ \mu^-)}{N(D_s^- \mu^+) + N(D_s^+ \mu^-)} = \frac{a_{sl}^s}{2} + \text{corrections}$$

W W

W+ .

 \overline{B}^0_{\circ}

 B_s^0

Results (full run 1)

• Use $D_s \rightarrow KK\pi$ in full Dalitz region: $\phi\pi, K^*K$, non-resonant

• $a_{sl}^s = (0.45 \pm 0.26 \pm 0.20)\%$ Preliminary, Beauty2016

The story so far

The story now

- Marginally compatible with D0 dimuon result
- Very much compatible with SM predictions
- Most precise measurement of CPV in B_s statistically limited

γ from tree-level decays as "standard candle"

- $\gamma \approx -\arg(V_{ub})$ least well measured angle of Unitarity Triangle (~7°)
 - To be compared to ~3° for α and <1° for β

- Measurable in interference between two amplitudes to same final state
 - Sensitivity to γ through final states accessible to both D^0 and $\overline{D}{}^0$ leading to interference

- Small theory uncertainty on γ from tree-level decays is crucial to identify NP
- Combining several independent decay modes is key to achieve ultimate precision

γ from trees: Results

New precise CPV measurements in very rare (BR~10⁻⁷) channels

When combined with LHCb results from similar studies in B \rightarrow DK allows for the world's most precise measurement of the angle γ

Excellent progress on the road to ~1° precision with LHCb upgrade

Experimental success of CKM description • Excellent overall

Excellent overall consistency with the CKM paradigm

 The CKM mechanism is obviously at work at ~O(20%) but there is still room for NP (e.g. new sources of CPV in quark sector)

Moving to the (high) precision era to look for signs of non-SM physics

One of the milestones of flavour program: $B_{d,s} \rightarrow \mu^+ \mu^-$

- Highly suppressed in SM
 - -FCNC
 - Helicity suppressed $\sim (m_{\mu}/M_B)^2$
- Precisely predicted
 - $-BR(B_s \rightarrow \mu^+ \mu^-)_{SM} = 3.66 \pm 0.23 \times 10^{-9}$
 - $-BR(B_d \rightarrow \mu^+ \mu^-)_{SM} = 1.06 \pm 0.09 \times 10^{-10}$
- Sensitive to NP
 - -in MSSM BR ~ tan $^6\beta$
- Very clean signature
 - studied by all high-energy hadron collider experiments

 B_s^0

30 years of effort!

30 years of effort!

30 years of effort!

 $B_{d,s} \rightarrow \mu^+ \mu^-$ from LHCb and CMS

• Combined fit to full run 1 data set results in first observation of $B_s \rightarrow \mu^+ \mu^-$ and first evidence for $B^0 \rightarrow \mu^+ \mu^-$

 Ratio of BFs provides powerful discriminations among BSM theories, compatible with SM at $\sim 2\sigma$ level

The killer observables!

From D. Straub

ATLAS entered the game

arXiv:1604.04263

Another interesting rare decay: $B^0 \rightarrow K^{*0} (\rightarrow K^+\pi^-) \mu^+\mu^-$

- $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ is a b→ s transition that only proceeds via loops and boxes
- NP can be competitive with SM processes

- Four final state particles with rich phenomenology, plethora of observables
- Rates, angular distributions and asymmetries sensitive to NP
- A lot of phenomenological work invested in defining observables with "clean" theoretical prediction
 Question: how clean?

P'₅ anomaly

Is SM prediction less precise than what is claimed?

New analysis from Belle

Intriguing set of results in differential branching fractions for $b \rightarrow s \mu \mu$ transitions

Measurement of R(D*)

- $R(D^*) = B(\bar{B}^0 \rightarrow D^{*+} \tau^- \bar{\nu}_{\tau}) / B(\bar{B}^0 \rightarrow D^{*+} \mu^- \bar{\nu}_{\tau})$
 - with $\tau^- \rightarrow \mu^- \nu_\mu \nu_\tau$
- Theoretically clean
 - In SM only difference is the mass of the lepton
 - R(D*)_{SM}=0.252±0.003
- Sensitive to NP coupled dominantly to 3rd generation, e.g. a charged Higgs W^-/H^-
- Heightened interest
 - BaBar: ~3 σ tension (final data set)

 $\overline{B}\left\{ \begin{array}{c} b \\ \overline{a} \end{array} \right\}$

 $R(D^*) = B(\bar{B}^0 \rightarrow D^{*+} \tau^- \bar{\nu}_{\tau}) / B(\bar{B}^0 \rightarrow D^{*+} \mu^- \bar{\nu}_{\tau})$

- Experimentally very difficult at LHC (considered unfeasible!) :
 - No kinematic constraints (as in B factories)
 - 3 v final state, no peaking structure
 - Large background e.g. from partially reconstructed b decays

PRL 115 (2015) 111803

muon

 $D^{(*)}$

R(D*): Result

R(D*)=0.336±0.027(stat)±0.030(syst)

- in excellent agreement with previous measurements
- in agreement with SM at 2.1 σ level

EPS'16 HFAG average of R(D*) & R(D)

Including new preliminary BELLE result (arXiv:1603.06711)

- Difference wrt SM predictions at 4 σ level !
- Similar studies with hadronic τ decays very advanced
- Work underway with other B hadrons $(B_s \rightarrow D_s \tau \nu, \Lambda_B \rightarrow \Lambda_c \tau \nu)$

Many results on spectroscopy

LHCb sees the pentaquark!

• Two charmonium pentaquark candidates in $\Lambda^0_b \rightarrow J/\psi pK^-$ decays! [PRL 115 (2015) 072001]

- Result confirmed by model independent study [arXiv:1604.05708]
 - Λ^0_b →J/ψpK⁻ decays cannot be explained by Λ^0_b →J/ψΛ^{*} with Λ^* →pK⁻

...but does not confirm D0 tetraquark

Feb. 26th: D0 announces
 observation of exotic state
 X(5568)→B_sπ with 5σ significance:
 (b,s,u,d) tetraquark state

 $N_{B_{S}} \sim 5500$

LHCb responded very quickly, exploiting our fast analysis chain, ~110k ultra-clean B_s

- 90 D0 Run II, 10.4 fb1 Candidates / (4 MeV/c²) 00 00 00 05 00 05 Claimed X(5568) stat 80 -LHCb Preliminary 250 N events / 8 MeV/c² DATA Combinatoria 70 Fit with background shape fixed LHCb Background 60 50 150 arXiv:1602.07588 40 30 50 20 10 5520 5540 5560 5580 5600 5620 5640 5660 5680 5700 0 m(B₀⁰π^{*}) [MeV/c²] 5.55 5.6 5.65 5.7 5.75 5.8 ^{5.85} IGeV/c²1 $m (\mathsf{B}^{\circ}_{\mathrm{S}} \pi^{\pm})$
 - What we should have seen
- Existence of X(5568) not confirmed \rightarrow production upper limits set

Conclusions

- Wealth of LHCb results with the first 3/fb at "CERN's flavour factory" (and also from Run 2!)
 - Everything worked beautifully (luminosity leveling, detector, trigger, data analysis, ..)
 - Many world record results. For some topics we have moved from exploration to precision measurements.
 - Only very few highlights covered here (e.g. not covered charm, EW, heavy-ions,...)
 - Many important results from run 1 still to come (e.g. R(D*), all the various R_{κ} modes, more on charm,..)
- Some new territory already explored, some intriguing effects emerged, but in general SM still depressingly uncracked
- We'll keep on looking....
- We have shown to be ready for Run 2 and implemented many clever and innovative ideas

- E.g. calibration and alignment of detector in real time

Working hard to prepare for the future (LHCb Upgrade)

Reminder: $R_{K}=B(B^{+}\rightarrow K^{+}\mu^{+}\mu^{-})/B(B^{+}\rightarrow K^{+}e^{+}e^{-})$

• Test of lepton universality : $R_K \sim 1$ in SM, with negligible theoretical uncertainties

 $R_{\rm K}(1 < q^2 < 6 \text{ GeV}^2) = 0.745^{+0.090}_{-0.074}(\text{stat}) \pm 0.036(\text{syst})$

- Compatible with SM at 2.6σ
- Experimentally challenging
 - lower trigger efficiency for electrons, resolution deteriorated by bremsstrahlung
- Other modes suitable for same test: $B^0 \rightarrow K^{*0} l^+ l^-, B_s \rightarrow \phi l^+ l^-, \Lambda_B \rightarrow \Lambda l^+ l^-$