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Pions

Many of the quantities of interest at the precision frontier of
particle physics require a good understanding of the strong
interaction at low energies.

In this context, the lightest hadrons are the most important

π+ π0 π–

It is essential that we know why the pions are so light.
This understanding relies on symmetry.
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Isospin symmetry

Heisenberg 1932: strong interaction is invariant under isospin
rotations – this is why Mp ' Mn.

⇒ Mass difference must be due to the e.m. interaction.

Puzzle: e.m. field around the proton is stronger, makes the
proton heavier than the neutron.

Numerous unsuccessful attempts at solving this puzzle.

Gasser, L. 1975:

If QCD describes the strong interaction correctly,
then mu must be very different from md .

mu/md ' 0.67, ms/md ' 22.5 first crude estimate

Weinberg 1977: Dashen theorem yields independent result
mu/md ' 0.56, ms/md ' 20.1

Current lattice estimates of FLAG:
mu/md = 0.46±0.03, ms/md = 20.0±0.5
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Chiral symmetry

Since mu is very different from md : how come that isospin is
a nearly perfect symmetry of the strong interaction ?

QCD explains this very neatly: for yet unknown reasons, it so
happens that mu and md are very small.

If mu and md are set equal to zero⇒ QCD becomes
invariant under independent flavour rotations of the right- and
left-handed u, d -fields.

Symmetry group: SU(2)R×SU(2)L
This symmetry was discovered before QCD: Nambu 1960.

strong interaction has an approximate chiral symmetry
chiral symmetry is hidden, spontaneously broken
spontaneous symmetry breakdown generates massless bosons
the pions are the massless bosons of chiral symmetry
are not exactly massless, because the symmetry is not exact
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Mass of the pion

For mu = md = 0 the pions are massless (Nambu-Goldstone
bosons of an exact, spontaneously broken symmetry).

For small values of mu,md : M2
π is proportional to mu + md :

M2
π = (mu + md )× |〈0| ūu |0〉| ×

1

F 2
π⇑ ⇑

explicit spontaneous symmetry breaking

Gell-Mann, Oakes, Renner 1968

Only mu + md counts.

Fπ is known from π+ → µ+ν, but |〈0| ūu |0〉| = ?
Non-perturbative method required to calculate |〈0| ūu |0〉|.
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Lattice results for Mπ

GMOR formula is beautifully confirmed on the lattice:

can determine Mπ as a function of mu = md = m.
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Proportionality of M2
π to m holds out to about

m ' 10 × physical value of mud ≡ 1
2(mu + md ).

Dürr, arXiv:1412.6434
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Corrections to the GMOR relation

Switch the electroweak interactions off, consider pure QCD.
Mπ = Mπ(ΛQCD,mu,md ,ms ,mc ,mb,mt)

Expand this function in powers of mu,md . The formula of
GMOR gives the leading term of the expansion:

M2 ≡ (mu + md )|〈0| ūu |0〉|
1

F 2

〈0| ūu |0〉, F independent of mu,md (values in chiral limit)

χPT shows that the next term in the expansion is given by

M2
π = M2

{
1−

M2

2(4πF )2
¯̀

3 + O(M4)

}
¯̀

3 = ln
Λ2

3

M2
depends logarithmically on M
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Corrections to the GMOR relation

M2
π = M2

{
1−

M2

2(4πF )2
¯̀

3 + O(M4)

}
¯̀

3 = ln
Λ2

3

M2
depends logarithmically on M

Numerical value at M =135 MeV:
¯̀

3 = 3.05±0.99 FLAG↔ Λ3 ' 600 MeV.

⇒ Correction in Mπ is tiny:
M2
π

2(4πFπ)2
¯̀

3 ' 0.024

Not a surprize: mu,md are small, of order 2 to 5 MeV
SU(2)×SU(2) should be a nearly perfect symmetry !
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Why is the strong interaction nearly isospin invariant ?

mu,md small⇒ SU(2)×SU(2) a nearly perfect symmetry.

Isospin is a subgroup of SU(2)×SU(2).
⇒ Isospin is a nearly perfect symmetry.
⇒ The strong interaction is nearly invariant under isospin

rotations because mu,md are small.

But: the fact that SU(2)×SU(2) symmetry is broken
is clearly seen: Mπ 6= 0
Why is the breaking of isospin symmetry so well hidden ?
Why is Mπ0 nearly equal to Mπ+ ?

The Nambu-Goldstone bosons are shielded from isospin
breaking: leading term in Leff only knows about mu + md .
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Interaction among the pions

Switch the e.m. interaction off, α = 0, set mu = md .

Isospin symmetry then becomes exact→ the scattering of
any of the 6 initial states π+π+, π+π0, π+π− . . . into any
of these final states is described by a single function A(s, t).

Expansion in momenta and quark masses starts with

A(s, t) =
1

F 2
π

(s −M2
π) + . . . Weinberg 1966

Parameter free prediction at LO.
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Scattering lengths

Prediction for the two S-wave scattering lengths:

a0 =
7M2

π

32πF 2
π

= 0.16, a2 = –
M2
π

16πF 2
π

= –0.045
Weinberg 1966

The chiral perturbation series has been worked out to NNLO.
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a2 practically stays put, but the corrections in a0 are large !
26% 8%

LO ⇒ NLO ⇒ NNLO

SU(2)×SU(2) a nearly perfect symmetry ??
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Why are the corrections in the scattering lengths large ?

Expansion of a0 in powers of mu = md contains juicy χlog:

a0 =
7M2

π

32πF 2
π

{
1 +

9M2
π

2(4πFπ)2
ln

Λ2
0

M2
π

+ . . .

}

⇒ Coefficient 9 × larger than the one in the expansion of M2
π !

S-wave scattering length is the value of the partial wave t0(s)
at threshold, a0 = t0(4M2

π)

At LO, the S-wave has an Adler zero at s = M2
π.

Slope is large⇒ t0(s) very rapidly grows with s.
Final state interaction generates strong curvature at threshold.
Unitarity⇒ scattering amplitude is singular there.
Scattering length sits at the threshold.

⇒ The large χlog stems from the threshold singularity.
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Omnès factor
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Comparison of χPT
with dispersion theory

I thank Peter Stoffer
for this plot

Ω0(s) = e
s
π

∫ ds′δ0(s′)
s′−s−iε
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Roy equations Roy 1971

Numerical analysis Ananthanarayan, Colangelo, Gasser, L. 2001

⇒ Omnès factor known reliably and quite accurately.

χPT expands in powers of quark masses and momenta.
Would have to be taken to high order to match this.

⇒ χPT is not needed for the momentum dependence.
Dispersion theory provides a better tool for that.
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Roy equations + χPT

Match Roy equations with χPT at s = 0, not at threshold.
rapid convergence slow convergence of the chiral series

⇓ ⇓
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In determination of a0 with Roy + χPT:

26% 8% matching at threshold
LO ⇒ NLO ⇒ NNLO

11% 0.2% matching at s = 0
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Roy equations + χPT

Leads to remarkably sharp predictions for ππ scattering

Triggered new low energy precision experiments:

π+π− atoms, DIRAC.

K± → π0π0π±, K 0 → π0π0π0: cusp near threshold,
NA48/2.

K± → π+π−e±ν data: E865, NA48/2.
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Experimental tests of the prediction
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Determination of the scattering lengths on the lattice

a. Direct determination of a2 with Lüscher’s method, via
dependence of the energy levels on the size of the box.

b. Uncertainty in χPT prediction for a0, a2 is dominated by the
uncertainty in the coupling constants `3, `4 of the effective
Lagrangian. These can now reliably be determined on the lattice,
from the quark mass dependence of Mπ and Fπ.
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Compare lattice results with prediction and experiment
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Prediction is consistent with the lattice results.
Some of the collaborations underestimate the uncertainties.
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Low energy constants from the lattice

No experimental info for dependence on mu,md , . . .
Lattice is the ideal tool for that.
Please do not be content with reaching physical quark masses.
Extract the dependence on them, determine the LECs !

In SU(3)R×SU(3)L χPT, the quantities of interest are also
expanded in ms ⇒ NNLO contributions sizeable, important.

Numerical representations for these are available for many
quantities of interest. Bijnens and collaborators

Analysis of lattice data: algebraic expressions preferrable.

Kaiser, Schweizer

Ecker, Masjuan, Neufeld

Ananthanarayan and collaborators
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Developments in dispersion theory

Roy equation analysis confirmed

Garcia-Martin, Kaminski, Londergan, Nebreda, Pelaez, Szczepaniak, Yndurain

σ meson, f0(450) firmly established by the Roy analysis
Position of pole on second sheet known quite accurately

⇒ Analysis Tools for Next-Generation Hadron Spectroscopy Experiments

arXiv:1412.6393

Bounds on form factors Abbas, Ananthanarayan, Caprini, Fischer

Dispersion theory for K`4 decay Colangelo, Passemar, Stoffer

Light-by-light contribution to muon g-2

Colangelo, Hoferichter, Kubis, Procura, Stoffer
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Dispersion theory + χPT for baryons

Roy-Steiner equations
Hoferichter, Ruiz de Elvira, Kubis, Meißner, arXiv:1506.04142

Result for σ-term:

σπN ≡
mud

2MN
〈p|ūu + dd |p〉 = 59.1(3.5) MeV

I find this result very puzzling because of two prejudices:

(1) SU(3) is a decent approximate symmetry, also for the
matrix elements of the operator q̄λaq in the baryon octet.

(2) Rule of Okubo, Iizuka and Zweig is approximately valid.

⇒ A value around 60 MeV implies that (1) and/or (2) are wrong.
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Why is σπN = 60 MeV puzzling ?

Mass formula valid to first order in SU(3) breaking:

MΣ + MΞ − 2MN =
ms −mud

2MN
〈p|ūu + dd − 2s̄s|p〉

The ratio ms : mud is by now firmly known.
⇒ Experimental values of the baryon masses yield

mud

2MN
〈p|ūu + dd − 2s̄s|p〉 ' 25 MeV.

Zweig rule: 〈p|s̄s|p〉 small, confirmed by lattice results.

⇒
mud

2MN
〈p|ūu + dd |p〉 ' 25 MeV.
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Clash between two independent experimental results:

Baryon masses⇐⇒ πN scattering
25 60

Clash is not new, but recent developments accentuate it:

Zweig rule violations appear to be very small.
Recent work on πN scattering yields higher values at the Cheng-Dashen
point than what was obtained with the Karlsruhe-Helsinki analysis.
Left hand side concerns expansion in ms −mud , not expansion in mu , md .
SU(3)-breaking in 〈p|q̄λaq|p〉 extraordinarily large ?
Why then does the Gell-Mann-Okubo formula work so well ?
If a ’correction’ is > 100 %⇒ not easy to justify the calculation.
Contribution from the ∆(1232) ? Alarcon, Geng, Martin Camalich, Oller

⇒ Look forward to a resolution of this puzzle . . .

Started the talk with isospin symmetry, return to this theme now.
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Mass difference between proton and neutron

Prehistoric work: Cottingham 1963

Ancient: Gasser, L. 1975

More recent:
Walker-Loud, Carlson, Miller 2012 WCM

Erben, Shanahan, Thomas, Young 2014 ESTY

Thomas, Wang, Young 2015

Oven fresh:
Gasser, Hoferichter, L., Rusetsky arXiv:1506.06747

Electromagnetic self-energy of a particle: Mγ

Mγ =
e2

4M

∫
d 4x Dµν(x)〈p|T jµ(x) jν(0)|p〉

⇑ ⇑
photon propagator Compton scattering
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Renormalization

QCD is asymptotically free⇒ quarks free at short distances

Dµν(x) ∝
1

x2
〈p|T jµ(x) jν(0)|p〉 ∝

1

x2

⇒ Integral diverges logarithmically at x = 0, like for e in QED.

Divergence absorbed in renormalization of g ,mu,md , . . .
Only operators belonging to mu,md have I 6= 0.

⇒ Only the renormalization of mu,md matters for M p
γ −M n

γ .

Renormalization of mu proportional to e2mu , likewise for md .
⇒ Coefficient of logarithmic divergence ∝ e2mu, e2md tiny.

In chiral limit: M p
γ −M n

γ finite.
In reality there is a divergence, but with a tiny coefficient.
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Self-energy in terms of invariant amplitudes

i
2

∫
d 4x e i q·x〈p|T jµ(x) jν(0)|p〉 =

(qµqν − gµνq2)T1 + {−pµpν
q2

M2
+ . . .}T2

The invariant amplitudes depend on two variables:

T1 = T1(ν, q2) T2 = T2(ν, q2) ν = p · q/M

Explicit formula for the self-energy in terms of T1,T2:

Mγ =
−i e2

2M(2π)4

∫ d 4q
q2 + iε

{3q2T1(ν, q2)+(2ν2+q2)T2(ν, q2)}
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Dispersion theory of T1, T2

T1(ν, q2) and T2(ν, q2) are analytic in q0.

Suffices to know these functions for space-like momenta.
Values in the time-like region: analytic continuation.

An analytic function is determined by
its singularities and its asymptotic behaviour.

Singularities: residues of poles, discontinuities across cuts.

ImT1, ImT2 ←→ F1, F2 ←→ σT, σL
⇑ ⇑

structure functions cross sections for
e + N → e + anything

Asymptotics: If T1,T2 → 0 for ν →∞
⇒ unsubtracted dispersion relations

T1(ν, q2) =
1

π

∫ ∞
−∞

dν′

ν′ − ν
ImT1(ν′, q2) likewise for T2

⇑
σT, σL

⇒ Cottingham formula: Mγ given by integral over σT, σL
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Reggeons

Reggeon exchange⇒ T1 ∝ να, T2 ∝ να−2

α is value of the Reggeon trajectory α(t) at t = 0

All Reggeons have α < 2⇒ T2(ν, q2)→ 0 for ν →∞
⇒ d.r. for T2 unsubtracted, fully determined by its singularities.

Reggeon exchange does generate nontrivial asymptotics in T1:

TR
1 (ν, q2) = −

∑
α

πβα(q2)

sinπα
{να + (−ν)α}

⇒ T1 does not obey an unsubtracted d.r.

T1(ν, q2) = S1(q2) +
ν

π

∫ ∞
−∞

dν′

ν′(ν′ − ν)
ImT1(ν′, q2)

Harari 1966: Could it be that the subtraction term dominates
over the remainder and changes the sign of M p−n

γ ?
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Reggeon dominance hypothesis

The field theoretic origin of the Reggeons is understood.

Reggeon field theory, Gribov, Balitsky, Fadin, Kuraev, Lipatov, . . .

Basic hypothesis in GL: nothing but Reggeons in asymptotics

T1(ν, q2)− TR
1 (ν, q2)→ 0 for ν →∞ at fixed q2

If the asymptotic behaviour of QCD could not be understood
on this basis, that would be most interesting !

Alternative: T1(ν, q2)− TR
1 (ν, q2)→ β(q2) 6= 0

⇑
In Regge language: T1 ∼ β(q2)να fixed pole at α = 0

Reggeon dominance hypothesis⇐⇒ ∃/ fixed pole

Theoretical understanding of Pomeron underdeveloped.
Branch point at α = 1. ∃ daughter at α = 0 ?
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Reggeon dominance hypothesis

Consequence of the hypothesis that the Reggeons dominate:
T1 − TR

1 obeys an unsubtracted dispersion relation.
⇒ Subtraction S1(q2) is determined by σT, σL, like the rest.
⇒ Electromagnetic self-energy can be calculated.

Numerical evaluation in GL: M p−n
γ = 0.76(30) MeV

Shortcoming of this calculation: in 1975 there was no sign of
scaling violations in the data. Deep inelastic contributions
were estimated with Bjorken’s scaling laws, found to be very
small, in the noise of the calculation.
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Walker-Loud et al., Erben et al.

WCM claim ’technical oversight’ in GL.
Instead treat S1(q2) as physically independent of σT, σL.

T1(ν, q2) = S1(q2) +
ν

π

∫ ∞
−∞

dν′

ν′(ν′ − ν)
ImT1(ν′, q2)

⇑ ⇑
subtraction σT, σL

Low energy theorem: T1(0, 0)⇔ βM magnetic polarizability.
⇒ Can fix S1(0) with experimental value of βM .

∃/ exp. info about dependence on q2 ⇒ invent a model.
⇒ Result for self-energy: M p−n

γ = 1.30(03)(47) MeV.

ESTY make a different ansatz for S1(q2).
⇒ Result for self-energy: M p−n

γ = 1.04(35) MeV.

In either case, the systematic error due to the
model-dependence is difficult to assess.
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Comparison of the subtraction functions

Side remark: Born terms are ambiguous, elastic part is unique.
Analytic functions determined by asymptotics + singularities.
T el

1 ,T
el
2 contributions to T1,T2 from the nucleon pole.

Decompose S1 = Sel
1 + S inel

1 , Sel
1 ⇔ nucleon form factors.
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Prediction at Q2 = 0
βp−n
M = −0.5(1.6) exp

taken from
Gasser, Hoferichter, Leutwyler
and Rusetsky, arXiv:1506.06747

Q2 = - q2, GeV units

y-axis stretched with
N=(1+Q2/0.71)2

for better visibility

Models yield higher central values for the subtraction function.
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Self-energy difference, polarizabilities

Difference in M p−n
γ is exclusively due to change in S1:

Can replace the model made in WCM for S1 by our prediction,
leave everything else as it is⇒ 1.30 MeV drops to 0.63 MeV.
Repeat exercise with ESTY⇒ 1.04 MeV drops to 0.67 MeV.

⇒ Ancient result, M p−n
γ = 0.76(30) MeV, is confirmed.

Update of estimate for deep inelastic contributions needed,
would reduce the uncertainty in result for self-energy.

As a bonus, we get a prediction: S1(0)⇐⇒ βM
⇒ Using known Baldin sum rule results for αE + βM ,

can calculate the p-n difference for αE as well as βM :
α p−n

E = – 1.7(4) , β p−n
M = 0.3(7) [in units of 10−4 fm3]

αp
E , βp

M accurately known from experiment.
⇒ Prediction for neutron: αn

E =12.3(7) βn
M=2.9(9).

Experiment: αn
E =11.55(1.5) βn

M=3.65(1.50).
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To be done
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Resonances
Reggeons

DIS
some HERA data
some SLAC data
x = 0.07
x = 0.01
x = 0.001

Evaluation updated only here

To sharpen the result for the self-energy difference
Exp. as well as theor. info about DIS much better now.

⇒ Reanalysis of contributions from that region still missing.
Regge region, low Q2: Alwall, Ingelman
Regge region, modest Q2: Capella et al., Sibirtsev et al.

Amalgamate the two and make contact with the available
parameterizations of DIS, for instance: Alekhin, Blümlein, Moch

To sharpen the predictions for the polarizabilities
Region of the ∆(1232): MAID, DMT, chiralMAID, SAID
Available information is of excellent quality.
Intermediate energies, low Q2: Bosted, Christy
Improved information urgently needed, MAMI, JLAB ?
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Comments

Main problem: all of the well-established properties of the
cross sections drop out in the difference between p and n.

Leading term in χPT is the same for p and n.
Isospin⇒ couplings to the ∆(1232) are the same.
Dominating term at high energies (Pomeron) is the same.
Even the logarithmic divergences in Mp

γ and Mn
γ nearly cancel.

What remains is small and not easy to determine accurately.

It would take a fixed pole with a juicy residue to get a sizeable
difference between the subtraction functions relevant for p
and n and hence a sizeable difference between βp

M and βn
M .

The data do not rule out the presence of a fixed pole, but
show that its residue is small, consistent with zero.

Lattice is gradually making progress with e.m. self-energies . . .

H. Leutwyler University of Bern Theoretical aspects of Chiral Dynamics



Merci vielmal !
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